
Transactions on Machine Learning  
and Data Mining 
Vol.1, No 1 (2008) 1-15 
© ISSN: 1865-6781 (Journal), 
 IBaI Publishing ISSN 1864-9734 
 

 
 
 
 

Hybrid Rule Ordering in Classification Association 
Rule Mining 

Yanbo J. Wang 1, ∗, Qin Xin 2, and Frans Coenen 1 

 
1 Department of Computer Science, The University of Liverpool, 

Ashton Building, Ashton Street, Liverpool, L69 3BX, United Kingdom 
{jwang, frans}@csc.liv.ac.uk; Tel.: +44 151 7954253; Fax: +44 151 7954235 

 
2 Simula Research Laboratory, P.O. Box 134, 

NO-1325 Lysaker, Norway 
xin@simula.no 

Abstract. Classification Association Rule Mining (CARM) is an approach to 
classifier generation that builds an Association Rule Mining based classifier 
using Classification Association Rules (CARs). Regardless of which particular 
CARM algorithm is used, a similar set of CARs is always generated from data, 
and a classifier is usually presented as an ordered list of CARs, based on a 
selected rule ordering strategy. Hence to produce an accurate classifier, it is 
essential to develop a rational rule ordering mechanism. In the past decade, a 
number of rule ordering strategies have been introduced. Six major ones can be 
identified: Confidence Support & size-of-Antecedent (CSA), size-of-
Antecedent Confidence & Support (ACS), Confidence Support size-of-
Antecedent class-distribution-Frequency & Row-ordering (CSAFR), Weighted 
Relative Accuracy (WRA), Laplace Accuracy (LA), and Chi-square Testing 
(χ2). Broadly speaking, these strategies can be categorized into two groups: 
Support-Confidence (including CSA, ACS and CSAFR) and Rule Weighting 
(including WRA, LA and χ2). In this paper, we propose a hybrid rule ordering 
approach (framework) by combining one strategy taken from Support-
Confidence and another strategy taken from Rule Weighting, which 
consequently develops nine rule ordering mechanisms. The experimental results 
demonstrate that all developed mechanisms perform well with respect to the 
accuracy of classification. 
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1   Introduction 

Data mining is an area of current research and development in computer science, 
which is attracting more and more attention from a wide range of different groups of 
people. It aims to extract various types (models) of hidden, interesting, previously 
unknown and potentially useful knowledge (i.e. rules, patterns, regularities, customs, 
trends, etc.) from databases, where the volume of a collected database can be 
measured in gigabytes. Association Rule Mining (ARM), first introduced by Agrawal 
et al. [1], is a well-known data mining research field. It aims to extract a set of 
Association Rules (ARs) ⎯ a common model of mined knowledge ⎯ from a given 
transactional database DT. Let I = {a1, a2, …, an–1, an} be a set of (binary-valued) 
database attributes (items), and T  = {T1, T2, …, Tm–1, Tm} be a set of database records 
(transactions), DT is described by T , where each Tj ∈ T  comprises a set of items I′ ⊆ 
I. An AR describes an implicative co-occurring relationship between two sets of items 
in DT, expressed in the form of an “antecedent (X) ⇒ consequent (Y)” rule, where X, 
Y ⊆ I and X ∩ Y = ∅. In ARM, two threshold values are usually used to determine the 
significance of an AR: 

1. Support: A set of items S is called an itemset. The support of S is the proportion of 
transactions T in T  for which S ⊆ T. If the support of S exceeds a user-supplied 
support threshold σ, S is defined to be a frequent/significant itemset. 

2. Confidence: Represents how “strongly” an itemset (rule antecedent) X implies 
another itemset (rule consequent) Y. A confidence threshold α, supplied by the 
user, is used to distinguish high confidence ARs from low confidence ARs. 

An AR “X ⇒ Y” is said to be valid when the support for the co-occurrence of X and Y 
exceeds σ, and the confidence of this AR exceeds α. The computation of support is: 

support(X ∪ Y) = count(X ∪ Y) / |T | , (1) 

where count(X ∪ Y) is the number of transactions containing the set X ∪ Y in T , and 
|T | is the size function (cardinality) of the set T . The computation of confidence is: 

confidence(X ⇒ Y) = support(X ∪ Y) / support(X) . (2) 

The most well-known ARM algorithm is the Apriori algorithm, developed by 
Agrawal and Srikant [2], which has been the basis of many subsequent ARM and/or 
ARM-related algorithms. 

Classification Rule Mining (CRM) [3] is a data mining technique for identifying 
hidden Classification Rules (CRs) ⎯ another common knowledge model ⎯ in a 
given class database DC, the objective being to build a classifier to categorize 
“unseen” data instances/records. Generally DC is described by a relational database 
table that includes a class attribute ⎯ whose values are a set of pre-defined class 
labels C = {c1, c2, …, c|C|–1, c|C|}. The process of CRM consists of two stages: (i) a 
training phase where CRs are generated from a set of training data instances DR ⊂ DC; 
and (ii) a test phase where “unseen” instances in a test dataset DE ⊂ DC are assigned 
into pre-defined class groups. A DC is established as DR ∪ DE, where DR ∩ DE = ∅. 
Both DR and DE share the same database attributes except the class attribute. By 
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convention the last attribute in each DR record usually indicates the pre-defined class 
of this record, noted as the class attribute, while the class attribute is missing in DE. 
One approach to CRM is to employ ARM methods to identify the desired CRs, i.e. 
Classification Association Rule Mining (CARM) [4]. 

CARM mines a set of Classification Association Rules (CARs) from a class-
transactional database DC-T (i.e. the well-established transactional database in a class 
fashion). A CAR is a special AR that describes an implicative co-occurring 
relationship between a set of items and a pre-defined class, expressed in the form of 
an “antecedent (X) ⇒ consequent-class (ci)” rule. Coenen et al. [5] and Shidara et al. 
[6] suggest that results presented in the studies of [7–9] show that in many cases 
CARM offers greater classification accuracy than other traditional CRM methods, 
such as C4.5 [3] and RIPPER (Repeated Incremental Pruning to Produce Error 
Reduction) [10]. Coenen and Leng [11] further indicate: 

1. “Training of the classifier is generally much faster using CARM techniques than 
other classification generation techniques such as decision tree and SVM (Support 
Vector Machine) approaches” (particularly when handling multi-class problems as 
opposed to two-class problems); 

2. “Training sets with high dimensionality can be handled very effectively”; and 
3. “The resulting classifier is expressed as a set of rules which are easily 

understandable and simple to apply to unseen data (an advantage also shared by 
some other techniques, e.g. decision tree classifiers)”. 

In the past decade, a number of CARM approaches have been developed. Although 
these CARM methods employ different ARM techniques to extract CARs from a 
given DC-T, a similar set of CARs is always generated, usually based on user-supplied 
support and confidence thresholds. Regardless of which particular method is used to 
generate CARs, a classifier is usually presented as an ordered list of CARs, based on a 
selected rule ordering strategy. Hence, it can be observed that the way to produce a 
more accurate CARM classifier is to develop a better rule ordering approach. Six 
major CARM rule ordering mechanisms can be identified: Confidence Support & 
size-of-Antecedent (CSA), size-of-Antecedent Confidence & Support (ACS), 
Confidence Support size-of-Antecedent class-distribution-Frequency & Row-ordering 
(CSAFR), Weighted Relative Accuracy (WRA), Laplace Accuracy (LA), and Chi-
square Testing (χ2). In this paper, we divide these mechanisms into two categories: 
Support-Confidence based which includes CSA, ACS and CSAFR; and Rule 
Weighting based which includes WRA, LA and χ2. We subsequently propose a 
hybrid rule ordering approach (framework) by combining one mechanism taken from 
Support-Confidence and another mechanism taken from Rule Weighting. As a 
consequence, nine rule ordering mechanisms are produced. With regard to the Best 
First Rule case satisfaction approach [12], the experimental results demonstrate that 
all rule ordering mechanisms developed in this study perform well with respect to the 
accuracy of classification. 

The rest of this paper is organized as follows. Section 2 describes some related 
work relevant to this study, where the six major (existing) rule ordering strategies in 
CARM are outlined. The proposed hybrid rule ordering approach is described in 
section 3. In section 4 we present experimental results. Finally our conclusions and 
open issues for further research are given in section 5. 
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2   Related Work 

2.1   An Overview of CARM Algorithms 

The idea of CARM was first presented by Ali et al. [4]. Subsequently a number of 
alternative approaches have been developed. Broadly speaking, CARM algorithms 
can be categorized into two groups according to the way that the CARs are generated:  

• Two Stage Algorithms where a set of CARs are produced first (stage 1), which 
are then pruned and placed into a classifier (stage 2). Typical algorithms of this 
approach include CBA (Classification Based on Associations) [8] and CMAR 
(Classification based on Multiple Association Rules) [7]. CBA is an Apriori based 
CARM algorithm, which: (i) applies its CBA-RG (Rule Generator) procedure for 
CAR generation; and (ii) applies its CBA-CB (Classifier Builder) procedure to 
build a classifier based on the generated CARs. CMAR is similar to CBA but 
generates CARs through a FP-tree [13] based approach. 

• Integrated Algorithms where the classifier is produced in a single processing 
step. Algorithms of this kind include TFPC (Total From Partial Classification) 
[5,11,12], and CPAR (Classification based on Predictive Association Rules)[9]. 
TFPC is an Apriori-TFP [14,15] based CARM algorithm, which generates CARs 
through efficiently constructing both P-tree and T-tree set enumeration tree [16] 
structures. CPAR is based on the PRM (Predictive Rule Mining) algorithm, and 
PRM is modified from the FOIL (First Order Inductive Learner) algorithm  [17]. 

2.2   Case Satisfaction Mechanisms 

Coenen and Leng [12] summarize three case satisfaction mechanisms that have been 
employed in a variety of CARM algorithms for utilizing the resulting classifier to 
classify “unseen” data records. These three case satisfaction approaches are itemized 
as follows (given a particular case): 

• Best First Rule: Select the first rule that satisfies the given case according to some 
ordering imposed on the list of generated CARs. The ordering can be defined 
according to many different ordering strategies including: 
1. CSA (Confidence Support & size-of-Antecedent) where confidence is the most 

significant factor and size-of-antecedent the least significant factor (used in 
CBA, TFPC and the early stage of processing of CMAR), where size-of-
antecedent is measured by the cardinality of the rule antecedent; 

2. ACS (size-of-Antecedent Confidence & Support), an alternative mechanism to 
CSA that considers size-of-antecedent the most significant factor and support 
the least significant factor; 

3. CSAFR (Confidence Support size-of-Antecedent class-distribution-Frequency 
& Row-ordering), which makes use of two additional factors, based on the CSA 
ordering; 

4. WRA (Weighted Relative Accuracy), which reflects a number of rule 
interestingness measures as proposed in [18]; 

5. LA (Laplace Accuracy) ⎯ as used in CPAR; and 
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6. χ2 (Chi-square Testing) ⎯ as used, in part, in CMAR; etc. 
These approaches are discussed further in section 2.3. 

• Best K Rules: Select the first (top) K rules that satisfy the given case and then 
select a rule according to some averaging process as used for example, in CPAR. 
The term “best” in this case is defined according to an imposed ordering of the 
form described in Best First Rule. 

• All Rules: Collect all rules in the classifier that satisfy the given case and then 
evaluate this collection to identify a class. One well-known evaluation method in 
this category is WCS (Weighted χ2) testing as used in CMAR. 

2.3   Rule Ordering Approaches 

As noted above, rule ordering strategies support the Best First Rule case satisfaction 
mechanism. The rule ordering is conducted using some scoring mechanism. The 
nature of the scoring mechanisms can be divided into two groups. The first group 
includes the following: 

• CSA: The CSA rule ordering strategy is based on the well-established “Support-
Confidence” framework of for instance [19] that was originally introduced for AR 
interestingness measure. CSA sorts all generated CARs in a descending order 
based on the value of confidence of each CAR. For those CARs that share a 
common value of confidence, CSA sorts them in a descending order based on their 
support value. Furthermore for those CARs that share common values for both 
confidence and support, CSA sorts them in an ascending order based on the size of 
the rule antecedent. 

• ACS: The ACS rule ordering strategy is a variant of CSA. It takes the size of the 
rule antecedent as its major factor (using a descending order — unlike the 
ascending order used in CSA) followed by the rule confidence and support values 
respectively. Coenen and Leng [12] state that ACS ensures: “specific rules have a 
higher precedence than more general rules”. 

• CSAFR: The CSAFR rule ordering strategy, introduced by Thabtah et al. [20], is 
an extension of the CSA strategy. It begins with the CSA ordering followed by two 
additional factors, so that: for those CARs that share common values for 
confidence, support and the size of rule antecedent, CSAFR sorts them in a 
descending order based on their class distribution frequency (class-based support 
value); and for those CARs that share common values for all the four factors 
above, CSAFR sorts them in an ascending order based on the ID-number of the 
transaction (database row number, i.e. 1, 2, …, m–1, m), in which the rule first-
time appears in the training dataset. 

The second group of rule ordering strategies is Rule Weighting based where an 
additive weighting score is assigned to each CAR, based on a particular weighting 
scheme. Examples include: 

• WRA: The WRA measure [18] is used to determine the expected accuracy of each 
CAR. The calculation of the WRA score of a CAR R (as “X ⇒ ci”) confirmed in 
[12], is:  
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wra_score(R) = support(X) × (confidence(R) – support(ci)) . (3) 

WRA simply sorts all generated CARs in a descending order, based on the 
assigned WRA score of each CAR. 

• LA: The use of the Laplace Expected Error Estimate [21] can be found in [9]. The 
principle of applying this rule ordering mechanism is similar to WRA. The 
calculation of the LA score of a CAR R is: 

la_score(R) = (support(X ∪ {ci}) + 1) / (support(X) + |C|) , (4) 

where {ci} denotes the 1-itemset form of ci, and |C| denotes the number of pre-
defined classes. 

• χ2: χ2 testing is a well-known technique used in statistics (see for example [22]). It 
can be used to determine whether two variables are independent of one another. In 
χ2 testing, a set of observed values O is compared against a set of expected values 
E ⎯ values that would be estimated if there was no dependence between the 
variables. The value of χ2 is calculated using: 

χ2_value = ∑⎨j = 1…n⎬ (Oj – Ej)2 / Ej , (5) 

where n is the number of entries in the confusion matrix, which is always 4 in 
CARM. If the χ2 value between two variables (the rule antecedent and consequent-
class of a CAR) is greater than a given threshold value (for CMAR the chosen 
threshold is 3.8415), it can be concluded that there is a dependence between the 
rule antecedent and consequent-class; otherwise there is no dependence. After 
assigning a χ2 score/value to each CAR, it can be used as the basis for ordering 
CARs into descending order. 

3   The Hybrid Rule Ordering Approach 

In this section, we describe the proposed hybrid rule ordering approach in detail (also 
see the initial version of this work in [23]). Yin and Han [9] suggest that there are 
only a limited number (perhaps 5 in each class) of CARs that are required to 
distinguish between classes and should thus be used to make up a classifier. Yin and 
Han employ LA to estimate the accuracy of CARs. Incorporating the K rules concept 
of Yin and Han a hybrid Support-Confidence & Rule Weighting based ordering 
approach can be developed. The hybrid approach fuses both the case satisfaction 
mechanisms of Best First Rule and Best K Rules. The overall procedure of the hybrid 
rule ordering strategy is outlined as follows: 

Algorithm: The Hybrid Rule Ordering Procedure 
  Input:  (a) A list of CARs ℜ (in CSA, ACS or CSAFR  
     ordering manner); 
   (b) A desired number (integer value) K of the  
     best rules; 
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Output:  A re-ordered list of CARs ℜHYBRID (in a hybrid  
    rule ordering manner); 
Begin Algorithm 
(1)  ℜHYBRID  ∅; 
(2)  ℜSCORE  ∅; 
(3)  for each CAR ∈ ℜ do 
(4)    calculate the additive score (δ) for this CAR  
        (in WRA, LA or χ2 ordering manner); 
(5)    add (CAR ⊕ δ) into ℜSCORE; //the ⊕ sign means  
        “with” an additive CAR attribute 
(6)  end for 
(7)  sort ℜSCORE in a descending order based on δ; 
(8)  ℜSCORE  select the top K CARs (for each pre- 
      defined class) ∈ ℜSCORE; 
(9)  sort ℜSCORE in CSA, ACS or CSAFR ordering manner;   
      //keep ℜSCORE ordering consistent with ℜ ordering 
(10) ℜHYBRID  link ℜSCORE at front of ℜ; 
(11) return (ℜHYBRID); 
End Algorithm 

From the foregoing, nine individual hybrid rule ordering mechanisms are produced: 

• Hybrid CSA/WRA: Selects the Best K Rules (for each pre-defined class) in a 
WRA manner from the given (original) CAR list (that is presented in a CSA 
manner), and re-orders the best K CAR list in a CSA manner. The best K CAR list 
is then linked at the front of the original CAR list. 

• Hybrid CSA/LA: Selects the Best K Rules (for each pre-defined class) in an LA 
manner from the given (original) CAR list (that is presented in a CSA manner), 
and re-orders the best K CAR list in a CSA manner. The best K CAR list is then 
linked at the front of the original CAR list. 

• Hybrid CSA/χ2: Selects the Best K Rules (for each pre-defined class) in a χ2 
manner from the given (original) CAR list (that is presented in a CSA manner), 
and re-orders the best K CAR list in a CSA manner. The best K CAR list is then 
linked at the front of the original CAR list. 

• Hybrid ACS/WRA: Selects the Best K Rules (for each pre-defined class) in a 
WRA manner from the given (original) CAR list (that is presented in an ACS 
manner), and re-orders the best K CAR list in an ACS manner. The best K CAR list 
is then linked at the front of the original CAR list. 

• Hybrid ACS/LA: Selects the Best K Rules (for each pre-defined class) in an LA 
manner from the given (original) CAR list (that is presented in an ACS manner), 
and re-orders the best K CAR list in an ACS manner. The best K CAR list is then 
linked at the front of the original CAR list. 

• Hybrid ACS/χ2: Selects the Best K Rules (for each pre-defined class) in a χ2 
manner from the given (original) CAR list (that is presented in an ACS manner), 
and re-orders the best K CAR list in an ACS manner. The best K CAR list is then 
linked at the front of the original CAR list. 
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• Hybrid CSAFR/WRA: Selects the Best K Rules (for each pre-defined class) in a 
WRA manner from the given (original) CAR list (that is presented in a CSAFR 
manner), and re-orders the best K CAR list in a CSAFR manner. The best K CAR 
list is then linked at the front of the original CAR list. 

• Hybrid CSAFR/LA: Selects the Best K Rules (for each pre-defined class) in an 
LA manner from the given (original) CAR list (that is presented in a CSAFR 
manner), and re-orders the best K CAR list in a CSAFR manner. The best K CAR 
list is then linked at the front of the original CAR list. 

• Hybrid CSAFR/χ2: Selects the Best K Rules (for each pre-defined class) in a χ2 
manner from the given (original) CAR list (that is presented in a CSAFR manner), 
and re-orders the best K CAR list in a CSAFR manner. The best K CAR list is then 
linked at the front of the original CAR list. 

4   Experimental Results 

In this section, we aim to evaluate the proposed hybrid rule ordering approach with 
respect to the accuracy of classification. All evaluations were obtained using the 
TFPC 

1
  CARM algorithm coupled with the Best First Rule case satisfaction strategy, 

although any other CARM classifier generator, founded on the Best First Rule 
strategy, could equally well be used. Experiments were run on a 1.86 GHz Intel(R) 
Core(TM)2 CPU with 1.00 GB of RAM running under Windows Command 
Processor. 

The experiments were conducted using a range of datasets taken from the LUCS-
KDD discretised/normalised ARM and CARM Data Library [24]. The chosen 
datasets are originally taken from the UCI Machine Learning Repository [25]. These 
datasets have been discretized and normalized using the LUCS-KDD DN software 2, 
so that data are then presented in a binary format suitable for use with CARM 
applications. It should be noted that each chosen dataset has been re-arranged so that 
occurrences of classes are distributed evenly throughout the dataset. This allows 
TFPC to be applied to (90% ⎯ training set, 10% ⎯ test set) divisions of each dataset 
with Ten-fold Cross Validation (TCV) accuracy setting. 

The first set of evaluations undertaken used a confidence threshold value of 50% 
and a support threshold value of 1%, as used in the published evaluations of CMAR 
[7], CPAR [9], TFPC [5,11,12], etc. The results are presented in Table 1 where 114 
classification accuracy values are listed based on 19 chosen datasets. The row labels 
describe the key characteristics of each dataset: for example, the label 
anneal.D73.N898.C6 denotes the “anneal” dataset, which includes 898 records in 6 
pre-defined classes, with attributes that for the experiments described here have been 
discretized and normalized into 73 binary categories. From Table 1 it can be seen that 
with a 50% confidence threshold and a 1% support threshold the CSA rule ordering 
mechanism worked better than other alternative approaches. When applying the CSA  
                                                           
1 TFPC software may be obtained from http://www.csc.liv.ac.uk/~frans/KDD/Software/ 

Apriori-TFPC/aprioriTFPC.html. 
2 DN software may be obtained from http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS-

KDD-DN/lucs-kdd_DN.html. 
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Table 1.  Classification accuracy ⎯ six existing rule ordering mechanisms. 

DATASETS CSA ACS CSAFR WRA LA χ2

(1)   adult.D97.N48842.C2 80.80 74.70 80.80 81.65 76.07 76.07 
(2)   anneal.D73.N898.C6 88.29 75.58 88.29 85.95 76.17 76.17 
(3)   breast.D20.N699.C2 89.99 89.99 89.99 88.23 65.51 65.51 
(4)   connect4.D129.N67557.C3 65.83 65.18 65.83 67.74 65.83 65.83 
(5)   flare.D39.N1389.C9 84.30 84.30 84.30 84.30 84.30 84.30 
(6)   glass.D48.N214.C7 64.97 50.74 64.02 53.62 47.73 52.74 
(7)   heart.D52.N303.C5 51.42 39.76 51.42 54.09 54.09 54.09 
(8)   hepatitis.D56.N155.C2 81.83 48.50 81.83 70.67 79.33 79.33 
(9)   horseColic.D85.N368.C2 79.07 41.11 79.07 81.34 65.53 63.03 
(10) ionosphere.D157.N351.C2 86.34 64.67 86.34 81.48 64.10 64.10 
(11) iris.D19.N150.C3 95.33 95.33 95.33 95.33 95.33 96.00 
(12) led7.D24.N3200.C10 68.72 64.22 68.72 64.50 63.50 66.81 
(13) mushroom.D90.N8124.C2 99.04 64.92 99.04 98.52 98.52 49.43 
(14) nursery.D32.N12960.C5 77.75 55.08 77.75 70.97 70.97 70.97 
(15) pageBlocks.D46.N5473.C5 89.99 89.99 89.99 90.22 89.77 89.77 
(16) pima.D38.N768.C2 74.37 73.85 74.37 74.37 65.10 65.10 
(17) soybean-large.D118.N683.C19 88.01 86.10 88.15 36.15 34.98 74.10 
(18) ticTacToe.D29.N958.C2 67.10 39.03 67.10 70.50 65.34 65.34 
(19) wine.D68.N178.C3 71.51 50.28 70.52 77.44 67.01 68.19 
Average 79.19 65.96 79.10 75.11 69.96 69.84 

rule ordering mechanism, the average accuracy of classification throughout the 19 
datasets is 79.19%, whereas using ACS is 65.96%, CSAFR is 79.10%, WRA is 
75.11%, LA is 69.96%, and χ2 is 69.84%. 

The second set of evaluations undertaken used a confidence threshold value of 
50%, a support threshold value of 1%, and a value of 5 as an appropriate value for K 
when selecting the best K rules (K = 5 was also used in [9]). The results are presented 
in Table 2 where 171 classification accuracy values are listed based on 19 chosen 
datasets. From Table 2 it can be seen that with a 50% confidence threshold, a 1% 
support threshold, and 5 as the value of K, the approach Hybrid CSAFR/χ2 preformed 
better than other alternative hybrid rule ordering mechanisms. When applying Hybrid 
CSAFR/χ2, the average accuracy of classification throughout the 19 datasets is 
79.48%. Let CSAFR and χ2 be the “parents” of Hybrid CSAFR/χ2, we indicate that 
the classification accuracy obtained using Hybrid CSAFR/χ2 is greater than the 
accuracies obtained by its “parents”, where CSAFR is 79.10% and χ2 is 69.84%. 
Furthermore we identify: 

• The classification accuracy of Hybrid CSA/WRA is greater than the accuracies 
obtained by its “parents”, where the average accuracy of Hybrid CSA/WRA is 
79.37% whereas CSA is 79.19% and WRA is 75.11%. 

• The classification accuracy of Hybrid CSA/LA is greater than the accuracies 
obtained by its “parents”, where the average accuracy of Hybrid CSA/LA is 
79.22% whereas CSA is 79.19% and LA is 69.96%. 

• The classification accuracy of Hybrid CSA/χ2 is greater than the accuracies 
obtained by its “parents”, where the average accuracy of Hybrid CSA/χ2 is 79.46% 
whereas CSA is 79.19% and χ2 is 69.84%. 
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Table 2.    Classification accuracy ⎯ nine hybrid rule ordering mechanisms.  

DATASETS CSA 
WRA 

CSA 
LA 

CSA 
χ2

ACS 
WRA 

ACS 
LA 

ACS 
χ2

CSAFR
WRA 

CSAFR 
LA 

CSAFR 
χ2

(1)   adult.D97.N48842.C2 81.42 80.08 80.08 78.66 83.86 80.19 81.42 80.08 80.08 
(2)   anneal.D73.N898.C6 88.62 89.76 89.76 79.11 80.57 82.25 88.62 89.76 89.76 
(3)   breast.D20.N699.C2 89.99 89.59 91.00 89.99 89.59 91.00 89.99 89.59 91.00 
(4)   connect4.D129.N67557.C3 67.65 65.83 65.83 65.24 65.24 65.24 67.65 65.83 65.83 
(5)   flare.D39.N1389.C9 84.30 84.30 84.30 84.30 84.30 84.30 84.30 84.30 84.30 
(6)   glass.D48.N214.C7 64.97 64.97 65.45 59.73 60.69 64.02 64.97 64.97 65.45 
(7)   heart.D52.N303.C5 54.76 55.09 51.06 50.24 50.58 50.88 54.76 54.76 51.39 
(8)   hepatitis.D56.N155.C2 81.33 81.17 80.50 72.00 76.83 72.67 81.33 81.17 80.50 
(9)   horseColic.D85.N368.C2 80.78 81.01 81.24 80.78 81.01 78.71 80.78 81.01 81.24 
(10) ionosphere.D157.N351.C2 85.76 84.90 84.05 85.76 84.90 84.05 85.76 84.90 84.05 
(11) iris.D19.N150.C3 95.33 95.33 95.33 95.33 95.33 95.33 95.33 95.33 95.33 
(12) led7.D24.N3200.C10 68.72 68.72 68.72 64.63 64.63 64.66 68.72 68.72 68.72 
(13) mushroom.D90.N8124.C2 98.52 98.82 98.52 98.52 98.82 98.52 98.52 98.82 98.52 
(14) nursery.D32.N12960.C5 78.42 78.42 78.42 66.74 66.74 66.74 78.42 78.42 78.42 
(15) pageBlocks.D46.N5473.C5 89.99 90.06 90.66 89.99 90.06 90.66 89.99 90.06 90.66 
(16) pima.D38.N768.C2 74.37 74.50 74.63 74.37 74.50 74.63 74.37 74.50 74.63 
(17) soybean-large.D118.N683.C19 83.44 82.12 87.71 78.48 77.15 82.59 83.59 82.26 87.85 
(18) ticTacToe.D29.N958.C2 67.94 68.15 67.94 61.19 63.16 57.80 67.94 68.15 67.94 
(19) wine.D68.N178.C3 71.72 72.31 74.47 71.72 72.31 74.47 71.72 72.31 74.47 
Average 79.37 79.22 79.46 76.15 76.86 76.77 79.38 79.21 79.48 

• The classification accuracy of Hybrid ACS/WRA is greater than the accuracies 
obtained by its “parents”, where the average accuracy of Hybrid ACS/WRA is 
76.15% whereas ACS is 65.96% and WRA is 75.11%. 

• The classification accuracy of Hybrid ACS/LA is greater than the accuracies 
obtained by its “parents”, where the average accuracy of Hybrid ACS/LA is 
76.86% whereas ACS is 65.96% and LA is 69.96%. 

• The classification accuracy of Hybrid ACS/χ2 is greater than the accuracies 
obtained by its “parents”, where the average accuracy of Hybrid ACS/χ2 is 76.77% 
whereas ACS is 65.96% and χ2 is 69.84%. 

• The classification accuracy of Hybrid CSAFR/WRA is greater than the accuracies 
obtained by its “parents”, where the average accuracy of Hybrid CSAFR/WRA is 
79.38% whereas CSAFR is 79.10% and WRA is 75.11%. 

• The classification accuracy of Hybrid CSAFR/LA is greater than the accuracies 
obtained by its “parents”, where the average accuracy of Hybrid CSAFR/LA is 
79.21% whereas CSAFR is 79.10% and LA is 69.96% 

The third set of evaluations emphasize on the number of instances of best 
classification accuracies obtained throughout the 19 datasets. The results are 
presented in Table 3 which combines the results shown in Tables 1 and 2. From Table 
3 it can be seen that both proposed mechanisms Hybrid CSAFR/χ2 and Hybrid 
CSA/χ2 gave the highest number of best classification accuracies (8 out of 19 cases). 
It can be further indicated that the average of the best classification accuracy 
(instance) numbers for all hybrid rule ordering mechanisms is: (3 + 5 + 8 + 1 + 2 + 4 
+ 3 + 4 + 8) / 9 = 4.22, which is greater than the average of the best classification 
accuracy numbers for the six existing mechanisms that is: (5 + 1 + 6 + 5 + 1 + 2) / 6 = 
3.33. 
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Table 3.  Number of best classification accuracies ⎯ fifteen rule ordering mechanisms. 

DATA 

SETS 
CSA ACS CSAFR WRA LA χ2 CSA 

WRA 
CSA 
LA 

CSA   
χ2

ACS 
WRA 

ACS 
LA 

ACS   
χ2

CSAFR
WRA 

CSAFR 
LA 

CSAFR 
χ2

(1) 80.80 74.70 80.80 81.65 76.07 76.07 81.42 80.08 80.08 78.66 83.86 80.19 81.42 80.08 80.08 
(2) 88.29 75.58 88.29 85.95 76.17 76.17 88.62 89.76 89.76 79.11 80.57 82.25 88.62 89.76 89.76 
(3) 89.99 89.99 89.99 88.23 65.51 65.51 89.99 89.59 91.00 89.99 89.59 91.00 89.99 89.59 91.00 
(4) 65.83 65.18 65.83 67.74 65.83 65.83 67.65 65.83 65.83 65.24 65.24 65.24 67.65 65.83 65.83 
(5) 84.30 84.30 84.30 84.30 84.30 84.30 84.30 84.30 84.30 84.30 84.30 84.30 84.30 84.30 84.30 
(6) 64.97 50.74 64.02 53.62 47.73 52.74 64.97 64.97 65.45 59.73 60.69 64.02 64.97 64.97 65.45 
(7) 51.42 39.76 51.42 54.09 54.09 54.09 54.76 55.09 51.06 50.24 50.58 50.88 54.76 54.76 51.39 
(8) 81.83 48.50 81.83 70.67 79.33 79.33 81.33 81.17 80.50 72.00 76.83 72.67 81.33 81.17 80.50 
(9) 79.07 41.11 79.07 81.34 65.53 63.03 80.78 81.01 81.24 80.78 81.01 78.71 80.78 81.01 81.24 
(10) 86.34 64.67 86.34 81.48 64.10 64.10 85.76 84.90 84.05 85.76 84.90 84.05 85.76 84.90 84.05 
(11) 95.33 95.33 95.33 95.33 95.33 96.00 95.33 95.33 95.33 95.33 95.33 95.33 95.33 95.33 95.33 
(12) 68.72 64.22 68.72 64.50 63.50 66.81 68.72 68.72 68.72 64.63 64.63 64.66 68.72 68.72 68.72 
(13) 99.04 64.92 99.04 98.52 98.52 49.43 98.52 98.82 98.52 98.52 98.82 98.52 98.52 98.82 98.52 
(14) 77.75 55.08 77.75 70.97 70.97 70.97 78.42 78.42 78.42 66.74 66.74 66.74 78.42 78.42 78.42 
(15) 89.99 89.99 89.99 90.22 89.77 89.77 89.99 90.06 90.66 89.99 90.06 90.66 89.99 90.06 90.66 
(16) 74.37 73.85 74.37 74.37 65.10 65.10 74.37 74.50 74.63 74.37 74.50 74.63 74.37 74.50 74.63 
(17) 88.01 86.10 88.15 36.15 34.98 74.10 83.44 82.12 87.71 78.48 77.15 82.59 83.59 82.26 87.85 
(18) 67.10 39.03 67.10 70.50 65.34 65.34 67.94 68.15 67.94 61.19 63.16 57.80 67.94 68.15 67.94 
(19) 71.51 50.28 70.52 77.44 67.01 68.19 71.72 72.31 74.47 71.72 72.31 74.47 71.72 72.31 74.47 
# of 

Bests 5 1 6 5 1 2 3 5 8 1 2 4 3 4 8 

 

5   Conclusion 

This paper is concerned with an investigation of CARM. An overview of alternative 
CARM algorithms was provided in section 2.1 and three current case satisfaction 
strategies were reviewed in section 2.2. In section 2.3 we described the existing rule 
ordering mechanisms in two groups (Support-Confidence versus Rule Weighting). A 
hybrid rule ordering approach was proposed subsequently in section 3, which 
combines an approach taken from Support-Confidence and another approach taken 
from Rule Weighting. Consequently nine hybrid rule ordering mechanisms were 
introduced in this paper. From the experimental results, all nine hybrid mechanisms 
presented good classification accuracy ⎯ the accuracy is greater than the accuracies 
obtained by their “parent” rule ordering approaches. In Table 4, the average 
classification accuracies (of 19 chosen datasets) for all fifteen rule ordering 
mechanisms are presented in rank order. The proposed hybrid mechanisms (as 
highlighted) were ranked as No.1 ~ No.6 and No.9 ~ No.11. Furthermore the average 
of the best classification accuracy numbers for all hybrid strategies is greater than the 
average number for the six existing mechanisms. Table 5 shows the number of 
instances of best classification accuracies for all fifteen rule ordering mechanisms 
considered here: the best results are coming from both Hybrid CSAFR/χ2 and Hybrid 
CSA/χ2. Further research is suggested to identify the improved rule ordering approach 
to give a better performance. 
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Table 4. Ranked order of classification accuracies for the fifteen rule ordering mechanisms 

Rank No. Rule Ordering Mechanism Average Accuracy 

1 Hybrid CSAFR/χ2 79.48 
2 Hybrid CSA/χ2 79.46 
3 Hybrid CSAFR/WRA 79.38 
4 Hybrid CSA/WRA 79.37 
5 Hybrid CSA/LA 79.22 
6 Hybrid CSAFR/LA 79.21 
7 CSA 79.19 
8 CSAFR 79.10 
9 Hybrid ACS/LA 76.86 

10 Hybrid ACS/χ2 76.77 
11 Hybrid ACS/WRA 76.15 
12 WRA 75.11 
13 LA 69.96 
14 χ2 68.84 
15 ACS 65.96 

Table 5.  Ranked order of the best accuracy number for the fifteen rule ordering mechanisms. 

Rank No. Rule Ordering Mechanism Number of Bests 

1 Hybrid CSAFR/χ2 8 
1 Hybrid CSA/χ2 8 
3 CSAFR 6 
4 Hybrid CSA/LA 5 
4 CSA 5 
4 WRA 5 
7 Hybrid CSAFR/LA 4 
7 Hybrid ACS/χ2 4 
9 Hybrid CSAFR/WRA 3 
9 Hybrid CSA/WRA 3 

11 Hybrid ACS/LA 2 
11 χ2 2 
13 Hybrid ACS/WRA 1 
13 LA 1 
13 ACS 1 
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