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Abstract  

In current engine reliability models, the 
relationship between the MTTF (Mean Time to 
Failure) and the time to failure (TTF) of 
individual components is not well understood. 
Probabilistic sensitivity analysis provides a tool 
to identify the critical failure modes in an 
engine. These sensitivity measures reveal any 
effect of an individual component’s uncertainty 
on the MTTF of the entire system. Using a 
conservative model, the minimum function, 
several different methods of identifying these 
critical failure modes were applied to both a 5-
component mock engine model and a 22-
component full turbine engine module (Rear 
Gear Box). Complex variable numerical 
differentiation methods were applied in order to 
calculate local probabilistic sensitivities. From 
this investigation two numerical differentiation 
methods were developed: direct complex 
variable Monte Carlo (direct CVMC) and 
complex variable score function (CVSF). Direct 
CVMC requires fewer samples but is non-
robust. CVSF circumvents any discontinuities in 
the response of interest but inherits a larger 
variance in the derivatives of interest. While 
direct CVMC provided first order derivatives, 
this required an approximation of the minimum 
function. CVSF, with an additional order of 
magnitude sampling cost, circumvents 
discontinuities in the minimum function and 
provided higher order derivatives.  
1 Turbine Engine Sustainment  

In military gas turbine engines there are a 
countless number of failure modes. Typical 
maintenance, repair, and operations (MRO) 
record the failure rates of components 

throughout the life of the engine. However, 
maintenance schedules often require inefficient 
and costly overhauls of aircraft. The aim of 
probabilistic sensitivity analysis is to use the 
data collected to build a probabilistic model for 
each failure mode in the engine or engine 
module and incorporate that information into an 
entire engine or engine module model. 
Sensitivity analysis of such an engine model 
would provide a decision making tool for MRO 
by identifying critical failure modes that 
contribute most to the detriment or increase in 
the MTTF of the engine and/or engine module.  

A typical aircraft contains three major 
systems: Engine, Structural Support, and 
Propeller. Within the Engine system lays the 
‘turbine’, ‘compressor,’ and ‘rear gear box.’ 
This paper focuses on the probabilistic 
sensitivity analysis of the rear-gearbox (RGB). 
StandardAero, an MRO company, provided this 
data. 

1.1 Review of Sensitivity Methods 
Sensitivity analysis has been a topic of 

interest in reliability for the past 50 years. 
Starting with Birnbaum’s work on identifying 
important variables in multicomponent system 
[5], he defined sensitivity as a derivative taken 
of the joint probability density function (JPDF) 
(representing all the individual probability 
density functions or PDFs) with respect to a 
specific PDF of interest. This sensitivity 
measures the effect of a “perfect component” on 
the reliability of the system. Others like Barlow 
and Proschan [4] have developed similar 
methods building on Birnbaum’s sensitivity 
work by considering fault tree analysis. Natvig 
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[15] delves deeper into fault tree sensitivity 
analysis in developing measures that identify 
critical ‘branches’ or cuts in a defined fault tree. 
These measures, however, become analytically 
difficult when working with large systems.  

Satelli, et al, formulated a variance method, 
Global sensitivity analysis that uses Monte 
Carlo sampling to calculate probabilistic 
sensitivities [21]. The ‘sensitivity index’ as 
defined by Satelli, et al, is a measure of the 
contribution a variable’s variance to the 
variance of the system.  

This paper presents a method that 
calculates a local probabilistic derivative using 
Monte Carlo sampling, complex variable 
automatic differentiation, and the Score 
Function [13]. Such sensitivity could reveal a 
variable’s effect on the MTTF of the system 
with few assumptions. 

1.2 Objective 
The main objective presented is the 

formulation of probabilistic sensitivities in the 
form of derivatives applied to a mock engine 
model (5 variables) and a full 22-component 
RGB model. Both models are composed of 
variables that represent an individual 
component’s time to failure (TTF). The model 
considers the system TTF as the minimum TTF 
between all components (a series system). 

 
Fig 1.1. Series System 

 
The response of interest is the minimum 
function, which as will be shown presents 
challenges when trying to take derivatives. If g 
is the response function of interest then the 
probabilistic derivatives of interest are 
∂nµg ∂µ n

Xi
, and ∂nµg ∂σ n

Xi
. These derivatives 

may not only hold valuable sensitivity 
information but also could be used to construct 
a Taylor series expansion to estimate the mean 
of other wise analytical difficult responses.  

2.2 Models 
The Mock Engine model (shown in 

Table 2.1) comprises of 5 failure modes taken 
from the 22-component RGB Turbine Engine 
Module given by StandardAero. The Score 
Function method was applied to this model. Ten 
derivatives (with respect to each variables 
natural parameters) were calculated and 
compared with forward finite differencing. 

Table 2.1: 5-Component Mock Engine Model 

2 Score Function Method  

2.1 Formulation  
In probabilistic analysis the mean of any 

response or function is calculated using the 
following multidimensional integral [3]: 

µg = ... g(X) fXdX
0

∞

∫∫    (2.1)           (4.1) 

where g is the response of interest, X , is a 
vector of all the input variables for g, and , fX , is 
the corresponding set of probabilistic density 
distributions (PDFs) describing each input 
variable. Since the set of variables in the 
problem objective are independent and interact 
in a series manner, fX , becomes the product: 

fX = fXi
i=1

k

∏   (2.2)          (4.2) 

In essence, the product shown in Eq. 4.2 is the 
joint probability distribution function (JPDF) of 
the system. Eq. 2.1 displays the bounds on the 
integration as zero and infinity. The integration 
must cover the entire space of the input 
variables  [3]. However, since all the input 
variables describe time to failures the space 
spans only zero to infinity. The derivatives of 
interest for this problem are, ∂nµg ∂µ n

Xi
, and 

∂nµg ∂σ n
Xi

 (n is the order of the derivative). In 

X Distribution Given Parameters 
1 Lognormal λ (lambda) Ζ (zeta) 
2 Normal μ σ 
3 Weibull α3 (shape) β3 (scale) 
4 Weibull α4 β4 
5 Weibull α5 β5 
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order to obtain these derivatives the Leibniz 
integral rule must be applied to Eq. 2.1 where, 
θi , is an arbitrary distribution specific 
parameter. The last two terms are considered the 
“flux terms” that are evaluated at the boundaries 
of the distribution [14]. Since the boundaries are 
zero and infinity the flux terms go to zero. As a 
result Eq. 2.1 becomes: 
dnµz

dθi
n = ... ∂n

∂θi
n g(X) fX( )dX

0

∞

∫∫                   (2.3)      ( (4.4) 

where θi represents the mean or standard 
deviation of the variable of interest. There are a 
multitude of methods to evaluate the derivative 
shown above. The Score Function method uses 
some algebraic manipulation to separate the 
integrand into a θi dependent portion and a non 
θi - dependent portion. The former can be 
reformulated into a kernel function. 

2.2 Kernel Functions 
The Score Function method assumes that the 
only portion of the integrand in Eq. 2.4 
dependent on the distribution parameter, θi , is 
the JPDF, fX . This allows the derivative to 
operate only on the JPDF: 
dnµz

dθi
n = ... g(X)

∂n fX
∂θi

n dX
0

∞

∫∫                         (2.4) 

A normalization factor, fXi fXi , is then 
introduced to produce the following: 
dnµz

dθi
n = ... g(X)

∂n fXi
∂θi

n
1
fXi

"

#
$$

%

&
'' fXdX

0

∞

∫∫            (2.5) 

The middle term, 
∂n fXi
∂θi

n
1
fXi

"

#
$$

%

&
'' , is defined as the 

kernel function, κ (n)θi
. Analytically, this 

reformulation poses a complication to an 
already complex integral. However, Monte 
Carlo sampling numerical integration simplifies 
the matter. By normalizing the integrand one set 
of realizations sampled from each variable’s 
PDF is enough to evaluate any derivative of any 
order, n [13]. By using sampling the integral in 
Eq. 2.5 becomes: 

dnµz

dθi
n ≈ E g(X)•κ (n)θi

(xki,θi )"# $%                        (2.6)  (4.7) 

The above numerical technique has a significant 
advantage over finite differencing of any order 
in that the response only needs to be evaluated 
once over all the realizations created. That same 
set of realizations can be recycled to determine 
any other derivatives of interest with the 
appropriate kernel function. While finite 
differencing is dependent of perturbation size 
and order, the score function method is only 
dependent on the variance of the integrand that 
can be mitigated with a higher amount of 
samples [14].  

2.3 Jacobian Transformation Matrix 

For normal distributions the first order 
kernel functions for derivatives with respect to 
mean and standard deviation are the following: 

κµ =
x −µ
σ 2  ,κσ =

1
σ

x −µ
σ 2

"

#
$

%

&
'
2

−1
"

#
$$

%

&
''      (2.7A-B) 

This coupled with Monte Carlo sampling 
produces an approximation of the derivatives of 
interest. 
∂µg ∂µi ≈ E g(X)•κµi

(xki,µi )#$ %&               (2.8) 

∂µg dσ i ≈ E g(X)•κσ i
(xki,σ i )#$ %&              (2.9) 

For random variables that follow a non-normal 
distribution of 2 parameters the derivatives of 
interest is not a direct calculation. As Millwater  
[13] shows, in order to obtain first order 
derivatives of interest, ∂µg ∂µXi

, and 
∂µg ∂σ Xi

, first the derivatives with respect to 
the distribution’s natural parameters (a and b) 
must be determined: ∂µg ∂ai  and ∂µg ∂bi . 
Then from these derivatives a Jacobian 
transformation matrix is formulated using the 
distribution’s relationship between standard (µ  
and σ ) and natural (a and b) parameters. Using 
these relationships and their partial derivatives a 
Jacobian transformation matrix becomes: 
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J =
µ ' a

µ ' b

σ ' a
σ ' b

!

"

#
#

$

%

&
&

                                (2.10) 

Taking the inverse and transpose of the Jacobian 
the transformation formulation follows as: 
∂µg ∂µi

∂µg ∂σ i

"

#

$
$

%

&

'
'
= J[ ]−1"
#

%
&
T ∂µg ∂ai

∂µg ∂bi

"

#

$
$

%

&

'
'

  (2.11) 

Any 2-parameter distribution with functional 
relationships between standard and natural 
parameters may use Eq. 2.11 to transform the 
natural derivatives to standard ones [13].  

2.4 Issues 

 The Score Function method provides an 
insight into which distribution parameters affect 
the mean time to failure of the model. However, 
in order to obtain the derivatives of interest, 
∂nµg ∂µ n

Xi
 and ∂nµg ∂σ n

Xi
, from non-normal 

distributions a Jacobian transformation matrix is 
needed. Also, computing higher order 
derivatives necessitates second order kernel 
functions alongside a second order Jacobian 
transformation matrix.  

3 Complex Variable Differentiation Methods   

The complex variable differentiation method 
is an infinitesimal perturbation gradient 
estimator introduced by Lantoine [11]. This 
analysis uses the complex realm of numbers to 
numerically compute derivatives accurately. In 
the Score Function approach every sensitivity of 
interest necessitates a unique kernel function 
derived from each variable’s corresponding 
PDF. In larger systems of composed of multiple 
non-identically distributed random variables the 
score function method becomes a tedious and 
inefficient process. By moving to the multi-
complex realm the mathematical framework 
allows for the numerically efficient 
determination of derivatives and probabilistic 
sensitivities.   

3.0.1 Complex Numbers 
A complex number can be represented as the 
following: 
 := x + yi x, y ∈ { }                                (3.1)     ( (4.1) 

Lantoine shows that a multi-complex number 
can be expanded in the following manner: 

n :=

x0 + x1i1 +...
+xnin + x12i1i2 +...
+xn−1in−1in +
x1...ni1...in

x0,..., xn ∈ 

#

$

%
%

&

%
%

'

(

%
%

)

%
%

                (3.2)  

Any real number is representable by a multi-
complex number. The only difference is the 
added dimensions. These extra dimensions 
allow for rapid derivative computations of 
holomorphic functions. Lantoine uses the 
following single random variable function to 
conduct complex Taylor series expansion: 
f x + hi1 +...+ hin( ) = f (x)+ (i1 +...+ in )h !f (x)+...

+(i1 +...+ in )
2h2 !!f (x)

2
+HOT

       (3.3)  (4.3) 

In a single function evaluation the derivative of 
any order is carried through, automatically by 
multi-complex portion of the result.  

f (n) (x) =
Im1...n f x + hi1 +...+ hin( )( )

hn
+O(h2 )     (3.4)  

Unlike finite differencing, this method requires 
one function evaluation in order to compute the 
derivative of interest. The error, according to 
Eq. 3.4, depends on step size, h. By choosing a 
small step size (1E-10 for all subsequent 
analysis presented) the derivative is 
approximated: 

f (n) (x) ≈
Im1...n f x + hi1 +...+ hin( )( )

hn
            (3.5)  

According to Lantoine, this method is restricted 
to functions that fit the following criteria: 
 

1. The function must be holomorphic 
within the complex domain. 

2. The function must satisfy the multi-
complex Cauchy-Riemann equations 

3. The function can be represented, near 
every point in the complex domain by a 
Taylor series 

 
The complex variable differentiation method 

has the potential to break down when non-
continuous functions are applied. As will be 
seen later in this chapter, the minimum function 
has such discontinuities in its derivatives. 
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3.1 Matrix Representation of Multi-Complex 
Variables  

A 2-dimensional matrix provides a compact 
way of representing a multi-complex number. 
As seen in the previous section, Lantoine 
represents a complex number using a long chain 
of multi-complex terms. In order to conduct 
efficient computations, Lantoine uses a matrix 
representation. Below is an example of the bi-
complex case. 

2 := {
x0 + x1i1 + x2i2
+x12i1i2

x0, x1, x2, x12 ∈ }      (3.6) 

The classical multi-complex representation, 
shown above, can be written as a matrix: 

x0 −x1 −x2 −x12
x1 x0 −x12 −x2
x2 −x12 x0 −x1
x12 x2 x1 x0

"

#

$
$
$
$
$

%

&

'
'
'
'
'

x0, x1, x2, x12 ∈ 

)

*

+
+

,

+
+

-

.

+
+

/

+
+

        (3.7) 

A similar matrix can be constructed for a tri-
complex number (4 complex components) and 
higher using the same pattern. The higher the 
multi-complex order the higher the derivative 
order in the output when a function is evaluated 
using said multi-complex number. Lastly, 
Lantoine asserts that multi-complex addition 
and multiplication maintain the associative and 
commutative properties of real numbers. This is 
crucial when taking real-valued functions into 
the multi-complex realm.  

3.2 Direct Complex Variable Differentiation 
In complex variable Monte Carlo (CVMC) 

the parameter of interest is perturbed by a small 
step size, h, along an imaginary axis. This 
perturbed parameter is used to create complex 
samples. Then the function is evaluated using 
these samples. The output of this function 
becomes a complex value where the real part is 
the real evaluation of the function and the 
imaginary part is the derivative with respect to 
the perturbed variable.  

In practice the following is the procedure for 
incorporating Monte Carlo sampling into the 
Multi-complex variable method.  
1. Convert given set of natural parameters to 

standard: a,b→ µ,σ    

2. Perturb standard parameters in the 
appropriate complex directions by step size 
h and store in matrix form (below is a bi-
complex example). 

µ[ ] =

µ −h −h h
h  −h −h
h −h  −h
h h h µ

"

#

$
$
$
$
$

%

&

'
'
'
'
'

                        (3.8)  (4.26) 

3. Convert standard parameters into the 
appropriate, distribution specific, sampling 
(natural) parameters (now in multi-complex 
form). [µ],[σ ]→ [a],[b]   

4. Generate complex or multi-complex random 
samples via the appropriate inverse CDF 
(distributions dependent). 

[x]=1−CDF [a],[b],[c],U( )                       (3.9)  (4.28) 
where U is a random number between 0 and 1.  
5. Evaluate the function using these samples 

and collect the imaginary terms from the 
output to determine the derivatives of 
interest. 

3.2 Integral Forms of Functions 
Direct CVMC requires converting functions 

of real numbers into functions of matrices 
(representing complex numbers). In Higham’s 
book, Functions of Matrices, several methods 
are presented to solve the problem of taking the 
logarithm, exponential, square root and gamma 
function of a matrix [10]. 

Logarithms, square roots and the gamma 
function can be represented at the following 
integrals: 
Logarithm 

log A( ) = A− I( ) t A− I( )+ I"# $%
−1
dt

0

1

∫          (3.10)  

Square Root 

A1/2 = 2
π
A t2I + A( )

−1
dt

0

∞

∫               (3.11)     

Gamma Function 

Γ A( ) = expm
0

∞

∫ A− I( ) log t( )( )e−tdt          (3.12)   

where A is a A ∈n×n  matrix,  I is the identity 
matrix, and expm is a built in function in 
MATLAB which uses a Pade approximation to 
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take the exponential of a matrix. MATLAB’s 
built-in integral command was used to evaluate 
these functions. Higham [10] provides one 
stipulation to these integral forms: matrix A 
must have no eigenvalues on the negative 
portion of the real numbers. 

3.2.1 2P Weibull Transformations 
Every distribution except the Weibull 

distribution has an invertible mapping between 
standard and natural parameters. Non-Weibull 
transformations are easily converted into 
functions of multi-complex variables and 
parameters. The Weibull distribution does not 
have such an invertible relationship between 
standard and natural parameters. A Newton-
Raphson iteration method for mapping from 
standard to natural (used for sampling) 
parameters was developed.  

Ang and Tang  [3] provide a formulation 
for the mean and standard deviation of the 
Weibull distribution. 

µ = βΓ
1
α
+1

"

#
$

%

&
'                      (3.13)    (4.11) 

σ = β Γ
2
α
+1

"

#
$

%

&
'−Γ

1
α
+1

"

#
$

%

&
'
2

                  (3.14) 

where α  and β are the shape and scale 
parameters, respectively. 
 In order to use a Newton-Raphson 
iteration method to estimate the natural 
parameters of the Weibull distribution, the 
shape parameter is isolated using Eq. 3.13 and 
3.14.  

µ 2 +σ 2

µ 2
=
Γ
1
α
+1

"

#
$

%

&
'

Γ
2
α
+1

"

#
$

%

&
'
2                     (3.15)   (4.13) 

 Nielsen [16] and Cousineau [7] use a 
similar method of moments to isolate one 
parameter and use the sample mean and 
variance of data to calculate said parameter. 
Below is a reformulation of Eq. 3.16. 

f α( ) =
Γ
1
α
+1

"

#
$

%

&
'

Γ
2
α
+1

"

#
$

%

&
'
2 −

µ 2 +σ 2

µ 2
                   (3.16)   (4.14) 

Using an initial guess for the shape parameter to 
determine f α( )  and ∂f α( ) ∂α  

∂f α( )
∂α

= 2Γ 2
α
+1

#

$
%

&

'
(
ψ
1
α
+1

#

$
%

&

'
(−ψ

2
α
+1

#

$
%

&

'
(

α 2Γ
1
α
+1

#

$
%

&

'
(
2   (3.17) 

After evaluating Eq. 3.14 and 3.15 a new shape 
parameter is determined below. 

αNew =αOld −
∂f α( ) ∂α
f α( )

                    (3.18) 

This new shape parameter is fed into the 
beginning of the algorithm (Eq. 3.16) and the 
process is repeated until the difference between 
new and old shape parameters is less than a set 
tolerance (1E-12). After determining the shape 
parameter, Eq. 3.12 is used to compute the scale 
parameter.  

3.3.1 The Minimum function 
The model for the system time to failure 

of both the mock engine and RGB module 
models remains as follows: 
g =min(XK )    
where, XK , is a vector of realizations for each 
variable input. This section explores other 
formulations of the minimum function based on 
the work of V.L. Rvachev [20]. These new 
formulations assist in finding the minimum 
between complex numbers since in DCVMC all 
samples are now complex.  

3.3.2 Rvachev’s Representations 
 Rvachev defines R-Functions as a real-
valued function whose sign is determined by the 
sign of their arguments [22]. These functions 
were suggested and developed by Russian 
mathematician, V.L. Rvachev. Unfortunately, 
most of his and his colleagues’ works on R-
Functions have not been translated from the 
original Russian texts [22]. 
 The max and min functions are a 
subset of the family of R-functions and while 
there are a wide variety of applications there are 
a few properties worth noting [22]. 
min(x, y)max(x, y) = xy           (3.19) 
min(x, y)+max(x, y) = x + y          (3.20) 
After some algebraic manipulation, Eqns. 3.19 – 
3.20 can be rearranged in the following manner: 
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min(x, y)2 − (x + y)min(x, y)+ (xy) = 0       (3.21) 
Another result from these properties is: 
max(x, y)2 − (x + y)max(x, y)+ (xy) = 0      (3.22) 
As a result the min and the max between x and y 
are the smallest and largest root, respectively, of 
the quadratic equation: 
Z 2 − (x + y)Z + xy = 0                                 (3.23) 
Using the quadratic formula the roots of Eq. 
3.23 are defined as 

Z = 1
2
x + y± x2 + y2 − 2xy( )                    (3.24) 

The smaller and larger roots are 

min(x, y) = 1
2
x + y− x − y( )2( )                 (3.25) 

max(x, y) = 1
2
x + y+ x − y( )2( )                (3.26)  

Rvachev generalizes the Minimum operator as a 
family of functions [22], 

x∧α y =
1

1+α
x + y− x2 + y2 − 2αxy( )      (3.27)  

When α =1 this function becomes the original 
minimum function shown in Eq. 3.25. At 
different values of α (other than 1) the function 
becomes differentiable everywhere except at the 
origin. By setting α = 0.999....with as many 
nines as computationally feasible the min 
function can be approximated.  
Taking advantage of this property, Rvachev’s 
approximation of the min and max function are 
reformulated into the following: 
f (Z ) = Z 2 − (x + y)Z +αxy                          (3.28) 

Instead of directly solving for roots using the 
quadratic formula a Newton-Raphson iterative 
method was used to solve for the now multi-
complex roots (using the formulations below). 
df (Z )
dZ

= 2Z − (x + y)                                   (3.29) 

Z = Z −
∂f (Z )

∂Z
f (Z )

                                       (3.30)  

 In this algorithm the initial guess is the 
lower valued number. Then this guess is input 

into f (Z )  as well as df (Z )
dZ

. Eq. 3.30 then 

computes a new value of Z (x and y remain 
constant). The algorithm is stopped when the 
absolute difference between the old and new Z 

value approaches a predetermined tolerance. 
Since a quadratic polynomial does not contain a 
square root operator this method holds the 
potential to run more efficiently (the square root 
of a matrix is computationally expensive). 
Using the following property: 
min(x, y, z) =min(x,min(y, z))                    (3.31) 
the min function iterates through all variables.  

3.4 Complex Variable Score Function 
Differentiation 
The Score function method (shown below) uses 
kernels, complex perturbations, and Monte 
Carlo sampling to calculate the derivative. The 
sensitivity of interest: 
∂nµg

∂θ n
Xi

= ... g XK( )κ n
θ fXi ... fXK"# $%dxi∫∫          (3.32) 

where the kernel is defined as 

κ n
θ =

∂n fXi
∂θ n

Xi

1
fXi

                                             (3.33) 

The problem lies in determining the first order, 
second order, and cross term kernels for all 
distribution types (in the 22-component system 
there are four types) analytically. However, 
using complex perturbations, the kernels are 
numerically determined.  

κ n
θ = fXi θXi

+ ih( ) 1
fXi θXi( )

                           (3.34) 

Since the variables are considered independent 
the joint probability density function (JPDF) 
becomes the product of each random variable’s 
PDF.   
JPDF = fXi ... fXK                                          (3.35)                              
Any needed kernel can be calculated by calling 
on the appropriate PDF and complex-perturbing 
the necessary parameters. 
κθXiθX j = fXi θXi

+ i1h( ) fX j
θX j

+ i2h( )               (3.36)  

 The advantage of the Complex 
Variable Score Function over CVMC is the 
ability to use real samples (less computationally 
expensive than complex samples) and the built-
in min function in MATLAB. Error from the 
two approximate minimum functions introduced 
in the previous section can be avoided as well. 
However, CVSF carries the SF’s higher 
variability. As will be shown in the following 
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case studies, the Score Function method in 
general needs more samples in order to decrease 
variability and inaccuracy of the derivative.  

3.5 Examples & Verification 
In order to verify either complex 

differentiation method (CVMC or CVSF) 
several case studies were investigated. First, the 
kernels produced with CVSF were verified 
against the analytical solution (Case Study A). 
Case studies B and C use a three and five 
random variable case, respectively, to confirm 
CVMC based derivatives. Finally, case study D 
takes a two random variable case and uses 
CVMC to calculate up to second order terms. 
These were them verified with Mathematica©. 

3.5.1 Case Study A: Kernel Verification 
Single Random Variable Example: 1 standard 
normally distributed random variable. 
x ~ N 0,1( )                                                 (3.37) 
The following response was chosen for this case 
study for its higher order derivative behavior. 
g = x4                                                         (3.38) 
Below, the normal kernels up to third order are 
shown. 

κµ
(1) =

x −µ
σ

                                                (3.39) 

κµ
(2) =

µ 2 −σ 2 − 2µx + x2

σ 4                           (3.40) 

κµ
(3) =

−(µ − x)(µ 2 −3σ 2 − 2µx + x2 )
σ 4          (3.41) 

For this case study, the integral in Eq. 2.3 was 
evaluated analytically using the software 
package, Mathematica©. The results are shown 
below: 
∂µg ∂µX = 4µ µ 2 +3σ 2( )                            (3.42) 

∂2µg ∂µ 2 =12 µ 2 +σ 2( )                             (3.43) 

∂3µg ∂µ3X = 24µ                                         (3.44) 

 

 

 

 

 

 

 

 

As demonstrated in the figures above, CVSF 
perfectly agrees with the analytical 
representation of these kernel functions. The 
figures represent each normal based kernel 
evaluated in the space between -3 and 3 (span of 
6 standard deviations). 
3.5.2 Case Study B: 3 Random Variables – 
Linear Response 

This linear case contains three random 
variables, which are normally distributed with a 
mean of 1 and standard deviation of 0.1.  
Xi ~ N 1,0.1( )                                             (3.45) 

g = Xi
i

3

∑                                                    (3.46) 

The function, g, (Eq. 3.46) relates the time-
to-failure of the entire system as the sum of the 
time-to-failure of three components. Since the 
function is linear the analytical solution for the 
mean of g, µg , can be determined as: 

µg = µXi
i

3

∑                                             (3.47) 

The derivatives of this function with respect to 
statistical moment parameter can be easily 
determined as: 
∂µg ∂µXi

=1 ,∂µg ∂σ Xi
= 0                    (3.48-49)     

 SF CVMC 
 ∂µg ∂µXi

 ∂µg ∂σ Xi
 ∂µg ∂µXi

 ∂µg ∂σ Xi
 

X1 0.82 -0.37 1.00 0.01 
X2 0.97 0.23 1.00 -0.0016 
X3 0.65 0.28 1.00 0.0063 

Table 3.1. Comparison between SF and CVMC derived 
derivatives 

Fig.3.2. Second Order Normal Kernel 
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Fig.3.2. Second Order Normal Kernel 
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Using 1E4 samples both the Score Function and 
CVMC methods computed similar derivatives. 
As suggested earlier, the Score Function 
requires more samples for the derivative to 
converge towards the correct value.  

3.5.3 Case Study C: 2 Random Variables – 
Minimum function response 
Two normally distributed random variables 
were used with the parameters: 
x, y ~ N(1, 0.1)                         (3.50) 
The verification of the calculated derivatives 
was performed using Mathematica©. A script 
was written to numerically determine the 
derivative from the integral in Eq. 2.3. Below in 
are the results of the results.  
 
 
 
 
 
 
 
 

 

 

Table 3.2. Derivatives Values for the Minimum between 
two variables 

*note: There are total 14 derivatives. Table. 3.2 
represents non-trivial solutions & non-repeated 
derivatives.  
3.5.3.1 Variance of Derivatives 
 
 

 
 
 
 

 
 
Figures 3.3 and 3.4 display (on a log-log plot) 
the standard deviation of the two higher order 
derivatives. The derivative was computed 100 
times at each samples size (varied between 100 
and 100,000 samples) to determine the variance. 
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Fig. 3.4 Standard Deviation of ∂2µg ∂µX∂µY  

Direct CVMC provides an order of magnitude 
improvement in the derivative variance. 
However, the CVSF uses real samples which 
can be computationally more efficient. 

3.5.3.2 Derivative Accuracy 
The second metric in this head to head 
comparison gauges the accuracy of the 
derivative for each increase in sample size. The 
relative error determines the difference between 
the “true value” of the derivative and its 
approximation. In this analysis the “true” values 
used are the numerical derivatives obtained 
through Mathematica© (shown in Table. 2). 
The algorithm for this comparison is shown 
below in Eq. 3.51. 

error =
∂nµg ∂θ n

Xi
−∂nµg ∂θ n

Xi

∧

∂nµg ∂θ n
Xi

×100    (3.51) 

where ∂nµg ∂θ n
Xi

∧

 is the approximate derivative. 

Derivative Value 
∂µg ∂µX  0.500 
∂µg ∂σ X  -0.282 

∂2µg ∂µX
2  -2.82 

∂2µg ∂σ 2
X  -1.410 

∂2µg ∂µX∂µY  2.82 

∂2µg ∂σ X∂σY  1.405 
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Fig. 3.3. Standard Deviation of ∂2µg ∂σ 2
X  
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Fig. 3.5. Relative Error of ∂2µg ∂σ 2
X   

The plots above and below are on a log-log 
scale. A first order, second order full, and a 
mixed derivative are examined in this analysis. 
Working under the assumption that 
Mathematica© is computing accurate 
derivatives these figures support direct CVMC 
as the method of choice with regard to accuracy. 
Similar to the variance analysis, direct CVMC 
shows an order of magnitude decrease in 
relative error with respect to Mathematica’s 
results. However, direct CVMC uses an 
approximation to the Minimum function. In the 
next chapter, this approximation, though 
convenient, loses accuracy when calculating 
higher order derivatives. As a result the Score 
function method becomes a viable method that 
circumvents analyticity issues of the minimum 
function while avoiding the need of an 
“approximate” function. 

3.5.4 Case Study D: 2 Random Variables – 
Minimum function response: Higher Order 
Derivatives 
Two normally distributed random variables 
were used with the parameters, µ =1and 
σ = 0.1 . 

% 
Difference 

∂µg

∂µX

 ∂2µg

∂µ 2X
 

∂3µg

∂µ3X
 

∂4µg

∂µ 4X
 

Solution 0.5 -2.82 2E-14 141.05 
N=1E4 0.97 6.89 > 100 > 100 
N=1E5 0.77 2.67 > 100 > 100 
N=1E6 0.02 0.21 > 100 > 100 

Table 3.3. Solution vs. Direct CVMC of ∂n ∂µX
n  

 

% 
Difference 

∂µg

∂σ X

 ∂2µg

∂σ 2
X

 
∂3µg

∂σ 3
X

 
∂4µg

∂σ 4
X

 

Solution -0.282 -1.41 21.15 -317.36 
N=1E4 4.56 3.11 208.36 > 300 
N=1E5 0.97 1.37 202.89 > 300 
N=1E6 0.48 0.12 > 300 > 300 

Table 3.4. Solution vs. Direct CVMC of ∂n ∂σ X
n  

Both Table 3.3 and 3.4 show a significant 
improvement as sample size is increased up to 
second order derivatives. Higher order 
derivatives did not improve accordingly. This 
lack of higher order derivative accuracy could 
be due to the minimum function being used. In 
the analyticity analysis of the minimum function 
it was shown that in order to extract higher 
order derivatives the exact function could not 
relied upon due to the its lack of analyticity. As 
a result, an approximation (99.999%) of the 
minimum function was used.  
3.5.4.1 Complex Variable Score Function: 
Higher Order Derivatives 
The same analysis was done using CVSF on this 
case study. In the figures below the derivative of 
interest was determined 100 times in order to 
produce the standard deviation. This process 
was replicated 3 more times; increasing the 
sample size by an order of magnitude after each 
step.  
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Fig. 3.5. CVSF: Standard Deviation of ∂µg ∂µX  
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Fig. 3.5. CVSF: Standard Deviation of ∂2µg ∂µ 2X  

 
Direct CVMC, as seen above, has the advantage 
of producing numerical derivatives with a 
standard deviation an order of magnitude less 
than the adapted Score Function method. 
However, the accuracy of the derivative has a 
significant effect on the Taylor series 
approximation. While more samples do not 
improve higher order derivative accuracy in 
Direct CVMC, Score Function guarantees better 
results with more samples.   

% 
Difference 

∂µg

∂µX

 ∂2µg

∂µ 2X
 

∂4µg

∂µ 4X
 

Solution 0.5 -2.82 141.05 
 N=1E4 9.3 22.6 155.9 
 N=1E5 0.6 1.6 40.2 
 N=1E6 1.9 0.9 25.7 
 N=1E7 0.1 1.0 4.8 
 N=1E8 0.3 0.1 1.0 

Table 3.5. Solution vs. CVSF of ∂n ∂µX
n  

% 
Difference 

∂µg

∂σ X

 ∂2µg

∂σ 2
X

 
∂3µg

∂σ 3
X

 
∂4µg

∂σ 4
X

 

Solution  -0.282 -1.41 21.15 -317.357 
 N=1E4 22.6 62.1 174.9 2107.2 
 N=1E5 3.3 43.4 179.9 1803.4 
 N=1E6 0.9 34.9 5.7 769.4 
 N=1E7 1.0 7.0 11.6 60.9 
 N=1E8 0.13 0.50 13.10 7.40 

Table 3.6. Solution vs. CVSF of ∂n ∂σ X
n  

Tables 3.5 and 3.6 confirm that increasing the 
sampling decreases the relative error of the 
derivatives. However in some cases (Table 4) a 
minimum of 1E7 samples is needed to attain 

approximate derivatives, especially for third 
order and higher terms. Luckily in the adapted 
Score Function these samples are real and not 
complex, allowing the only expense being the 
amount of available memory. The 
computational cost comes into play when 
evaluating the PDFs with complex 
perturbations. 

4 Sensitivity Results 

4.1 Mock Engine Model 
The Mock Engine model comprises of five 

different failure modes each fitted with a unique 
probability distribution. The system time to 
failure of the entire system is defined as the 
minimum time to failure between all five 
components. 

 
In MATLAB© the realizations were 

created using built-in inverse sampling 
commands For each random variable in the 
model 1E4 realizations were created and 
evaluated through the system response (the 
minimum function). The built-in minimum 
function in MATLAB was used for efficiently. 
Also, without much additional expense, this 
function outputs which variable in the system 
contributed to the system minimum.  

Xi  %Xgi
 

1 15% 
2 37% 
3 1% 
4 27% 
5 20% 

Table 4.1. % Contribution to Minimum by Variable 

According to Table 4.1, the third variable 
contributes very little to the overall system 
minimum (least important variable). The second 
variable contributes 37% of the system 
minimum in Monte Carlo simulation.  

Below in Table 6.2 the results from a 
CVMC second order derivative analysis are 
listed. The CVMC method uses a Rvachev 
approximation of the min function in order to 
avoid differentiability issues. The minimum 
function was “smoothed” by using a 99.999% 
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approximation. However, by using an 
approximate function higher order derivatives 
loss significant accuracy.  
 

Xi  ∂µg ∂µXi
 Xi  ∂µg ∂σ Xi

 
2 0.362 1 -0.001 
4 0.275 3 -0.005 
5 0.156 5 -0.139 
1 0.008 2 -0.192 
3 0.003 4 -0.319 

Table 4.2. First Order Derivatives: Mock Engine Model 

The table above contains the derivatives 
of interest sorted in descending order. The 2nd 
variable's mean has the greatest effect on the 
mean system minimum. However, the fourth 
variable’s standard deviation has the most effect 
on the system minimum. According to these 
local derivatives an increase in the mean time to 
failure and decrease in the variance of the time 
to failure of the second and fourth variable 
respectively, would incur the most significant 
effect on the system mean time to failure.  

Table. 4.3, below, is a summary of the 
important variable as identified by the different 
methods presented. First listed are the global 
sensitivity indices, where the first order indices, 
Si , indicate a variable’s effect on the system 
variance, and, STi , the total effect (includes 
higher order indices and interactions) of a 
random variable. The third method presented, 
%Xgi

, represents which variable in the system 
most often contributed to the system minimum. 
Lastly, the final two methods listed indicate the 
important variable based on its probabilistic 
effect on the mean minimum time to failure of 
the model.  

Method Xi  
GSA: Si  1 
GSA: STi  1 
%Xgi

 2 
∂µg ∂µXi

 2 
∂µg ∂σ Xi

 4 

Table 4.3. Important Variable: Mock Engine Model 

According to Table 4.3 the greatest 
contributor to the system mean time to failure 

variance is the first variable. The variable that 
produces the system minimum is the second 
variable. The first probabilistic derivative agrees 
with the previous result: the second variable is 
most important. This variable’s mean has the 
greatest effect on the mean time to failure of the 
system. Lastly, the fourth variable’s variance 
enacts the greatest effect on the mean time to 
failure of the system.  

4.2 22- Component System 
This Gas-Turbine engine module, similar to 

the Mock engine model, contains 22 different 
failure modes each fitted with a unique 
probability distribution. The response that 
describes the behavior of the module’s time to 
failure is the minimum time to failure between 
all 22 variables. The same methods are applied 
to this module.  

The RGB module shown above contains 
16 variables described by a Weibull distribution, 
4 by a lognormal distribution, 1 by an 
Exponential distribution, and 1 by a Normal 
distribution.  

The percent by variable contribution to 
the minimum of the model is shown below in 
Table 4.4. Again, 1E4 samples were used in the 
analysis, thus each percentage represents the 
fraction of times a particular variable caused the 
system minimum.  

Xi  %Xgi
 

13 13% 
16 9% 
3 9% 

14 8% 
12 8% 

Table 4.4. Top Five Contributors to 22-CS System 
Minimum 

According to Table 4.4 the 13th variable 
in the RGB module contributes the most to the 
system minimum. The 12th, 14th, and 16th 
variables contribute to 25% of the total 
minimums of the system in the Monte Carlo 
simulation. The 7th variable contributes less than 
1% of the system time to failure minimums.  

Table 4.5, below, displays a sorted list 
(in descending order) of the derivatives of 
interest as estimated using the same CVMC 
method described in the section 6.1.  
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Xi  ∂µg ∂µXi
 Xi  ∂µg ∂σ Xi

 
13 0.1315 22 7.9E-05 
12 0.1044 18 -1.9E-05 
14 0.0888 3 -4.3E-04 
6 0.0564 7 -1.7E-03 

20 0.0497 19 -2.7E-03 
Table 4.5. First Order Derivatives 

The top three derivatives with respect 
the individual variable mean are the 13, 12, and 
14. The 13th variable’s standard deviation and 
mean has the greatest effect on the system 
MTTF. Both derivatives indicate that an 
increase and decrease in the mean and variance, 
respectively, of the 13th variable will have the 
greatest positive impact on the MTTF of the 
module (increase in the MTTF).  
 

Method Xi  
GSA: Si  13 
GSA: STi  13 
%Xgi

 13 
∂µg ∂µXi

 13 
∂µg ∂σ Xi

 13 

Table 4.6 Important Variables: RGB Turbine Engine 
Module 

Across different probabilistic analyses the 
13th variable in the RGB module is identified at 
the most important. This variable contributes 
most to the variance of the module, the 
minimums in Monte Carlo simulations, and also 
to the module’s MTTF. The probabilistic 
derivatives indicate that improving the 13th 
failure mode in the RGB module would have 
the greatest effect in improving the MTTF of 
the module. 

4.3 Concluding Remarks 

This paper presents two novel ways to 
determine probabilistic sensitivities in the form 
of derivatives: direct Complex Variable Monte 
Carlo and Complex Variable Score Function. In 
the case studies it was shown that both methods 
succeed in producing accurate derivatives. 
However, for direct CVMC, an approximation 
to the minimum must be used in order to avoid 

discontinuities where the method breaks down. 
As a result higher order derivatives using an 
Rvachev approximation fail accuracy tests. 
CVSF prevails in producing higher order 
derivatives of the minimum function. However, 
for accuracy, an order of magnitude increase in 
sampling size is needed. CVSF also gains an 
advantage in two ways. First, the function of 
interest is evaluated with real samples (complex 
sample creation can be avoided). Second, 
instead of perturbing every sample in a complex 
direction, the JPDF is perturbed in the 
appropriate complex direction, once. In general 
the complex differentiation method provides 
robust numerical derivatives flexible towards 
smooth functions and problematic functions 
with discontinuities. 
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