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ABSTRACT 

An unsteady rotating flow of a second grade electrically conducting incompressible fluid 

through a channel with an oscillatory upper plate has been considered. The channel wall 

oscillates sinusoidally with a constant mean and the channel is packed with uniformly 

saturated porous medium and is subjected to a transverse magnetic field. The second grade 

fluid property through elasticity property of the fluid has been focused in the discussion. 

The method of solution is based upon a principle of superposebility of unsteady solution 

over basic steady solution. The important findings are: The greater corolis force and low 

permeability contribute to greater phase difference whereas elastic property of fluid 

reduces it. Fluid elasticity reduces the unsteady part of the primary velocity as well as 

secondary velocity. These are vital considerations for flow stability and resonance.  

Keywords: 
second grade fluid, electrically conducting, 

coriolis force, porous medium, oscillatory 

motion 

1. INTRODUCTION

An exact solution of Navier-Stokes equation arising out of 

the flow generated in a semi-infinite mass of an 

incompressible fluid by viscous action at an infinite flat plate 

oscillating in its own plane was first obtained by Stokes [1]. 

The flow of a viscous incompressible fluid near a porous 

oscillating infinite plate subject to suction or blowing has 

investigated by Biihler and Zierep [2]. Puri [3] analyzed 

viscoelastic fluid flow in a rotating system near an oscillating 

nonporous plate. It is of great interest to observe that by the 

earth’s rotation, the small scale motion like the flow due to 

bathtub vortex and the large scale motion in the ocean as well 

as the atmosphere (Bachelor [4]) are strongly influenced. In 

the dynamics of thin sheets of fluid in the sense that their depth 

is very small relative to their horizontal extent, rotation plays 

an important role in fact. 

Due to wider application of viscous incompressible fluid 

with the fluctuating flow past an infinite plate in the paper 

industry and other technological fields, several researchers 

have shown their interest towards this study. In a rotating 

system, Mazumdar [5] has studied an exact solution of 

oscillatory Couette flow and Ganapathy [6] has discussed on a 

note about oscillatory Couette flow. Singh [7] has also 

discussed an oscillatory hydromagnetic Couette flow in a 

rotating system. The heat and mass transfer in MHD flow of a 

viscous fluid past a vertical plate under oscillatory suction 

velocity have analyzed by Singh et al. [8]. The filtration of 

solids from liquids, drug permeation through human skin, the 

extraction of energy from geothermal region and the flow of 

the oil through porous rocks are associated with the flow of 

second grade fluid flow through porous media. That’s why 

many scientists and engineers have been attracted to study the 

model. The flow through porous media also occurs in soil 

erosion and tile drainage, absorption and filtration processes 

of the ground water hydrology, irrigation and drainage 

problems, absorption and filtration processes in chemical 

engineering. The magnetohydrodynamics free convective 

flow with mass transfer of a viscous fluid through a porous 

medium bounded by an oscillating porous plate in slip flow 

regime has been discussed by Singh and Gupta [9]. Hayat et 

al. [10] have analyzed a non-Newtonian hydromagnetic 

oscillating flow in a rotating system. The analytical solution of 

a magnetohydrodynamics transient rotating flow of a second 

grade fluid in a porous space has been also studied by Hayat 

et al. [11]. They have considered flow of a conducting fluid in 

the presence of transverse magnetic field, thereby, they have 

accounted for the effect of an additional body force of 

electromagnetic origin. Das et al. [12] have discussed unsteady 

MHD Couette flow in a rotating system. Jana et al. [13] have 

analyzed unsteady flow of viscous fluid through a porous 

medium bounded by a porous plate in a rotating system. Sahoo 

et al. [14] have studied hydromagnetic oscillatory flow and 

heat transfer of a viscous liquid past a vertical porous plate in 

a rotating medium. Seth et al. [15] have studied unsteady 

hydromagnetic Couette flow within porous plates in a rotating 

system. Farhad et al. [16] have discussed the hydromagnetic 

rotating flow in a porous medium with slip condition and Hall 

current. Jana et al. [17] have studied the unsteady Couette flow 

through a porous medium in a rotating system. Saho [18] has 

discussed the effect of heat and mass transfer on MHD flow of 

a viscoelastic fluid through a porous medium bounded by an 

oscillating porous plate with slip flow regime. With the 

modified differential transform method, Rashidi et al. [19] 

have studied the heat transfer in a second grade fluid through 

a porous medium and arrived at some interesting results. 

Parida et al. [20] have investigated the MHD flow of a second 

grade fluid in a channel with porous wall.   

The objective of the present study is to account for 

(i) Permeability of the uniformly saturated porous

medium with the help of Darcian linear model. 

(ii) The generated coriolis force due to rotation of the
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fluid with the frame of reference as a rigid body. 

(iii) The second grade effect to account for the elasticity 

of the fluid contributing to non-Newtonian property. 

 

 

2. FORMULATION OF THE PROBLEM 

 

The unsteady flow of an electrically conducting 

incompressible second grade fluid through a porous medium 

bounded by infinite parallel plates at a distance d apart has 

been considered. Here, both the fluid and plates rotate about 

the z-axis normal to the plates with a constant angular velocity 

 . It is assumed that the plates are electrically non-

conducting. The lower plate is at rest and upper plate oscillates 

with a velocity 1 0( ) (1 cos )U t U t = +  in its own plane 

about a non-zero constant mean velocity 0U . Here,   is the 

frequency of oscillation. The x-axis is parallel to the direction 

of motion of the upper plate and origin is taken on the lower 

plate. Since the plates are infinite in extent, so all the physical 

variables, except the pressure, depends only on the variables z 

and t.   

 

 
 

Figure 1. Flow geometry 

 
The modified governing boundary layer equations account 

for the permeability of the medium are given by   
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in which ( / )  =  is the kinematic viscosity, 

1 /  =  and the modified pressure p
 is defined by  
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where 1p  being the fluid pressure and 
2 2 2r x y= +  

Equation (3) indicates that p* is not a function of z and 

hence ( , , )p p x y t =  

The appropriate boundary conditions of the problem are 
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where   is a constant. 

Elimination of 
*p from equations (1), (2) and (3) by 

differentiating with respect to z  we get  
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Integration of above equations with respect to z  resulted in 

the followings 
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where A  and B  are constants of integration and are 

functions of t. The resulting boundary layer equations (8) and 

(9) can be combined into following partial differential 

equation 
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The boundary conditions (5) are reduce to 
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where  

 

q = u+iv ,                        (12) 

 

is the fluid velocity in the complex form. It should be noted 

that equation (10) includes the Newtonian fluid as a special 

case when non-Newtonian viscoelastic parameter 0 = . If 

0= , the equation reduces to that of second grade fluid in 

an inertial frame without rotating frame of reference. 
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3. SOLUTION OF THE PROBLEM  

 

In order to solve equation (10) subject to the boundary 

conditions (11), we look for the solution based upon the 

principle superpossebility i.e. the unsteady transient solution 

is super imposed on the basic steady solution given by 

Schlitzing and Gersten [21]. 
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Using (13) and (14) into equations (10) and (11) and then 

collecting harmonic and non-harmonic terms, we obtain 
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In above equations, 
2 2 /= R d v  is the dimensionless 

rotation parameter, 
2 /= d v   is dimensionless oscillating 

parameters, 
2/= d  is the dimensionless second grade 

parameter and 
2/=pK K d is the permeability of the 

medium. 

Solving the ordinary differential equations (15)-(17) subject 

to the boundary conditions (18), we get 
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We note that the result of Singh [7] can be recovered when 

the dimensionless material parameter of the second grade fluid 

is zero. The solution (19) corresponds to the steady part which 

gives 0u  and 0v as the primary and secondary velocity 

components respectively. From equation (19) with the large 

value of R, we have 
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where P and Q are the real and imaginary parts of l. 

The solutions (20) and (21) together give the unsteady part 

of the flow. These solutions depend on  . For large R, the 

primary and secondary velocity components 1u and 1v  

respectively for the fluctuating flow are given by  
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where S and T are the real and imaginary parts of m and E and 

F are the real and imaginary parts of n. 

The amplitudes and phase differences are:  
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4. RESULTS AND DISCUSSION 

 

The governing equations (8) and (9) with boundary 

conditions (11) are solved basing upon a principle of 

superpossebility. The transient solution has been 

superimposed on the basic solution i.e. steady solution. This 

method has a bearing in the present problem due to oscillatory 

motion of the upper plate which sets in an oscillatory motion 

in the flow domain under consideration. Following Schlichting 

and Gersten [21] we have solved the governing equations. The 

effects of pertinent parameters such as porosity parameter 

( pK ) and rotation parameter ( R ) are discussed on velocity 

distribution and surface criterion i.e. skin friction. 

Fig.2 enunciates primary velocity distribution exhibiting the 

effects of rotation (R) and permeability parameter (Kp). The 

distribution is parabolic in nature. From the figure, it is 

observed that an increase in coriolis force R has an 

accelerating effect. Now, comparing the cases of   Kp=0.5 and 

Kp=0.1, it is concluded that an increase in permeability 

parameter reduces the velocity since the increasing value of 

Kp lessens its impact on fluid motion as Kp →  represents 

the absence of porous matrix, a clear flow. One striking feature 

of the distribution is that higher value of R i.e. greater rotation 

leads to greater non-linearity of the distribution contributing to 

hike in velocity near the plate. This is due to greater coriolis 

force. Thus it is concluded that the value of the parameter R is 

to be assigned suitably to control the growth of boundary layer. 
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Figure 2. Variation of primary velocity u0 with   for various 

values of R and Kp 

 
Figure 3. Variation of secondary velocity v0 with   for 

various values of R and Kp 

 
Figure 4. Variation of resultant velocity R0 with   for 

various values of R and Kp 

 

Fig.3 reveals that secondary velocity gets enhanced by 

higher value of R and Kp and is more symmetrical in nature 

except the case of higher value of R(R=10) associated with 

low permeability (Kp=0.01). Further the secondary velocity 

decreases for low value of Kp. The coriolis force has no 

significant effect on secondary velocity. 

Fig.4 presents the resultant of the steady part of the velocity. 

It is seen that higher rotation accelerates the steady part of 

velocity whereas porous parameter decelerates it. 

 

Figure 5. Variation of phase angle  0 with   for various 

values of R and Kp 

 

From fig.5 it is observed that both rotation parameter and 

porosity parameter increase the phase angle throughout the 

flow domain. On careful observation it further reveals that low 

value of pK ( 0.01pK = ) and higher value of R  ( 10R = ) 

significantly reduce the phase angle. Therefore, it is suggested 

that for obtaining greater phase difference, greater coriolis 

force and low permeability of the medium is essential (curves 

I and IV). It is remarked that the phase difference is large at 

the lower plate which is at rest. On the other hand, oscillatory 

plate has no phase difference because the phase difference sets 

in due to increasing viscous resistance offered by the static 

plate. It is maximum at the lower static plate where the 

resistance is maximum. 

Fig.6 depicts the variation of unsteady primary velocity. A 

close observation reveals that an increase in second grade 

parameter  , decreases the velocity at all the layers. The 

magnitude of decrease in 1u , commensurate with higher value 

of  . This is in conformity with the fact that elastic property 

exhibiting the non-Newtonian characteristics resists the 

unsteadiness and hence decreases the unsteady part of primary 

velocity. 

 
Figure 6. Variation of unsteady primary velocity u1 with   

for various values of   
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Fig.7 shows the variation of unsteady secondary velocity in 

a channel with oscillating upper plate. It is seen that an 

increase in  , non-Newtonian parameter exhibiting the 

second grade fluid property(elasticity), opposes the secondary 

velocity, same as the primary velocity (Fig.6). The profile 

structure is symmetrical and attains maximum in case of 

0 =  i.e. for Newtonian fluid. 

 

 
Figure 7. Variation of unsteady secondary velocity v1 with 

  for various values of   

 
Figure 8. Variation of resultant velocity R1 with   for 

various values of   

 

Fig.8 shows the contribution of non-Newtonian parameter 

  on resultant of unsteady part. The effect remains same as 

that of primary velocity (Fig.6). 

Fig.9 shows the variation of phase angle 1  due to unsteady 

contribution of velocity profile. It is seen that phase difference 

decreases with an increase in   (the second grade fluid 

property) and attains minimum for 1.0 = . The striking 

feature of the variation is that phase difference attains 

maximum in case of Newtonian fluid ( 0 = ). Thus, the 

second grade fluidity induces a phase difference in unsteady 

transient motion of the fluid flow. Moreover, second grade 

fluid with higher grade property gives rise to thinner boundary 

layer structure which is desirable. 

 

Figure 9. Variation of phase angle  1 with   for various 

values of   

 

 

5. CONCLUSION 

 

I. Greater rotation leads to hike in velocity near the 

plate. 

II. The coriolis force has no significant effect on 

secondary velocity. 

III. The higher coriolis force and low permeability 

contribute to greater phase difference whereas elasticity 

property reduces it. This may be of design requirement for 

obtaining resonance (Fig. 9). 

IV. Fluid elasticity reduces the unsteady part as well as 

resultant of the primary velocity and opposes the secondary 

velocity. 
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APPENDIX 

 

pl = 2iR+(1 / K ) , 

1

22 (1/ )

(1 )

+ + 
=  

+ 

piR K i
m

i




,

1

22 (1/ )

(1 )

+ − 
=  

− 

piR K i
n

i




 

( ) ( )
1
2

2 2
2(1/ 2) 1/ 4 1/p pP K R K

 
= + + 

 
,

( ) ( )
1
2

2 2
2(1/ 2) 1/ 4 1/p pQ K R K

 
= + − 

 

1 2 2

1 1 1 1( )S C A B A−  
= + +

  
 ,

1 2 2

1 1 1 1( )T C A B A−  
= + −

  
 

1 2 2

1 2 2 2( )E C A B A−  
= + +

   ,

1 2 2

1 2 2 2( )F C A B A−  
= + −

    

1 (1/ ) (2 )pA K K  = + + , 

1 (2 ) (1/ )= + − pB K K  , 

2 (1/ ) (2 )= + −pA K K  

 

2 (2 ) (1/ )= − − pB K K  , 2 2

1 2(1 )C  = +  
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