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Introduction 
 

Loss of soil fertility is one of the important 

constraints to legumes and cereal crop 

production in sub-Saharan Africa countries 

(Buerkert et al., 2001). The most limiting 

nutrients are nitrogen (N), phosphorus (P) 

and potassium (K) (Bekunda, et al., 2004), 

which to the great extent cause low grain  

 

 

 

 

 

 

 

 

 

 

 

 

 

yields. However, N is abundantly (80%) 

available in the air, existing in a form that 

cannot be used by plants (Santi et al., 2013) 

until it is fixed in either natural ways or 

through biological agents of nitrogen 

fixation. This nitrogen is very important for 

plant/crop growth and development, short of 
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The significant constraint to legumes and cereal crop production in most sub-

Saharan Africa countries is the loss of soil fertility. The most limiting soil nutrients 

are nitrogen (N), phosphorus (P) and potassium (K) which to the great extent cause 

low grain yields. The main reason for declining of these nutrients in the soil is the 

mining through continued cultivation without external input application. These 

nutrients are not usually applied by farmers because of their high prices leading to 

poor crop growth, development and finally poor yield. Leguminous crops have 

ability to form symbiotic relationship with rhizobia and fix atmospheric nitrogen.  

The fixed nitrogen can be used by legume plant themselves or might be transferred 

and be utilized by other plants growing nearby in intercropping systems or can be 

used by plants grown in the subsequent season. This review focus on understanding 

how rhizobia inoculation, intercropping system, and fertilization with P and K 

influences nitrogen fixation; mineral composition in the crop rhizosphere; nutrient 

uptake in plants; plant growth; photosynthesis and leaf chlorophyll formation; land 

equivalent ratio and ultimately yield performance of legumes and cereals. The 

results from different literatures cited showed that rhizobia inoculation and 

supplementation with phosphorus and potassium had positive significant effects on 

all parameters measured. Therefore, based on the findings reported, it can be 

recommended, to use rhizobia inoculants supplemented with optimum levels of 

phosphorus and potassium in intercropping systems as a strategy for improving 

crop production. 
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its supply to plants results in stunted growth. 

The deposits of K are relatively plenty, but 

the phosphate reserves are increasingly 

becoming scarce (Roy, 2006). The 

dependence of crop growth on nitrogen and 

the limited bioavailability of this element 

have resulted in a massive N-based fertilizer 

industry worldwide which led to increased 

use nitrogenous fertilizers to meet the global 

food demand (Westhoff, 2009; Santi et al., 

2013). However, these nitrogenous 

fertilizers go in opposite direction with the 

current global theme of climate smart 

agriculture as they cause greenhouse gas 

emission (N2O).  

 

Leguminous crops are well known for their 

ability to fix atmospheric nitrogen (Ledgard 

and Steele, 1992; Peoples et al., 1995). This 

nitrogen is used by the legume crops 

themselves or might be excreted out of 

legume’s root structures called nodules into 

the rhizosphere soil and be utilized by other 

plants growing nearby in intercropping 

systems (Andrew, 1979; Shen and Chu, 

2004). Furthermore, the fixed nitrogen can 

be used by plants grown in the succeeding 

season following the death and subsequent 

mineralization of diazotrophs (James, 2000). 

For example, Shen and Chu, (2004) reported 

that at the low rate of applied N; rice could 

utilize some N from peanut during the 

period of their co-growth. Furthermore, it 

was reported that inter specific root 

interactions between faba beans 

intercropped with maize played a significant 

role in the yield benefit of maize in an 

intercropping system (Li et al., 1999; Zhang 

and Li, 2003). Following the yield 

advantage in an intercropping system, it was 

thought that the nitrogen that was fixed by 

faba beans may have been transferred to 

maize and increase the maize yield (Zhang 

and Li, 2003) suggesting the importance of 

intercropping legumes with cereals. 

 

Intercropping is an old and common 

agricultural practice of growing more than 

one crop in the same field at the same time 

(Sanchez, 1976). It is mainly practiced in 

sub Saharan Africa (SSA), by smallholder 

famers (Matusso et al., 2014). Most 

common crop combinations in intercropping 

systems include: maize-cowpea, maize-

pigeon pea, maize-soybean, maize-

groundnuts, maize-beans, maize-lablab, 

sorghum-cowpea, millet-groundnuts, and 

rice-pulses (Matusso et al., 2012). This 

cropping practice aims to match efficiently 

crop demands to the available growth 

resources and labor (Dahmardeh et al., 

2010; Lemlem, 2013). The efficient use of 

available growth resources in a given piece 

of land and eventually maximizing 

productivity is the primary advantage of 

intercropping crops of different height, 

canopy structure, rooting ability, and 

nutrient requirements (Lemlem, 2013; 

Ghanbari et al., 2010). Many studies on 

intercropping have shown that legumes-

cereal intercropping is an important 

productive and sustainable system due to its 

resource facilitation and significantly 

enhancing crop productivity as compared 

with that of monoculture crops (Jensen, 

1996; Ghanbari et al., 2010; Dahmardeh et 

al., 2010). In an effort to improve food 

security, intercropping cereals with legumes 

plays an important role by providing a 

farmer with both carbohydrates and proteins 

for their dietary needs. Apart from 

nutritional composition of component crops 

in an intercropping, it has been also reported 

that intercropping improves soil fertility 

through biological nitrogen fixation, 

increases soil conservation through greater 

ground cover than sole cropping (Lemlem, 

2013), and provides better protection against 

crop pests and diseases than when grown in 

monoculture (Matusso et al., 2012).  
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Despite of increased global mineral fertilizer 

use accelerated by global food demand, 

smallholder farmers in SSA usually 

experience low crop productivity (Mwangi, 

1996). This might be due to continued 

cropping without addition of external inputs 

leading to low levels of soil nutrients. 

 

On the other hand, unavailability of specific 

rhizobia strain would reduce the biological 

nitrogen fixation, and consequently result in 

low grain yields in intercropping systems. 

Grain yields of both legumes and cereals can 

potentially improve from the application of 

moderate levels of chemical fertilizers 

(Ndakidemi et al., 2006). However, these 

inputs are rarely used by farmers either 

because of their skyrocketing prices 

(Ndakidemi et al., 2006; Chianu et al., 

2011), lack of farmer’s awareness on their 

economic returns, or both (Ndakidemi et al., 

2006).  

 

The use of these inorganic fertilizers has 

also made prices of many agricultural 

commodities to skyrocket (Masarirambi, 

2010). Therefore, there is a need to find out 

simple, cheap and environmentally friendly 

methods of improving agricultural 

productivity through Integrated Soil Fertilty 

Management (ISFM). Rhizobia inoculation, 

intercropping systems, and fertilization with 

moderate levels of phosphorus and 

potassium may have great potentials as an 

ISFM strategy for changing the response of 

crops in different parameters.  

 

The aim of this article is to critically review 

and explore how rhizobia inoculation, 

intercropping system, and fertilization with 

P and K influences nitrogen fixation; 

mineral composition in the crop rhizosphere; 

nutrient uptake in plants; plant growth; 

photosynthesis and leaf chlorophyll content; 

land equivalent ratio and finally yield 

performance of legumes and cereals. 

Biological nitrogen fixation in legumes 

under rhizobia inoculation, phosphorus 

and potassium fertilization, and its 

associated benefits to the cereal 

component 

 

Biological nitrogen fixation and their 

associated benefits to the cereal crop 

 

Rhizobia are microorganisms that are 

employed to improve the availability of 

nutrients such as nitrogen through 

atmospheric N2 fixation. These 

microorganisms are also called 

biofertilizers. In recent years, biofertilizers 

have emerged as a vital component for 

biological nitrogen fixation providing an 

economically attractive and ecologically 

sound way for increasing nutrient supply 

(Shridhar, 2012). Legumes such as soybean, 

lablab, common bean, cowpea and ground 

nuts are important hosts for these 

microorganisms to perform biological 

nitrogen fixation. Biological N2-fixation and 

mineral soil or nitrogenous fertilizers are the 

major sources of meeting the N requirement 

of high yielding legumes. Recently, it was 

reported that about 50–60% of soybean N 

demand was met by biological N2 fixation 

(Salvagiotti et al., 2008). Soybean (Glycine 

max) is a crop grown in different parts of the 

world.  

 

It is a popular nutritious crop providing 

human with a very high proteins and it is of 

high economic importance (Raji, 2007). The 

popularity of this crop is not based only on 

its high protein content but also its ability to 

fix atmospheric nitrogen thereby 

contributing to soil N and improve soil 

quality. When legume crops are inoculated 

with the right strain of rhizobia, they are 

able to fix atmospheric nitrogen and 

contribute to the soil nitrogen to meet plant 

N requirements (Salvagiotti et al., 2008). In 

a natural ecosystem, legumes can fix 
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nitrogen in the range of 25 – 75 lb which is 

equivalent to 11.34 – 34.02 kg of nitrogen 

per acre per year (Flynn and Idowu, 

undated). In cropping systems for example 

perennial legumes such as Alfalfa, sweet 

clovers, true clovers, and vetch may fix up 

to 250 – 500 lb of nitrogen per acre per year 

(Walley et al., 1996). Likewise, grain 

legumes such as peanuts, cowpeas, soy-

beans, and fava beans, can fix up to 250 lb 

which is equivalent to 113.4 Kg N ha
-1 

(Flynn and Idowu, undated). The fixed 

nitrogen is of beneficial to the cropping 

systems as it is not only used by the fixing 

crop but also non fixing crops growing 

nearby may consume this nitrogen when are 

released out of the fixing plants (Shen and 

Chu, 2004).  

 

For example, a total of 17.08 kg N ha
-1

 was 

transferred from legumes to the non-

legumes in the mixture (Frankow-Lindberg 

and Dahlin, 2013). However, studies on 

dinitrogen fixation in complex 

cereal/legume mixtures are few (Stern, 

1993; Peoples et al., 2002) as reviewed by 

Ndakidemi (2006). Therefore, there is a 

need to conduct study that will explore the 

response of legumes inoculated with 

rhizobia on nitrogen fixation so as to add 

knowledge on existing information. 

Furthermore, studies are also required to 

quantify the amount of nitrogen that can be 

fixed by specific legumes in different 

environments and cropping systems and 

how much of these nitrogen can be used by 

cereal crops in an intercropping systems.  

 

Phosphorus and potassium fertilization 

on nitrogen fixation in legumes 

 

N2-fixation by Rhizobium bacteria in 

leguminous plants is favoured by similar 

conditions necessary for good growth, 

vigour and dry matter production of the host 

plant. These conditions include availability 

of mineral elements such as starter N, 

phosphorus (P) and potassium (K). The 

primary source of nutrients (P and K) is 

weathering of bedrock, and the availability 

trend of these nutrients tends to decline with 

time as soils age (Hedin et al., 2003). Apart 

from their biochemical and physiological 

functions in the plants, these elements have 

other function of enhancing biological 

nitrogen fixation.  

 

The influence of phosphorus on symbiotic 

N2-fixation in leguminous plants has been 

studied intensively and many researchers 

have reported that phosphorus improved 

nitrogen fixation in legumes (Tang et al., 

2001; Ndakidemi et al., 2006; Zafar et al., 

2011). Israel (1987), reported that severe 

phosphorus deficiency significantly 

impaired both host plant growth and 

symbiotic N2 fixation, indicating that N2-

fixation has a higher phosphorus 

requirement for optimal functioning than 

that required for host plant growth and 

nitrate assimilation. Potassium plays an 

important role in the process of nitrogen 

fixation (Mengel et al., 1974). Potassium is 

essential in photosynthesis, as it maintains 

and balances the electrical charges at ATP 

production site, and also helps to promote 

translocation of photosynthetic substances 

(carbohydrate) to storage organs (fruits or 

roots) (Uchida, 2000).  

 

Carbohydrate produced by the host plant is 

also translocated to other parts of the plants 

including nodules where it is used by 

nitrogen fixing bacteria as a source of 

energy to fix atmospheric nitrogen (Mengel 

et al., 1974). Regardless of the effects of 

these mineral elements (P and K) on 

dinitrogen fixation, there is a need to 

conduct a study to assess their combined 

effects on nitrogen fixation in legumes 

growing in association with maize. 
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Mineral composition in the rhizosphere of 

legumes and cereals under intercropping 

system, rhizobia inoculation, phosphorus 

and potassium fertilization  

 

Effects of rhizobia inoculation on 

rhizopheric mineral composition 

 

Inoculation of legumes with specific strain 

of Rhizobium is well known for its ability to 

increase N2 fixation, plant yield and also 

improve the seed quality (Saini et al., 2004; 

Bambara and Ndakidemi, 2010). A group of 

soil dwelling and beneficial non pathogenic 

bacteria are referred to as plant growth 

promoting rhizobacteria (PGPR). PGPR 

colonizes the rhizosphere of diverse plant 

species and confer beneficial effects, such as 

increased plant growth by providing plants 

with fixed nitrogen and reduced 

susceptibility to diseases resulting from 

plant pathogenic bacteria, viruses, fungi, and 

nematodes (Kloepper et al., 2004 Yang, et 

al., 2009).  

 

Some PGPR also shows physical or 

chemical changes in the rhizosphere which 

is related to plant growth and plant defense 

(Yang, et al., 2009). A study conducted by 

Bambara and Ndakidemi (2010) on common 

bean (P. vulgaris) showed that Rhizobium 

inoculation significantly increased soil pH, 

Ca and Na availability.  

 

In their study, they also reported a 

significant increase in available 

micronutrients such as Fe, Cu, Zn and Mn 

following Rhizobium inoculation when 

compared with the control. However, little 

information is available about the effect of 

rhizobia inoculation on the chemical 

composition of rhizosphere of intercropped 

plants. Studies are needed to explore more 

information about the effects of rhizobia 

inoculation on mineral composition in the 

rhizosphere of intercropped plants. 

Rhizospheric mineral composition under 

legume-cereals mixtures 
 

In past few decades, intensification of 

agricultural systems have increased and 

reduced crop diversity to one or few species 

that are sometimes genetically homogenous 

with the uniform planting arrangements 

(Mobasser et al., 2014). Traditionally, 

small-holder subsistence farmers in the 

tropics have the tendency of intercropping 

their land to keep the associated risks of 

monocultures and assure stable income and 

nutrition (Francis, 1986). Intercropping 

cereal with grain legume crops facilitate the 

improvement and maintenance of soil 

fertility, because legume crops such as 

cowpea, mungbean, soybean and groundnuts 

are reported to accumulate from 80 to 350 

kg nitrogen (N) ha
-1

 (Peoples, and Craswell, 

1992). Intercropping have been reported to 

have indirect effect in the rhizospheres of 

intercropped species by enhanced nutrient 

mineralization because of the changes in soil 

organic matter decomposition rates, 

resulting from the addition of fresh organic 

matter (Blagodatskaya and Kuzyakov, 2008; 

Mobasser et al., 2014). A study done by 

Bolan et al., (1991) has shown that plants 

fixing nitrogen may cause changes in soil 

pH, which may limit the availability of some 

mineral elements. Other studies have 

reported that there were changes in physical 

and chemical characteristics of rhizosphere 

following intercropping (Zhang et al., 2004). 

Specifically, Song et al., (2007) reported 

that intercropping augmented microbial 

biomass and increased the availability of C, 

N and P in the rhizosphere. However, there 

is little information on mineral composition 

of rhizosphere influenced by association of 

cereals and legumes inoculated with 

rhizobia. Hence, calling for more studies to 

explore on how these interactions and 

association affects chemical and mineral 

composition of rhizosphere soil in cereals 

and legumes.  
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Nutrient uptake in legumes and cereals 

under intercropping, rhizobia 

inoculation, phosphorus and potassium 

fertilization  

 

Below ground interaction of legumes and 

cereals affects nutrient uptake 

 

Many studies on intercropping have 

generally paid attention on the legume-

cereal intercropping and assess yield 

performance of the crops taking advantage 

better resource utilization (Li et al., 1999; 

Andersen et al., 2007; Agegnehu et al., 

2008; Hauggaard-Nielsen et al., 2009). 

When plants are grown in mixture they have 

potentials of modifying nutrient availability 

in the soil by releasing exudates from their 

roots (Raynaud et al., 2008). These exudates 

may contain various chemical compounds 

like organic anion, amino acids, protons, 

sugars and enzymes which are believed to 

modify nutrient availability for the plants 

and hence improve yield (Raynaud et al., 

2008). Morris and Garrity (1993) have 

reported the close association between yield 

advantage and plant nutrient uptake by 

intercropped plant species. Further studies 

by Hauggaard et al. (2009) showed that 

accumulation of nutrients such as 

phosphorus (P), potassium (K), and sulphur 

(S) may be enhanced by the nutrient 

complementarity of intercropped pea and 

barley and further postulated that these 

might have influenced the overall crop yield 

and thereby increasing competitive ability of 

capturing and utilization of other resources. 

P uptake has been reported to be influenced 

by intercropping in many studies (Mobasser 

et al., 2014). Specifically, it was reported 

that there were increased uptake of P in 

white lupin intercropped with wheat 

(Gardner and Boundy, 1983; Cu et al., 

2005). Other study by Ae et al. (1990) 

showed that pigeon pea influenced the 

uptake of P in the sorghum in an 

intercropping. The literature has pointed out 

that intercropping legume with cereals may 

improve uptake of some mineral element, 

however, we would like explore how uptake 

of both macro and micro nutrients is 

affected by plant grown in an intercropping 

systems. 

 

Influence of rhizobia inoculation on 

nutrient uptake in plant tissues 

 

Uptake of plant nutrients is an essential 

process as these nutrients needed by plants 

for normal growth and development. 

Nutrient uptake by plants depends on the 

amount, concentration, rhizosphere 

processes and the capacity of soil to 

replenish nutrient in the soil (Makoi et al., 

2013). Microorganisms such as rhizobia as 

well as other plant growth promoting 

rhizobacteria, are said to change the 

chemistry of nutrients in the soil and make 

them available for uptake by plants (Saharan 

and Nehra, 2011). Rhizobial inoculants are 

reported to increase uptake of nutrients such 

as N and P though the biological nitrogen 

fixation thereby improving N availability to 

plants (Ndakidemi et al., 2011). They can 

also mobilize both organic and inorganic 

phosphorus from organic as well as 

inorganic sources making them available in 

the rhizosphere for uptake by plant (Matiru 

and Dakora, 2004). Recent studies (Fatima 

et al., 2007; Ndakidemi et al., 2011; Makoi 

et al., 2013; Nyoki and Ndakidemi 2014a, b; 

Tairo and Ndakidemi 2014) have reported 

that the rhizobia inoculation have influenced 

and increased the uptake of different 

nutrients in plants. For example, Makoi et 

al. (2013) reported a significant increase in 

the uptake of P, K, Ca, and Mg in plant 

tissues. Similarly, Ndakidemi et al. (2011) 

working on P. vulgaris reported a significant 

increase in uptake of micronutrients Fe, Cu, 

Zn, Mn, B, Mo in different plant tissues. 

Regardless of many studies conducted on 
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intercropping there are few research reports 

specifically in Tanzania about the role of 

intercropping and rhizobia inoculation on 

nutrient uptake in legumes intercropped with 

cereals. Therefore, there is a need to conduct 

research investing the influence of cereal-

legumes intercropping systems and rhizobia 

inoculation supplemented with phosphorus 

and potassium on plant nutrient uptake. 

 

P and K fertilization on other nutrient 

uptake by plants 

 

Nutrients such as phosphorus and potassium 

play different important roles in plant 

growth and development thereby increasing 

biomass and grain yield. Bioavailability and 

uptake of these nutrients is constrained by 

different factors including their 

concentration in the soil (Makoi et al., 

2013), pH of the soil (Bambara and 

Ndakidemi, 2010) and the nature of 

exudates produced by the plants (Raynaud et 

al., 2008). P is reported to facilitate plant 

roots development and enhances nodules of 

the legume plants so that increases seed 

yields (Hayat et al., 2010). Plants supplied 

with mineral elements P and K will easily 

capture and take up the supplied elements 

and may influence the uptake of other 

nutrients. For example, Islam et al., (2008) 

reported an increased phosphorus uptake in 

rice with increasing application of P rates. 

Akram et al., (2007) showed that nitrogen 

uptake in sorghum was improved with 

application of P and K, pointing out that 

their combined use exceeded their alone 

application. In recent study conducted by 

Nyoki and Ndakidemi (2014a, b), it was 

reported that phosphorus supplementation 

improved micro and macro nutrient uptake 

in different tissues of cowpea grown under 

the field and screen house condition. 

Another study reported that application of K 

helped the release of fixed NH
4+

 ion from 

the soil and this enabled the crop to better 

uptake of nitrogen (Sharma and Ramna, 

1993). To obtain the maximum yield, plants 

need to be supplied with the optimum 

mineral nutrients they require. However, the 

crops are not supplied with these nutrients 

by many smallholder farmers in sub-Saharan 

Africa, leading to poor crop growth, 

development and finally poor yield. More 

studies are proposed to assess the factors 

influencing nutrient uptake in P and K 

treated crops and what are the associated 

benefits of improved nutrient uptake to the 

human diet. 

 

Growth performance of legumes and 

cereals as affected by rhizobia inoculation 

supplemented with phosphorus and 

potassium in intercropping system  

 

Growth performance of crops under 

intercropping systems 

 

Growth performance is one of the indicators 

of crop yield performance. Plant growth is 

affected either positively or negatively by 

different factors including cropping patterns 

(Carr et al., 2004; Dusa and Stan, 2013). 

The effects of intercropping on growth 

performance of intercropped crops have 

been studied for a long time and many 

researchers have reported different findings. 

Hirpa (2014) reported that there was 

significant increase in maize height just by 

delaying planting date of haricot bean for 

three weeks after planting maize as 

compared with the simultaneous planting 

maize and haricot bean. In another study, 

Hirpa (2013) reported that there was a 

significant interaction of intercropped 

legume species and intercropping time 

resulting in an increase in maize height 

simultaneously planted with legumes and 

gave the reason that maize height could have 

been contributed by inter-specific 

competition to avoid over shading. Lemlem 

(2013) recorded a significant difference in 
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plant height where it was found that the 

height of sole maize was significantly higher 

than maize-lablab and maize-cowpea 

intercropping. However, there is little 

information reported on the effects of 

legume-cereals intercropped at different 

spacing on growth performance particularly 

in depleted soils. Studies on intercropping 

cereals with legumes at different spacing 

would provide more information on growth 

performance of crops grown in mixture and 

different spacing.  

 

Growth performance of crops as affected 

by rhizobia inoculation 

 

Rhizobia inoculation is well known for its 

effects on biological nitrogen fixation when 

comes in symbiotic relationship with 

leguminous plants. The improved nitrogen 

fixation is very important for the crop 

growth and development. Several studies 

have shown that there is evidence of 

improved plant growth following rhizobia 

inoculation.  

 

For example, Yamanaka et al., (2005) 

reported that there was a significant increase 

in biomass in the Alnus sieboldiana 

seedlings inoculated with Frankia and 

Gigaspora margarita when compared with 

un-inoculated seedlings. Unavailability of 

specific strain of rhizobia reduces the 

growth of leguminous crops to the great 

extent (Vincent et al., 1979).  

 

Poor symbiosis between Rhizobium and 

legumes are reported to reduce the amount 

of fixed nitrogen in legumes resulting in 

reduced plant growth (Bambara and 

Ndakidemi, 2009). Furthermore, a study 

done by Bambara and Ndakidemi (2010) 

showed the presence of significant increase 

in fixed nitrogen in different plant tissues of 

Phaseola vulgaris relative to un-inoculated 

treatments. The improved N nutrition 

improves plant growth as well as yield 

performance. Many research on influence of 

rhizobia on plant focus on growth 

performance of the fixing crop without 

considering the effect of rhizobia on growth 

of neighbouring non fixing plants. It is 

therefore important to conduct studies to 

assess how rhizobial inoculation may 

influence growth performance of both fixing 

and non-fixing plant.  

 

Growth performance of crops under 

phosphorus and potassium fertilization 

 

Mineral elements such as N, P and K plays 

important roles in plant growth and 

development and ultimately determination 

of crop yield (Uchida, 2000). Both elements 

are essential macronutrients required in 

relatively large amount by plants. Being one 

of the important element for plant growth, 

phosphorus is found in every living plant 

cell playing role in various plant functions 

including energy transfer, photosynthesis, 

translocation of sugars and starches as well 

as movement of nutrients within the plant 

(Brady, 2002; Shahid et al., 2009).  

 

Potassium is required by plants for a number 

of vital physiological processes including 

the following: activation of several enzymes, 

synthesis and degradation of carbohydrates, 

production of proteins as well as regulation 

of stomata pores for gas exchange and 

photosynthesis (Lissbrant et al., 2009).  

 

However, P and K are usually very low in 

the soils, a condition which limit proper 

plant growth resulting in stunted crops and 

hence poor yields. Therefore, for proper 

plant growth and development, more studies 

are of utmost important to investigate the 

effects of different levels of P and K on 

plant growth in different soil condition and 

different cropping systems. 
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Photosynthesis and chlorophyll formation 

as affected by rhizobia inoculation, 

phosphorus and potassium fertilization in 

legume-cereals mixtures 

 

Photosynthesis and chlorophyll formation 

in crops as influenced by rhizobia 

inoculation 

 

Chlorophyll can be referred to as a green 

molecule found in plant cells which plays 

the central function in photosynthesis. 

Photosynthesis is a process by which plants 

captures sun light and convert it to useful 

chemical energy in presence of water, 

carbon dioxide and chlorophyll (Amesz, 

1987).  

 

Life on earth would be not possible without 

photosynthesis because it creates living 

matter out of inert organic material, 

replenishes the reservoirs of oxygen in the 

atmosphere and store light energy from sun 

to support the life activities of nearly all 

organisms (Rabinowitch and Govindjee, 

1969; Gaidos, 1999). Inoculation of rhizobia 

may affect the whole plant photosynthesis 

because they tend to improve plant nutrition 

and growth by increasing total leaf area 

(Kaschuk, et al., 2009).  

 

Another study showed that P. vulgaris L. 

inoculated with rhizobia had an increased 

leaf chlorophyll content compared with un-

inoculated plants (Bambara and Ndakidemi, 

2009). Research evidence shows that 

Rhizobium inoculation increases the 

chlorophyll content of leaves (Arumugam et 

al., 2010), and hence improves plant 

biomass production. However, rhizobia 

inoculation under cereal-legume 

intercropping systems still needs more 

studies to assess its effects on leaf 

chlorophyll content of both components of 

intercropping.  

 

Phosphorus and potassium fertilization 

on the photosynthesis and chlorophyll 

formation in crops 

 

Declining soil fertility, especially mineral 

nutrients such as N, P and K has continued 

to cause low yield for many farmers in SSA. 

The limited supply of these elements is 

reported to impair plant growth in terms of 

cell division and expansion, and 

photosynthesis (Hossain et al., 2010; 

Longstreth and Nobel, 1980). Potassium 

(K
+
) is one of the abundant ion in the plant 

cells being required for various functions 

including maintenance of electrical potential 

gradients across plasma membrane and also 

it activates the function of various enzymes 

(Britto and Kronzucker, 2008). Apart from 

these functions in plants P and K play an 

important role in the photosynthetic 

activities and chlorophyll formation in 

plants. For example, in the past few years 

one group of researchers reported an 

increase in chlorophyll content following 

application of phosphorus on the seedlings 

of Larix olgensis (Wu et al., 2006). Recent 

studies have also shown that the plants 

treated with relatively high levels of P and K 

improved chlorophyll a, b and ab production 

in cotton leaves (Onanuga et al., 2011). This 

report is in line with the previous study by 

Lamrani et al. (1996) who reported that K 

nutrition promoted formation of both 

chlorophyll a and b in cucumber leaves, and 

that K deficient is associated with low 

chlorophyll content on cotton (Zhao et al., 

2001). 

 

Photosynthesis and chlorophyll formation 

as affected by intercropping systems 

 

Intercropping has been reported to bring 

about yield advantages over sole crop by 

many researchers (Giller and Wilson, 1991; 

Khogali et al., 2011, Lemlem, 2013). 

However, this may lead to the suppression 
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of one of the companion crop in the mixture 

by preventing the sunlight from reaching the 

crop. Sunlight is normally captured by plant 

leaves and converted into chemical energy 

to be used for various plant activities. It was 

previously reported by Islam et al., (1993) 

that Mungbean intercropped with sorghum 

suffered a shading stress at different growth 

stages. It was further reported that grain 

filling stage is very much light sensitive. For 

instance, Yoshida and Hara, (1977) reported 

low light intensity causes a slight delay in 

the grain filling of the whole panicle and 

reduced the percentage of filled grains on 

the lower branches of Indica and Japonica 

rice. Therefore, there is a need to conduct 

further studies to assess the effects of 

intercropping on chlorophyll formation in 

legumes intercropped with cereals. This will 

help us better understand how intercropping 

may affect chlorophyll formation and 

photosynthesis there by affecting grain and 

biomass production.  

 

Yield performance of legumes and cereals 

as influenced by rhizobia inoculation and 

P and K fertilization in intercropping 

systems  
 

Yield performance of legumes and cereals 

in mixed culture 

 

Intercropping is an agricultural practice of 

growing more than one crop in the same 

piece of land at the same time aiming at 

efficiently matching the available growth 

resources to the crop demands (Banik and 

Bagchi, 1993; Zhu et al., 2000; Xu et al., 

2008). Many studies have reported that most 

advantage of intercropping is production of 

greater yield on a given piece of land (Giller 

and Wilson, 1991; Ndakidemi and Dakora, 

2006; Khogali et al., 2011, Lemlem, 2013). 

Intercropping maize with grain legumes is 

the traditional farming practice believed to 

reduce the risk of crop failure, and add some 

N to the system through biological N 

fixation (Whitbread, 2004). The most 

probable reason for production of greater 

yield in an intercropping system is the 

addition of N in the soil from biological 

nitrogen fixation (BNF) (Whitbread, 2004; 

Khogali et al., 2011), better utilization of 

available growth resources (water, nutrients, 

light and air) (Morris and Garrity, 1993; Zhu 

et al., 2000; Li et al., 2003), better use of 

available piece of land (Singh and Usha, 

2003), and interspecific interactions and 

facilitation of the component crops (Zhang, 

2003; Fan et al., 2006). Li et al., (2001) 

stated that the crops grown in the mixture, 

such as cereals and legumes may have a 

series of complex inter- and intra-specific 

interactions which leads to an increased crop 

yield. However, Ndakidemi et al., (2006) 

reported that African soils are heavily mined 

for nutrients, especially N and P, with a 

consequent decline in crop yields. Although 

many researchers have been done on yield 

advantage of legumes intercropped with 

cereals, there is a need to conduct further 

studies on the factors influencing greater 

yield in an intercropping systems.  

 

Rhizobia inoculation on yield 

performance of legumes and cereals in 

mixture 

 

Crop production in most smallholder 

farmers of sub-Saharan Africa is 

characterized by continuous cropping with 

low or no external inputs application 

resulting in reduced soil fertility and low 

agricultural productivity. As poor and 

hungry people cannot afford to purchase 

mineral fertilizers (Ndakidemi et al., 2006), 

they need low cost and readily available 

technologies and practices to increase food 

production (Pretty et al., 2003). Inoculation 

of rhizobia could be simple and affordable 

technology from which a farmer can 

increase crop yield. Rhizobia are soil 
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bacteria which colonizes the roots of 

leguminous plants and form nodules in 

which biological nitrogen fixation takes 

place (Mia and Shamsuddin, 2010). 

Nitrogen is a macro element being required 

by plants in a relatively large amount than 

other elements (Cechin and de Fátima, 

2004). It is required in large quantity by 

crops for maximum growth and 

development. Many studies have shown that 

rhizobia inoculation improved both crop 

growth and grain yields (Menaria et al., 

2004; Popescu, 1998; Zahran, 1999; Vargas 

et al., 2000; Hernandez and Cuevas, 2003). 

In an intercropping of cereals and legumes, 

rhizobia inoculation enables nitrogen 

fixation and the fixed nitrogen is used by 

both legumes and cereals growing together 

in an intercropping systems thereby 

enhancing yield performance of cereals. 

 

Phosphorus and potassium fertilization on 

yield performance of cereals and legumes 

in the mixed systems 

 

For proper plant growth and development, 

the soil must be fertile and contain 

appropriate levels of essential mineral 

elements (Bationo et al., 2002; White et al., 

2012). A fertile soil provides essential 

mineral nutrients for crop plant growth, 

supports a varied and active biotic 

community (Mäder et al., 2002). The 

essentiality of elements is based on Arnon 

and Stout, (1939), who stated that “an 

element is not considered essential unless: i) 

a deficiency of it makes it impossible for the 

plant to complete the vegetative or 

reproductive stage of its life cycle; ii) such 

deficiency is specific to the element in 

question, and can be prevented or corrected 

only by supplying this element; and iii) the 

element is directly involved in the nutrition 

of the plant quite apart from its possible 

effects in correcting some unfavorable 

microbiological or chemical condition of the 

soil or other culture medium”. The most 

important plant nutrients for production of 

high yields are nitrogen (N), phosphorus (P) 

and potassium (K). Among these elements, 

N is abundant in the air, and deposits of K 

are relatively plenty, but the phosphate 

reserves are increasingly becoming scarce 

(Roy, 2006). Potassium is involved in the 

translocation of photosynthetic products 

(sugars) for plant growth or storage in fruits 

or roots (Uchida, 2000). Phosphorus 

performs many functions in plants including 

the following: it is a part of the RNA and 

DNA structures which are the main 

components of genetic information; it is 

required in large    quantities in young cells, 

such as shoots and root tips where 

metabolism is high and cell division is rapid; 

it aids in root and nodules development, 

flower initiation, and seed and fruit 

development (Uchida, 2000; Mokwunye and 

Bationo, 2002). Studies have shown that 

plants supplied with appropriate amount of P 

has resulted in increased yields over the 

control (Ndakidemi et al., 2006; Zafar et al., 

2011). However, most soils in some Eastern 

Africa countries have negative balances of 

N, P and K which limits crop production 

(Bekunda et al., 2004) (Table 1). The 

limited availability of soil nutrients, calls 

upon crop scientist to conduct studies to 

investigate the response of crops supplied 

with P and K at different levels in an 

intercropping systems on crop yields. 
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Table.1 Calculated nutrient balances of N, P and K (kg ha-1year-1) of the arable land for some 

Eastern Africa countries 

 

Country N P K 

 1982-84 2000 1982-84 2000 1982-84 2000 

Kenya -41 -47 -6 -7 -29 -36 

Tanzania -27 -32 -4 -5 -18 -21 

Rwanda -54 -60 -9 -11 -47 -61 

(Bekunda, et al., 2004) 

 

Land equivalent ratio (LER) 
 

Intercropping of cereals with legumes has 

been an ordinary cropping system in 

different arid and semi-arid areas of SSA. In 

an effort to assess the efficiency of 

intercropping over monocropping, scientists 

use different competition indices (Hiebesch 

and McCollum, 1987). However, Land 

Equivalent Ratio (LER) is the most used 

convention for intercrop versus sole crop 

comparisons (Agegnehu, 2006). LER 

provides an accurate assessment of the 

competitive relationship between the 

component plants in an intercropping, as 

well as the overall productivity of intercrop 

systems (Zada et al., 1988). LER measures 

how efficient are intercropping or mixture. 

The LER makes comparison of land areas 

required under single or sole cropping to 

give the yields obtained from the component 

crops of the mixture (Federer and Schwager, 

1982). If the intercropped crops have the 

same agro-ecological characteristics, their 

total LER should be 1.0 and their partial 

LER should be 0.5 for each crop. Dariush et 

al. (2006) and Mohammed (2011) pointed 

out that if a total of LER is greater than 1.0 

signifies that the positive inter-specific 

interference that exist in the monoculture is 

intensive than that in the mixture. The LER 

value of 1.0 indicates that the yield of 

intercrop are the same as those of the 

collections of monocultures and any value 

greater than 1.0 indicates the advantage for 

intercropping (Kutrata, 1986; Mazaheri and 

Moveysi, 2004). The comparative 

advantages of intercropped crops over sole 

crops may be influenced by many factors 

such as crop density and soil nutritional 

status. Rhizobia inoculation and 

supplementation of phosphorus and 

potassium may influence yield performance 

of intercropped crops, and therefore, it is 

important to assess their effects on land 

equivalent ratio. 

 

In conclusion, this review focused on the 

potential effects of rhizobial inoculation, 

phosphorus and potassium fertilization in 

legume-cereal intercropping systems on 

nitrogen fixation; mineral composition in the 

crop rhizosphere; nutrient uptake in plants; 

plant growth; photosynthesis and leaf 

chlorophyll content; yield performance of 

legumes and cereals and finally land 

equivalent ratio. The results from different 

literatures cited showed that Rhizobium 

inoculation and supplementation with 

phosphorus and potassium had positive 

significant effects on all parameters 

measured. Therefore, when these bio-

fertilizers are used and supplemented with 

optimum levels of phosphorus and 

potassium they can significantly increase 

both legumes and cereals production. Based 

on these results, it is recommended to use 

rhizobia inoculants supplemented with 

optimum levels of phosphorus and 

potassium in the intercropping systems for 

production of high yield in highly depleted 

soils. However, more studies are required to 
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explore whether the increased plant 

performances are mainly due to plant-

microbes interactions or due to other 

underlying factors.  
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