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Abstract 

Data uncertainty is common in real-world applications due to various causes, including imprecise measurement, network latency, out-dated 
sources and sampling errors. These kinds of uncertainty have to be handled cautiously, or else the mining results could be unreliable or even 
wrong. We propose that when data mining is performed on uncertain data, data uncertainty has to be considered in order to obtain high 
quality data mining results. In this paper we study how uncertainty can be incorporated in data mining by using data clustering as a 
motivating example. We also present a Gaussian process model that can be able to handle data uncertainty in data mining. 

.Keywords: Gaussian process, uncertain data, Gaussian distribution, Data Mining 
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1. Introduction 

Data is often associated with uncertainty because of measurement inaccuracy, sampling discrepancy, outdated 
data sources, or other errors. This is especially true for applications that require interaction with the physical 
world, such as location-based services [1] and sensor monitoring [3]. For example, in the scenario of moving 
objects (such as vehicles or people), it is impossible for the database to track the exact locations of all objects at 
all-time instants. Therefore, the location of each object is associated with uncertainty between updates [4]. 
These various sources of uncertainty have to be considered in order to produce accurate query and mining 
results. We note that with uncertainty, data values are no longer atomic. To apply traditional data mining 
techniques, uncertain data has to be summarized into atomic values. Taking moving-object applications as an 
example again, the location of an object can be summarized either by its last recorded location or by an expected 
location. Unfortunately, discrepancy in the summarized recorded value and the actual values could seriously 
affect the quality of the mining results. In recent years, there is significant research interest in data uncertainty 
management. Data uncertainty can be categorized into two types, namely existential uncertainty and value 
uncertainty. In the first type it is uncertain whether the object or data tuple exists or not. For example, a tuple in 
a relational database could be associated with a probability value that indicates the confidence of its presence. In 
value uncertainty, a data item is modelled as a closed region which bounds its possible values, together with a 
probability density function of its value. This model can be used to quantify the imprecision of location and 
sensor data in a constantly-evolving environment 

1.1. Uncertain data mining 

There has been a growing interest in uncertain data mining[1], including clustering[2], [3], [4], [5], 
classification[6], [7], [8], outlier detection [9], frequent pattern mining [10], [11], streams mining[12] and 
skyline analysis[13] on uncertain data, etc. An important branch of mining uncertain data is to build 
classification models on uncertain data. While [6], [7] study the classification of uncertain data using the support 
vector model, [8] performs classification using decision trees. This paper unprecedentedly explores yet another 
classification model, Gaussian classifiers, and extends them to handle uncertain data. The key problem in 
Gaussian process method is the class conditional density estimation. Traditionally the class conditional density 
is estimated based on data points. For uncertain classification problems, however, we should learn the class 
conditional density from uncertain data objects represented by probability distributions. 
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2. Research Background 

2.1. Gaussian Process Models 

The conditional distribution ( | )p y x  describes the dependency of an observable y on a corresponding 

input x  . The class of models described in this section assumes that this relation can be decomposed into a 

systematic and a random component. Further- more, the systematic dependency is given by a latent function 
:f X  such that the sampling distribution, i.e. the likelihood, is of the form 

                                                             ( | ( ( ), )p y f x                                                                                    (2.1) 

which describes the random aspects of the data-generating process. In general, we will use to denote additional 
parameters of the likelihood besides f. Note that the conditional distribution of the observable y depends on x via 
the value of the latent function f at x only. The aim of inference is to identify the systematic component f from 
empirical observations and prior beliefs. The data comes in the form of pair-wise observations 

{( , )} | 1,.. }i iD y x i m   where m is the number of samples. Let 1[ ,..., ]T
mX x x and 1[ ,..., ]T

my y y  

collect the inputs and responses respectively. In general we assume nx  unless stated otherwise. The name 
Gaussian process model refers to using a Gaussian process (GP) as a prior on f. The Gaussian process prior is 
non-parametric in the sense that instead of assuming a particular parametric form of f(x, θ) and making inference 
about,  the approach is to put a prior on function values directly. Each input position x  has an associated 
random variable f(x). A Gaussian process prior on f technically means that a priori the joint distribution of a 
collection of function values f=

1 '
[ ( ), ..., ( ) ]

T

m
f x f x associated with any collection of m’ inputs [x1.  . .  , xm’]

 T is 
multivariate normal (Gaussian) 
                                                                  ( | , ) ( | , )p f X N f m K                                                         (2.2)   
 with mean m and covariance matrix K. A Gaussian process is specified by a mean function m(x) and a 
covariance function ( , ', )k x x  such that ( , , )ij iK k x xj   and 1 '[ ( ), ..... ( )]

T
mm m x m x ..By choosing a 

particular form of covariance function we may introduce hyper-parameters    to the Gaussian process prior. 
Depending on the actual form of the covariance function ( , ', )k x x     the hyper-parameters     can control 
various aspects of the Gaussian process. The sampling distribution (2.1) of y depends on f only through f(x). As 
an effect the likelihood of f given D factorizes                                                                                                              

                                1

( | , ) ( | ( ), ) | ( | , )
m

i i
i

p y f p y f x p y f  


                                          (2.3) 

and depends on f only through its value at the observed inputs f . According to the model, conditioning the 
likelihood on f is equivalent to conditioning on the full function f. This is of central importance since it allows 
us to make inference over finite dimensional quantities instead of handling the whole function f. The posterior 
distribution of the function values f is computed according to Bayes’ rule                                                             

1

( | f , ) (f | , ) (f | , )
(f | , , ) ( | , )

( | , ) ( | , )

m

i i
i

p y p X N m K
p D p y f

p D p D

   
    

    

                                                                              (2.4) 
Where fi = f (xi).The posterior distribution of f can be used to compute the posterior predictive distribution of 
f(x*) for any input x* where in the following the asterisk is used to mark test examples. If several test cases are 
given, X* collects the test inputs and f* denotes the corresponding vector of latent function values. The 
predictive distribution of f* is obtained by integration over the posterior uncertainty 

                              *(f | , , ) (f | f,X,X , ) (f | , , )p D,X p p D df                      (2.5) 

where the first term of the right hand side describes the dependency of *f  on f induced by the GP prior. The 

joint prior distribution of f and *f   due to the GP prior is multivariate normal 

                              *
* * T

* * ***

K Kf m
(f | f,X,X , ) | ,

f m KK
p N

     
            

                                       (2.6) 

Where the covariance matrix is partitioned such that **K  is the prior covariance matrix of the *f and 

*K contains the covariances between f and *f . The conditional distribution of *f |f can be obtained from the 

joint distribution (2.6) using relation to give 
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                                      T -1 T -1p(f |f,X,X ,ψ)=N(f |m +K K (f-m),K -K K K )* * * * * ** * *
                                 (2.7)  

 which is again multivariate normal. The simplest possible model assumes that the function can be observed 
directly y = f (x) so that the posterior on f becomes p (f | D) = δ (f −y), describing that no posterior uncertainty 
about f remains. From this posterior the predictive distribution of f* can be obtained according to eq. (2.5) which 
corresponds to simply replacing f by y in eq. (2.7) Figure 1 shows the posterior Gaussian process which is 
obtained by conditioning the prior on the five observations depicted as points. The predictive uncertainty is zero 
at the locations where the function value has been observed. Between the observations the uncertainty about the 
function value grows and the sampled functions represent valid hypothesis about f under the posterior process. 
  

 
Fig. 1 show the posterior Gaussian process which is obtained by conditioning the prior on the five observations depicted as points 

 
3. Overview of the Problem 

We assume the following statistical model  

                                                                                ( ) tt f x                                                                   (3.1) 

Where x is a D-dimensional input and t  the output, additive, Gaussian uncertain data such that (0, )t tN v  , 

where tv  is the unknown data variance. Such a model implies that  

                                                                                   [ | x]= ( )E t f x                                                              (3.2) 

Now, let x u x   or x (u, )xN v I where I is the D X D identity matrix and xv  is the input data variance. 

In this case, the expectation of t given the characteristics of x is obtained by integrating over the input 
distribution 

                                                                          [ | u, ]= ( ) ( )xE t v f x p x dx                                                  (3.3) 

This integral cannot be solved analytically without approximations for many forms of f(x) 

3.1. Analytical approximation using the Delta Method 

The function f of the random argument x can always be approximated by a second order Taylor expansion 
around the mean u of x: 

31
(x) (u) (x u) '(u) (x u) "(u)(x u) (|| x u || )

2
T Tf f f f O                                        (3.4) 

where
(x)

'(u)
x

f
f





, and 

2

T

(x)
"(u)

x x

f
f



 

, evaluated at x=u .Within this approximation, we can now 

solve the integral (3.3). We have 
1

[ | , ] (u) (x u) '(u) (x u) "(u)(x u) (x) x
2

T T
xE t u v f f f p d           

                                     
1

(u) Tr[ "(u) ] ( ) Tr[ "(u)]
2 2

x
x

v
f f v I f u f                                                    (3.5) 

Where Tr denotes the trace. Thus, the new generative model for our data 
 

                                                        

(u, )

(u, ) (u) Tr[ "(u)
2

t

x
x

t g vx

v
g v f f

 



 

                                                        (3.6)   
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4. RELATED WORKS 

4.1. Defining a new Gaussian Process 

In the case of uncertain or random inputs, the new input/output relationship is given by (3.6), where the former 

function f, in the noise-free case, has been replaced by (u, )xg v = ( ) Tr[ "(u)]
2
xv

f u f . If we put a Gaussian 

prior on f (u), we can derive the corresponding prior on its second derivative and then define the prior on the 

space of admissible functions (u, )xg v   which is viewed as the sum of the two correlated random functions, f 

(u) an Tr[ "(u)
2

xv
f . We use results from the theory of random functions [3.5]. Let us recall that if ( )X r and 

( )Y r are two random functions of the same argument r, with expected values ( )xm r  and ( )ym r and 

covariance functions ( , ')xC r r and ( , ')yC r r  respectively, then the mean and covariance function of 

( ) ( ) ( )Z r X r Y r  are given by 

                                                      ( ) ( ) ( )mz r mx r my r                                                                          (4.1) 

                              ( , ') ( , ') ( , ') ( , ') ( , ')z x y xy yxC r r C r r C r r C r r C r r                                                             (4.2) 
 
in the case ( )X r and ( )Y r are correlated ( , ')xyC r r and ( , ')yxC r r are the cross-covariance functions. We 
can now apply this to our function (.)g . Let us first derive the mean and covariance function of (u, )xg v  in the 
one-dimensional case and then extend these expressions to D dimensions. Given that ( )f u  has zero-mean and 
covariance function ( , )i jC u u as given by 

2

1

1
(u , u ) exp( ( )

2
d d

i j d i j
d

C v w u u


   , its second derivative, "( )f u  has zero-mean and covariance 

function 4 2 2( , ) /i j i jC u u u u   . It is then straightforward that "( )
2
xv

f u  has zero-mean and covariance function 

2
4 2 2( , ) /

4
x

i j i j

v
C u u u u   also, the cross-covariance functions between (u)f and "( )

2
xv

f u is given 

by 2 2( , ) /
2
x

i j i

v
C u u u  . Therefore, using the fact we have 2 2

2 2 2 2

( , ) ( , )
,i j i j

i j

C u u C u u

u u

 


 
in one 

dimension, ( , ) ( ) "( )
2
x

x

v
g u v f u f u  has zero-mean and covariance function 

                             
4 22

2 2 2 2

( , ) ( , )
cov[ ( , ), ( , )] ( , )

4
i j i jx

i x j x x
i j i

C u u C u uv
g u v g u v C ui uj v

u u u

 
  

  
                              (4.3) 

In the case of D-dimensional inputs, we have 

                           

2 22 2 (u ,u ) (u , u )
cov[ (u , ), (u , )] (u , u ) Tr Tr

4 u u u u u
i j i jx

i x j x xT T T
i i i j i i

C Cv
g v g v C i j v

u

     
      

                             (4.4) 

where 

2 2 (u , u )

u u u uT T
i i j j

C i j  
 

      is a D X D each entry of which being a D X D the block ( , )r s  contains 
2 2 (u , u )

u u u ur s T
i i j j

C i j  
 

       So we see that the first term of the corrected covariance function corresponds to the noise-
free case plus two correction terms weighted by the input noise variance, which might be either learnt or 
assumed to be known a priori.  

4.2. Inference and prediction 

Within this approximation, the likelihood of the data 1{ ....., }Nt t  is readily obtained. We have 

                                                      t| (0, )NU Q With 
'

δij ij ij
Q vt    
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Where t is the N X 1 vector of observed targets U .The N X D matrix of input means,
' .
ij  is given by (4.4) 

and   δ 1ij  when ,0i j  otherwise. The parameters  [ ...., , , , ]1 D x tw w v v v   can then be learnt either in a 

Maximum Likelihood framework or in a Bayesian way, by assigning priors and computing their posterior 
distribution.When using the usual GP, the predictive distribution of a model output corresponding to a new 
input 

* * *, ( ( ) | ,{u,t}, )p f uu u is Gaussian with mean and variance respectively given by 

 

1

1

t

2

T

T

Q

k Q









 


 

k

k k
                                                                                       (4.5)    

 
Where k is the vector of covariances between the test and the training inputs and ~the covariance between the 

test input and itself. We have δij ij t ijQ v   and  

                                                * *( , ), ( , )ij i jC k C  u u u u                                                                      (4.6) 

for , 1,....,i j N  and with (.,.)C . 

With our new model, the prediction at a new (one-dimensional) noise-free input leads to a predictive mean and 

variance, again computed using (4.6) but with δij ij t ijQ v   with '
ij computed as (4.3), and  

                                                   

2
*

* 2

* *

( , )
( , )

2

( , )

x i
i i

i

v C u u
k C u u

u

k C u u


 




                                                                 (4.7)                          

thus taking account of the randomness in the training inputs. With this new model, the prediction at a random 
input is straightforward, simply by using the corrected covariance function to compute the covariances 

involving the test input. Assuming * *( , )xx N u v we have 

                                             

2 4 2
* *

* 2 2 2
*

2 4 2
* * * *

* * 2 2 2
* * *

( , ) ( , )
( , )

4

( , ) ( , )
( , )

4

x i i
i i x

i i

x
x

v C u u C u u
k C u u v

u u u

v C u u C u u
k C u u v

u u u

 
  

  

 
  

  

                                         (4.8) 

5. Experiments 

5.1. Results 

We have implemented the this approach using Matlab 6.5, on 3 real data sets taken from the UCI Machine 
Learning Repository i.e. Glass data, Iris, Wine data sets. We compare the classification performance of this 
model on this UCI datasets. Statistics of the datasets are listed in Table.1 

Table 1. Statistics Of The Datasets Are Listed As Follows 

 Glass Iris Wine 

Number of Data 214 150 178 

Number of features 10 4 13 

Number of Classes 6 3 3 

 
We specify a Gaussian process model as follows: a constant mean function, with initial parameter set to 0, a 
squared exponential with covariance function This covariance function has one characteristic length-scale 
parameter for each dimension of the input space, and a signal magnitude parameter, for a total of 3 parameters . 
We train the hyper-parameters using to minimize the negative log marginal likelihood. We allow for 40 function 
evaluations, and specify that inference should be done with the Expectation Propagation (EP) inference method 
and pass the usual parameters  

ISSN : 0976-5166 310



G.V.Suresh et. al. / Indian Journal of Computer Science and Engineering 
Vol. 1 No. 4 306-312 

 
Fig. 2: Data plot for the given Data sets 

We also Plot the prediction function with the Original data for Glass data  

 
Figure 3: Plot for original data and the Predicted Data 

We also plot Log-log plot of the log likelihood of the data against the length scales. The log likelihood is shown 
as a solid line. The log likelihood is made up of a data fit term (the quadratic form) shown by a dashed line and a 
complexity term (the log determinant) shown by a dotted line. The data fit is larger for short length scales; the 
complexity is larger for long length scales. The combination leads to a maximum around the true length scale 
value of 1 

 
Fig 4: Plot for Length Scale and Log-Likelihood 

Therefore, the classification and prediction process is more sophisticated and comprehensive and has the 
potential to achieve higher accuracy 
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6. Conclusion  

In this paper, we propose a Gaussian Process model for classifying and predicting uncertain data. The new 
process is based on an approximation of the random function around the input mean. This process also 
highlights the correlation between all the parameters, indicating the nature of the likelihood function, and the 
potential problems for maximum likelihood optimization. We employ the probability distribution which 
represent the uncertain data attribute, and redesign the Gaussian Process so that they can directly work on 
uncertain data distributions. We plan to explore more classification approaches for various uncertainty models 
and find more efficient training algorithms in the future 
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