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I. INTRODUCTION 

1.1 . Let X  be an arbitrary nonempty set, D  is  an X  semilattice of unions which closed with respect to the 

set-theoretic union of elements from D , f  be an arbitrary mapping of the set X  in the set D . To each 

mapping f  we put into correspondence a binary relation  
f  on the set  X   that satisfies the condition 

    f

x X

x f x


  . 

The set of all such 
f  ( :f X D ) is denoted by  XB D . It is easy to prove that  XB D  is a semigroup with 

respect to the operation of multiplication of binary relations, which is called a complete semigroup of binary 

relations defined by an X  semilattice of unions D . 

We denote by   an empty binary relation or an empty subset of the set X . The condition  ,x y   will be 

written in the form x y . Further, let ,x y X , Y X ,  XB D  ,  
Y D

D Y





  and T D . We denote by the 

symbols  y , Y ,  ,V D  , X 
,  ,V X   and 

TD  the following sets:  

     

     
 

| ,  ,  , | ,

| ,  , | ,

| .

y Y

T

y x X y x Y y V D Y Y D

X Y Y X V X Y Y X

D Z D T Z

     

 



 

    

       

  



 

 

It is well know the following statements: 
Theorem 1.2 . Let  1 2 1, , ,..., mD D Z Z Z 


 be some finite X  semilattice of unions and 

   0 1 2 1, , ,..., mC D P P P P   be the family of sets of pairwise nonintersecting subsets of the set X (the set   can 

be repeat several time). If   is a mapping of the semilattice D on the family of sets  C D  which satisfies the 

condition  

1 2 1

0 1 2 1

     ... 
     ... 

m

m

D Z Z Z
P P P P

 



 
  
 



 

and ˆ \Z ZD D D , then the following equalities are valid:  
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0 1 2 1

0
ˆ

...

Zi

m

i

T D

D P P P P

Z P T




    

 



                           …  1.1     

In the sequel these equalities will be called formal. 

It is proved that if the elements of the semilattice D  are represented in the form  1.1 , then among the 

parameters 
iP   0 1i m    there exist such parameters that cannot be empty sets for D . Such sets 

iP  are 

called basis sources, whereas sets 
jP   0 1j m    which can be empty sets too are called completeness 

sources. 

It is proved that under the mapping   the number of covering elements of the pre-image of a basis source is 

always equal to one, while under the mapping   the number of covering elements of the pre-image of a 

completeness source either does not exist or is always greater than one (see [1], chapter 11). 

Let  
0 1 2 1, , ,..., mP P P P 

  be parameters in the formal equalities,  XB D   and 

  
1

0 \i

m

i

i t P t X D

P t t t  


  

 
      

 


   .                 …  1.2      

The representation of the binary relation   of the form   will be called subquasinormal.  

If   be the subquasinormal representation of the binary relation  , then for the binary relation   the 

following statements are true: 

a   XB D  ; 

b    ; 

c    the subquasinormal representation of the binary relation   is quasinormal; 

d   if  0 1 1
1

0 1 1

           ...  

     ... 
m

m

P P P

P P P


  




 
  
 

, then 
1  is a mapping of the family of sets  C D  in the set  D  . 

e   if 2 : \X D D 


 is a mapping satisfying the condition  2 t t    for all \t X D


, then   

    
1

2

0 \i

m

i

i t P t X D

P t t t  


  

 
      

 


   .                       …  1.3  

Remark, that if 
jP   0 1j m    is such completeness sources, that

jP  , then the equality jP    always 

is hold. There also exists such a basic sources 
iP   0 1i m    for which 

it P

t


  , i.e. 
iP  . 

Example 1.1 . Let  1,2,3,4X  ,   , 1,2D   , then 
0P  ,  1 1,2P  , If 

            1,1 , 1,2 , 2,1 , 2,2 , 4,1 , 4,2  , then  XB D   and subquasinormal representation of a binary 

relation   has a form  

   
              

            

0 1
1 2

0 1

    3      4
,  ,

 1,2 1,2

1,2 1,2 3 4 1,2

1,2 3 4 1,2 ,

P P

P P

 



   
        
        

       

 

where 1P  are basic sources and 0P  is completeness sources. 

 

Theorem 1.2 .  Let  , XB D   , then       (see [4], Proposition 2). 

 

2.1  Let  1 , 2X  be a class of all X  semilattices of unions, whose every element is isomorphic to an 

X  semilattice of unions  1,D Z D


 which satisfies the condition 1Z D


 (see, Fig, 2.1 ). 

  

 1,2  

Fig. 1.1 
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Let    0 1,C D P P , where 
0 1,P P X , 

0 1P P   and  1

0 1

  
  

D Z
P P

  
  
 


 is a mapping  of 

the semi lattice D  onto the set  C D .  Then for the formal equalities of the semilattice D  we 

have a form: 

0 1

1 0

,
,

D P P
Z P
 




                                     …  2.1  

Here the element 
1P  be basis sources, the element 

0P  are sources of completeness of the semilattice D . 

Therefore 1X  . 

Definition 2.1 . We say that an element   of the semigroup  XB D  is external if      for all 

   , \XB D    (see  [1], Definition 1.15.1). 

It is well know, that if B  is all external elements of the semigroup  XB D  and B  be any generated set for the 

 XB D , then B B  (see  [1], Lemma 1.15.1). 

Lemma 2.1 . Let    1 1, ,2D Z D X 


,     | ,XB B D V X D    . If B  , then B is a set external 

elements of the semigroup  XB D . 

Proof. Let    1 1, ,2D Z D X 


, B   and      for some    , \XB D   . Then element   has 

quasinormal representation of a form    1 1 0Y Z Y D     


, i.e. 
1 0Y Y X    and 

1 0Y Y   . (see, [1], 

definition 1.11), By Theorem 1.2  follows that        , where   is subquasinormal representation of 

a binary relation  . It is easy to see, that 

   1 1 0Y Z Y D         


 .                       …  2.2  

From the equality      follows that    , ,D V X V D    (see [1], Theorem 4.1.1 ). So, 

 ,D V D  .  

By preposition B  , i.e. there exists quasinormal representations of a binary relation   of the form 

   1 1 0Y Z Y D     


, where 1iY   for all 0,1i   since B   (if jY    for some j   0 1j  , then 

 ,V X D  ),  i.e. 2X  . 

For the element 
1Z  we consider the following cases. 

a  
1Z  . In this case we have 

0P D    and 

1
1

  
  
P


 

    
, 1

2

  

  

P

D


 
   

  

are all mappings of the set  1, P  in the semilattice D  satisfying  condition  i     1,2i  . 

If X D


, then from the formal equalities  2.1  follows that 1P D 


. In this case  0P  , 1P D


, 

\X D 


,    1P D X D       
 

 (see equality 1.2 ). It easy to see  ,V D D   and 

      

         
   

1 1 0

1 1 0

1 0

Y Z Y D X D

Y Z X D Y D X D

Y D Y D X D B

 

 

 

        

      

      


 


 

  
 

since    ,V X D D  


. So, X D


. 

In the sequel we suppose, that \ 1X D 


. 

For the binary relations 
i   1,2i   we consider the following cases. 

1Z  

D


 

Fig. 2.1 
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Let 1
1

  
  
P


 

    
. By formal equality 2.1  follows that 

1P D  


. If 
1  be a mapping of the set \X D


 on the 

set    \D D 


 (by preposition \ 1X D 


), then  

      1 1

\t X D

P t t 


    


 ,                            …  2.3                    

 ,V D D   (see equality 1.2 ) and from the formal equality  2.1  and equalities  2.2 ,  2.3  follows that 

   
   

1

1

1 1 0

1 0

,

,

Z

D P

Y Z Y D

Y Y X B

 

 

 

  

    

  

   

     

      




  

since    ,V X D    . 

If 1
2

  

  

P

D


 
   

  and 
2  be a mapping of the set \X D


 on the semilattice  \D D


. So, if   

      1 2

\t X D

P D t t 


    



 ,                       …  2.4        

then  ,V D D  . From the formal equality  2.1  and equalities  2.2 ,  2.4  we have: 

   
   

1

1

1 0

1 0

,

,

.

Z

D P D D

Y Z Y D

Y Y D

 

 

 

  

    



  

   

     

    

  





 

But, the equality    contradict the condition, that    \XB D  . That is in this case B  . 

So, from the cases a  follows that B  is a set external elements of semigroup  XB D  since the mappings 
i  

 1,2i   are all mappings of the set  1, P  in the semilattice D  satisfying condition  i   . 

b  
1Z   . Then 

0P D    and  

0 1
1

1 1

  
  

P P
Z Z


 

  
 

, 0 1
2

1

  

  

P P

Z D


 
  
 

 , 0 1
3

1

  

  

P P

D Z


 
  
 
   and  0 1

4

  

  

P P

D D


 
  
 
   

are all mappings of the set  0 1,P P  in the semilattice D . 

If X D


 and    0 1i iP P   ( 1,4i  ), then from the formal equalities  2.1  follows that  1i P D 


 and in 

this case  1iX P    (see equality 1.2 ). So, 
1X Z    or X D  


. Both case  ,V D D   and 

      

         
   

1 1 0 1

1 1 1 0 1

1 1 0 1 1 ,

Y Z Y D X Z

Y Z X Z Y D X Z

Y Z Y Z X Z B

 

 

 

        

      

      


 


   

      
         
   

1 1 0

1 1 0

1 0

Y Z Y D X D

Y Z X D Y D X D

Y D Y D X D B

 

 

 

        

      

      

 
 

  
 

  
 

since  ,V X D  . So, X D


. 

In the sequel we suppose, that \ 1X D 


. 

For the binary relations i   1,2,3,4i   we consider the following cases.  
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Let 0 1
1

1 1

  
  

P P
Z Z


 

  
 

. In this case we have 
0P    and 

1P   . If 
1  be a mapping of the set \X D


 on the set 

   1\D Z D


 (by preposition \ 1X D 


), then  

       0 1 1 1

\t X D

P P Z t t 


     


 ,                …  2.5                    

 ,V D D   and from the formal equality  2.1  and equalities  2.2 ,  2.5  follows that 

   
   

1 0 1

0 1 1 1 1

1 1 0

1 1 0 1 1

,

,

Z P Z

D P P Z Z Z

Y Z Y D

Y Z Y Z X Z B

 

 

 

  

    

 

    

     

      




  

since    1,V X Z D   . 

If 0 1
2

1

  

  

P P

Z D


 
  
 

  and 
2  is mapping of the set \X D


 in the semilattice D .  So, if  

        0 1 1 2

\t X D

P Z P D t t 


      



 ,        …  2.6                    

then  ,V D D  . From the formal equality  2.1  and equalities  2.2 ,  2.6  we have: 

   
     

1 0 1

0 1 1

1 1 0

1 1 0

,

,

\ .

Z P Z

D P P Z D D

Y Z Y D

Y Z Y D B

 

 

 

  

    

 

 

    

     

     

  





 

But, the equality    contradict the condition, that    \
X

B D  . That is in this case B  . 

If 0 1
3

1

  

  

P P

D Z


 
  
 
  and 

3   is a mapping of the set \X D


 in the semilattice D .  So, if  

        0 1 1 3

\t X D

P D P Z t t 


      



 ,        …  2.7                    

then  ,V D D  . From the formal equality  2.1  and equalities  2.2 ,  2.7  we have: 

   
   

1 0

0 1 1

1 1 0

1 0

,

,

Z P D

D P P D Z D

Y Z Y D

Y D Y D X D B

 

 

 

  

    

 

    

     

      



  



  

 

since    ,V X D D  


. 

Let 0 1
4

  

  

P P

D D


 
  
 
  . If 4  be a mapping of the set \X D


 on the set    1\D D Z


, then  

       0 1 4

\t X D

P P D t t 


     



 ,                …  2.8                   

 ,V D D   and from the formal equality  2.1  and equalities  2.2 ,  2.8  follows that 

   
   

1 0

0 1

1 1 0

1 0

,

,

Z P D

D P P D D D

Y Z Y D

Y D Y D X D B

 

 

 

  

    

 

    

     

      



   



  

 

since    ,V X D D  


. 
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So, from the cases b  follows that B  is a set external elements of semigroup  XB D  since the mappings 

1 4   are all mappings of the set  0 1,P P  in the semilattice D . 

Lemma 2.1  is proved. 

Corollary 2.1 . Let    1, ,2D D X  


 and     | ,XB B D V X D    . Then the following 

statements are true: 

1  If \ 1X D 


 and 
1Z  , then X D    do not generating by elements of the set B ; 

2  If X D


 and 
1Z   , then 

1X Z     do not generating by elements of the set B ; 

3  If X D


 and 
1Z  , then    and X D  


 do not generating by elements of the set B . 

Proof. Let \ 1X D 


, 
1Z   and , B   . Then quasinormal representation of a binary relation   has a 

form    1 0Y Y D     


, where  1 0,Y Y     and 

       1 0 1 0Y Y D Y Y D X D                
  

  

since 
1Y    . 

Therefore, if \ 1X D 


 and 
1Z  , then X D    do not generating by elements of the set B . 

The statement 1  of the Corollary 2.1  is proved.  

Let X D


 and 
1Z   . If    and   are such elements of the set B , that 

1X Z    , then quasinormal 

representation of a binary relation   has a form         1 1 0 1 1 0Y Z Y D Y Z Y X           


, where  

 1 0,Y Y     and 

       1 1 0 1 1 0 1Y Z Y D Y Z Y X X Z                 


 , 

i.e. 
1 1Z X Z   . Of the equality 

1X Z   follows that 
1t Z   for all t X  since 

1Z  be smallest element 

of the semilattice D .  So, the equality 
1X Z    is true. Last equality contradict the condition B   since 

   1,V X Z D   . Therefore, binary relation 
1X Z    do not generating by elements of the set B . 

The statement 2  of the Corollary 2.1  is proved.  

Let X D


, 
1Z  . If      for some , B   , then quasinormal representations of binary relations   

and   has a form 

       
       

1 0 1 0

1 0 1 0

,

,

Y Y D Y Y X

Y Y D Y Y X

   

   





       

       



   

where  1 0 1 0, , ,Y Y Y Y       since    , ,V X V X D     ( , B   ). So, we have: 

         
         
         
   

1 0 1 0

1 1 1 0

0 1 0 0

1 0

Y Y X Y Y X

Y Y Y Y X

Y X Y Y X Y X

Y Y X

   

   

   

 

  



        

      

       

    

 

 

 
 

since 1 1X Y Y     and 0 0X Y Y    . Bat from the equalities   ,    or X D  


,     

respectively follows that  B   and B   since B   by preposition, i.e.    and X D  


 do not 

generating by elements of the set B . 

The statement 3  of the Corollary 2.1  is proved. 

The Corollary 2.1  is proved. 
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Theorem 2.1 . Let    1 1, ,2D Z D X 


. If     | , ,XB B D V X D    then the following statements 

are true: 

a  if \ 1X D 


 and 
1Z   , then B  is irreducible generating set for the semigroup  XB D ; 

b  if \ 1X D 


 and 
1Z  , then  B X D 


 is irreducible generating set for the semigroup  XB D . 

c  if X D


 and 
1Z   , then  1B X Z   is irreducible generating set for the semigroup  XB D ; 

d  if X D


and 
1Z  , then  ,B X D  


 is irreducible generating set for the semigroup  XB D . 

Proof. Let \ 1X D 


, 
1Z    and   is any element of the semigroup   \XB D B . Then binary relation   has 

a quasinormal representation of the form    1 1 0Y Z Y D     


, where 
1Y   or 

0Y   (  ,V X D   

since B  ).  

Let  
1Y  . Then X D  


 and for any     1 1 0Y Z Y D B      


 and  for 

    1 1 1\Z D X Z Z    


 we have B   since 
1Z    by preposition and  

1\ \X D X Z 


. So, the 

following equalities are hold:  

          
          
          
         

1 1 0 1 1 1

1 1 1 1 1 1 1

0 1 0 1 1

1 0 0 1 1 0

\

\

\

Y Z Y D Z D X Z Z

Y Z Z D Y Z X Z Z

Y D Z D Y D X Z Z

Y D Y D Y Z Y D Y D X D

 

 

 

    

 



       

      

      

            

 
 


 

  
 

    

 

since 
1Z D


 by preposition. 

Let  
0Y  . Then 

1X Z    and for any    1 1 0Y Z Y D B      


 and  for     1 \D Z X D D    
  

 

we have B   since \X D 


   \ 1X D 


. So, the following equalities are true: 

          
          
          
       

1 1 0 1

1 1 1 1 1

0 1 0

1 1 0 1 1 1 0 1 1

\

\

\

Y Z Y D D Z X D D

Y Z D Z Y Z X D D

Y D D Z Y D X D D

Y Z Y Z Y Z Y Z X Z

 

 

 

   

 



       

      

      

           

   
 

  
 

    
 

 

since 
1D Z


 by preposition. 

The statement a  of the Theorem 2.1  is proved. 

Let \ 1X D 


 and 
1Z  . for any    1 0Y Y D B      


 and for     \D X D D    

  
 we have 

B   since \X D 


   \ 1X D 


. So, the following equalities are true: 

          
          
          

 

1 0

1 1

0 0

0

\

\

\

.

Y Y D D X D D

Y D Y X D D

Y D D Y D X D D

Y

 

 

 



 



       

      

      

     

   
 

  
 

    
 

 

Now, the statement b  of the Theorem 2.1  immediately follows from the statement 1  of the Corollary 2.1 . 

Let X D


 and 1Z   . If     1 1 0Y Z Y D     


 be any element of the set B  and 

    1 1 1\Z D X Z Z    


. It is easy to see, that B   and  
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1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1

\ \

\

\ \ \

\ \

\

Z Z X Z D Z D X Z Z

Z Z Z D Z Z X Z Z

X Z D Z D X Z D X Z Z

Z D X Z D X Z Z

Z D X Z D X D

         

      

      

      

     

 
 


 

  
 

 

  

 

since 
1Z D


 by preposition. 

Now, the statement c  of the Theorem 2.1  immediately follows from the statement 2  of the Corollary 2.1 . 

The statement d  of the Teorem 2.1  immediately follows from the statement 3  of the Corollary 2.1 . 

The Theorem 2.1  is proved. 

Theorem 2.2 . Let X be finite a set,    1 1, ,2D Z D X 


.If X n , then  for the number of the irreducible 

generated set B  of the semigroup  XB D  following statements are true: 

a  if \ 1X D 


 and 
1Z   , then 2 2nB   ;  

b  if \ 1X D 


 and 
1Z   or X D


 and 

1Z   ,  then 2 1nB   ; 

d  if X D


and 
1Z  , then 2nB  . 

Proof.  It is well know, that if B  is all external elements of the semigroup  XB D  and B  be any generated set 

for the  XB D , then B B . By Lemma 2.1  The set     | ,XB B D V X D     is a set external  

elements of the semigroup  XB D . It is easy to see, that    1\ ,XB B D X Z X D  


 . Of this follows that 

2 2nB    (see 1.1). 

By statement a  of the Theorem 2.1  follows that B B , i.e. 2 2nB   . 

By statement b  and c  of the Theorem 2.1  follows that  B B X D   


 or  1B B X Z    , i.e. 

 2 2 1 2 1n nB      . 

By statement d  of the Theorem 2.1  follows that  1,B B X Z X D    


, i.e.  2 2 2 2n nB     . 

Theorem 2.2  is proved. 

Example 2.1 . Let  1,2,3X   and     1 , 1,2D  , i.e. \ 1X D 


 and  1 1Z    (see statement a ). 

Then    1 2 7 8, ,..., ,XB D     , where  

               
                   
                   
                      

1 2

3 4

5 6

7 8

1,1 , 2,1 , 3,1 ,  1,1 , 2,1 , 3,1 , 3,2 ,

1,1 , 2,1 , 2,2 , 3,1 ,  1,1 , 2,1 , 2,2 , 3,1 , 3,2 ,

1,1 , 1,2 , 2,1 , 3,1 ,  1,1 , 1,2 , 2,1 , 3,1 , 3,2 ,

1,1 , 1,2 , 2,1 , 2,2 , 3,1 ,  1,1 , 1,2 , 2,1 , 2,2 3,1 , 3,2 .

 

 

 

 

 

 

 

 

 

In this case we have  2 3 4 5 6 7, , , , ,B        and 

  
2  

3  
4  

5  
6  

7  

2  1  2  2  8  8  6  

3  1  3  3  8  8  8  

4  
1  

4  
4  

8  
8  

8  

5  
1  

5  
5  

8  
8  

8  

6  1  6  6  8  8  8  

7  
1  

7  
7  

8  
8  

8  
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So, we have that  2 3 4 5 6 7, , , , ,B        is irreducible generated set for the semigroup  XB D . 

Example 2.2 . Let  1,2,3X   and   , 1,2D   , i.e. \ 1X D 


 and 
1Z   (see statement b ). Then 

   1 2 7 8, ,..., ,XB D     , where  

         
            
                 
           

1 2 3

4 5

6 7

8

,  3,1 , 3,2 ,  2,1 , 2,2 ,

2,1 , 2,2 , 3,1 , 3,2 ,  1,1 , 1,2 ,

1,1 , 1,2 , 3,1 , 3,2 ,  1,1 , 1,2 , 2,1 , 2,2 ,  

1,1 , 1,2 , 2,1 , 2,2 3,1 , 3,2 .

  

 

 



  

 

 



 

In this case we have    2 3 4 5 6 7 8, , , , ,B          and 

 

  
2  

3  
4  

5  
6  

7  
8  

2  
1  

2  
2  

2  
2  

2  
2  

3  
1  

3  
3  

3  
3  

3  
3  

4  
1  

4  
4  

4  
4  

4  
4  

5  
1  

5  
5  

5  
5  

5  
5  

6  
1  

6  
6  

6  
6  

6  
6  

7  
1  

7  
7  
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So, we have that    2 3 4 5 6 7 8, , , , ,B          is irreducible generated set for the semigroup  XB D . 

Example 2.3 . Let  1,2X   and     1 , 1,2D  , i.e.  1,2X D 


 and  1 1Z    (see statement b ). 

Then    1 2 3 4, , ,XB D     , where  
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3

4

11 , 2,1 , 11 , 2,1 , 2,2 ,
11 , 1,2 , 2,1 ,
11 , 1,2 , 2,1 , 2,2 .

 



 



 

In this case we have    2 3 1,B      and 
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So, we have that    2 3 1,B      is irreducible generated set for the semigroup  XB D . 

Example 2.4 . Let  1,2X   and   , 1,2D   , i.e.  1,2X D 


 and 
1Z   (see statement d ). Then 

   1 2 3 4, , ,XB D     , where  

    
    
        

1 2

3

4

,  2,1 , 2,2 ,

1,1 , 1,2 ,

1,1 , 1,2 , 2,1 , 2,2 .

 





 





 

In this case we have    2 3 1 4, ,B       and 
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So, we have that    2 3 1 4, ,B       is irreducible generated set for the semi group  XB D . 
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