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Abstract: The process of stress accumulation near earthquake faults during the aseismic period 
in between two major seismic events in seismically active regions has become a subject of 
research during the last few decades. Earthquake fault of finite length of strike-slip nature in a 
viscoelastic half space representing the lithosphere-asthenosphere system has been considered 
here. Stresses accumulate in the region due to various tectonic processes, such as mantle 
convection and plate movements etc, which ultimately leads to movements across the fault. In the 
present paper, a three-dimensional model of the system is considered and expressions for 
displacements, stresses and strains in the model have been obtained using suitable mathematical 
techniques developed for this purpose. A detailed study of these expressions may give some ideas 
about the nature of stress accumulation in the system, which in turn will be helpful in formulating 
an effective earthquake prediction programme. 
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1. Introduction:  
 
 Modeling of dynamic processes leading to an 
earthquake is one of the main concerns of seismologist. 
Two consecutive seismic events in a seismically active 
region are usually separated by a long aseismic period 
during which slow and continuous aseismic surface 
movements are observed with the help of sophisticated 
measuring instruments. Such aseismic surface 
movements indicate that slow aseismic change of stress 
and strain are occurring in the region which may 
eventually lead to sudden or creeping movements across 
the seismic faults situated in the region. 
 
It is therefore seems to be an essential feature to identify 
the nature of the stress and strain accumulation in the 
vicinity of seismic faults situated in the region by 
studying the observed ground deformations during the 
aseismic period. A proper understanding of the 
mechanism of such aseismic quasi static deformation 
may give us some precursory information regarding the 
impending earthquakes. 
 
 We now focus on some of the reasons of consideration   
viscoelastic model. The laboratory experiments on rocks 
at high temperature and pressure indicates the imperfect 
elastic behavior of the rocks situated in the lower 
lithosphere and asthenosphere. Investigations on the 
post-glacial uplift of Fennoscandia and parts of Canada 
indicate that at the termination of the last ice age, which 
happened about 10 millennia ago a 3 km. ice cover 
melted gradually leading and upliftment of the regions 
.Evidence of this upliftment has been discussed in the 
work of [1] , [2] , [3] , if the Earth were perfectly 
elastic, this deformation would be managed after the 
removal of the load, but it did not so happened, which 
indicates that the Earth crust and upper mantle is not 
perfect elastic but rather viscoelastic in nature.  
 
A pioneering work involving static ground deformation 
in elastic media were initiated by [4], [5] , [6] , [7] , [8] , 
[9] , [10] . Chinnery, M.A. and Dushan B. Jovanovich 
[11] did a wonderful work in analyzing the 
displacement, stress and strain in the layered medium. 
Later some theoretical models in this direction have 
been formulated by a number of authors such as [12] , 
[13] , [14] , [15] , [16] , [17] , [18] , [19] , [20] , [21] , 
[22] , [23] , [24] , [25] , [26] , [27] , [28].[29] and[30]. 

  
 
 In most of these works the medium were taken to be 
elastic and /or viscoelastic, layered or otherwise. In 
most of the cases the faults were taken to be too long 
compared to its depth, so that the problem reduced to a 
2D model. Noting that there are several faults which are  
not so long compared to their depth, a 3D model is 
imminent 
 
 In the present case we consider two interacting  
creeping vertical rectangular strike-slip faults F1 of 
length 2L, width D1 and F2 of length 2L1 (L,L1 are  
finite) and width D2 situated in a viscoelastic half space 
of  linear Maxwell type which reach up to the free 
surface. The medium is under the influence of tectonic 
forces due to mantle convection or some related 
phenomena. The fault undergoes a creeping movement 
when the stresses in the region exceed certain threshold 
values. 
 
 We note here that some authors preferred layered 
models consisting of an elastic layer overlying an 
elastic/viscoelastic half space to represent the 
lithosphere-asthenosphere system. On numerical 
computations, it has been found that the additional 
terms arising out due to the presence of elastic layer 
contribute only a small quantitative change (less than 10 
percent) in the rate of stress and strain accumulation in 
the system. Major characteristic properties remain 
almost unchanged. With this observation, we prefer to 
consider viscoelastic half space model to represent the 
lithosphere-asthenosphere system, particularly for the 
lithosphere and the upper asthenosphere, a region whose 
depth is 600km from the free surface. 
 
2. Formulation: 
 We consider  two interacting  creeping vertical 
rectangular strike-slip faults F1 of length 2L (L-finite) , 
width D1 and F2 of length 2L’ and width D2 situated in a 
viscoelastic half space of  linear Maxwell type. 
 A Cartesian co-ordinate system is used with the mid-
point O of the fault as the origin, the strike of the fault 
along the Y1 axis, Y2 axis perpendicular to the fault and 
Y3 axis pointing downwards so that the faults are given 
by F1 : (−L< y1 < L, y2 = 0, 0 <  y3 < D1)and F2 : (−L1< 
y1 < L1, y2 = 0, 0 <  y3 < D2). 
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Figure1: Section of the model by the plane y1=0. 
 
Constitutive equations: 
 
For a viscoelastic Maxwell type medium the 
constitutive equations have been taken as: 
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where η is the effective viscosity and µ is the effective 
rigidity of the material. 
 
Stress equations of motion: 
 
The stresses satisfy the following equations (assuming 
quasistatic deformation for which the inertia terms are 
neglected); and body forces does not change during our 
consideration. 
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where (−∞<y1<∞, −∞<y2<∞, y3>0, t>0). 
 
Boundary conditions: 
 
 The boundary conditions are taken as, with t=0 
representing an instant when the medium is in aseismic 
state: 
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      (1.11) 
assuming that the stresses maintaining a constant value 
τL at the tip of the fault along Y1 axis [the value of this 
constant stress is likely to be small enough so that no 
further extension is possible along the Y1 axis]. 
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∞
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as  

00312 ≥≥∞<<−∞∞→ tyyy ,,,||  (1.12) 
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On the free surface ),,(, 00 213 ≥∞<<−∞= tyyy  
032113 =),,,( tyyyτ    (1.13) 
032123 =),,,( tyyyτ    (1.14) 
032133 =),,,( tyyyτ    (1.15) 

Also as ),,( 0213 ≥∞<<−∞∞→ tyyy  
032113 =),,,( tyyyτ    (1.16) 
032123 =),,,( tyyyτ    (1.17) 
032133 =),,,( tyyyτ    (1.18) 
032122 =),,,( tyyyτ   

as 00312 ≥≥∞<<−∞∞→ tyyy ,,,||  (1.19) 
[Where )( t∞τ  is the shear stress maintained by mantle 
convection and other tectonic phenomena far away from 
the fault]. 
  
 
Initial conditions: 
 Let (ui)0, ( ijτ )0 and (eij)0 i,j = 1,2,3 be the value of 

(ui), ( ijτ ) and (eij) at time t=0 which are functions of 

y1,y2,y3 and satisfy the relations (1.1)-(1.19). 
 
 
 
(A)Solutions in the absence of any fault 
movements: The boundary value problem given by 
(1.1)-(1.19), can be solved (as shown in the Appendix-
A) by taking Laplace transform with respect to time ‘t’ 
of all the constitutive equations and the boundary 
conditions. On taking the inverse Laplace transform we 
get the solutions for displacement, stresses as: 
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 From the above solution we find that τ12 increases 
with time and tends to τ∞(t) as t tends to ∞, while τ22, τ23 
tends to zero, but τ33 retains the constant value (τ33)0. 
We assume that the geological conditions as well as the 
characteristic of the fault in such that when τ12 reaches 
some critical value, say τc < τ∞(t) the fault F starts 
creeping. The magnitude of creep is expected to satisfy 
the following conditions: 
(C1)  Its value will be maximum near the middle of the 
fault on the free surface. 
(C2)  It will gradually decrease to zero at the tips of the 
fault F1 (y1=+L, y2=0, 0<y3<D1) along its length and also 
F2 (y1=+L1, y2=0, 0<y3<D2) 
(C3)  The magnitude of the creep will decrease with y3 
as we move downwards and ultimately tends to zero 
near the lower edge of the faults 
F1(y1=+L,y2=0, 0<y3<D1) and F2(y1=+L1, y2=0, 0<y3<D2) 
 
 
If f (y1, y2) and g (y1, y2) be the creep functions, they 
should satisfy the above conditions. 
 
 
(B): Solutions after the fault movements: We 
assume that after a time T1, the stress component τ12 
(which is the main driving force for the strike-slip 
motion of the fault) exceeds the critical value τc, and the 
fault F1 starts creeping, after a time T2   the fault F2 
starts creeping, characterized by a dislocation across the 
faults. 
 
 
 We solve the resulting boundary value problem by 
modified Green’s function method following [6], [7], 
[31] and correspondence principle (As shown in the 
Appendix-B) and get the solution for displacements, 
stresses and strain as : 
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3. Numerical computations: 
 
 Following [32], [33] and the recent studies on 
rheological behaviour of crust and upper middle by 
[34], [35] the values of the model parameters are taken 
as: 

poisecmdyne 20211 103,/103 ×=×= ηµ  
D1=Depth of the fault F1=10km.,[noting that the depth 
of all major earthquake faults are in between 10-15 km] 
D2=Depth of the faultF2=15km.,[noting that the depth of 
all major earthquake faults are in between 10-15 km] 
D= Distance between the faults F1 and F2=200km. (say) 
2L=Length of the faultF1=40km. 
2L1=Length of the fault F2=60km. 

8102×=∞ )( tτ  dyne/cm2 (200 bars), [post seismic 
observations reveal that stress released in major 
earthquake are of the order of 200 bars, in extreme cases 
it may be 400 bars.] 

7
012 105×=)( τ  Dyne/cm2 (50 bars) and 0)0( =∞τ . 

 
 We take creep functions as: 
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with U = 1cm, satisfying the conditions stated in 
(C1)−(C3).  
 We now compute the following quantities: 
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6
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tyyyetyyyE
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6
012

3211232112

10
2
1

×





−

=

])(

),,,([),,,(,

e

tyyyetyyyE
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where 1211 ττ ,  and 121113 ee ,,τ  are given by (B). 
 
 
Results and Discussions : 
Spacial variation: 
(A) Displacements on the free surface y3=0 due to the 

creeping movement across the faults: 
We first consider the displacement U1 due to the 

movement of the faults for y3=0.The expression for U1 
is given in (2.1). Figure2 shows the variation of U1 
against y2 for some selective values of y1 representing 
the distance of the point from the strike of the fault. It is 
found that, 
(i) U1 is antisymmetric with respect to y1 = 0;  
(ii) For comparatively large values of y2 the magnitude 
of U1, as expected becomes very small (10−2 cm); i.e. 
|U1| decreases as y2 increases. 
(iii) In each case for negative y1, U1 is negative for all 
y2>0 but for y1>0, U1 is positive, i.e. U1 changes sign as 
we cross the line y1=0 with U1=0 at y1=0 for all values of 
y2>0, For all negative y2 say at y2= −k km., the 
displacement pattern is found to an exact mirror image 
for y2=+k km. i.e., for all negative y2 the pattern is 
reversed. 
(iv) |U1| → 0 as |y1| increases as is shown in Fig3. 
(v) |U1| always remains bounded. It attains it's extreme 
at points which gradually drift away from y1=0 with 
increase in y2. The magnitude of U1 is found to be of the 
order of 2.0 cm. one year after the commencement of 
the fault creep at points very close to the fault line on 
the free surface. 
 (B)Variation of stresses due to fault movement with 

depth (with t1=1 year): 
 (i) Variation of shear stress t12 due to fault movement 

with depth: 
Numerical computational works carried out for 

computing the values of t12 at different points of the free 
surface. It is observed that for points close to the faults 
(y1 <= 4 km, y2 <= 4 km., Fig 4)  shear stress releases 
with increasing depth with varying magnitude. The 
magnitude of  release first decreases up to a depth of 
about 10 km and there after increases sharply up to a 

depth of about 45 km and after that the magnitude of 
stress  release is found to die out gradually as depth 
increases. The pattern is the same as we move away 
from the fault, for example at points (y1 = +10 km, y2 = 
+10 km)  as the Fig 4(a) shows. 
. If we move further away from the fault (y1 = +30 km, 
y2 = 30 km, Fig. 4(b)) the stress is found to get released 
in the similar manner but with a lesser numerical value. 
Effect of fault movement on stress pattern is found to be 
negligibly small as we move further downwards.  
(iii) Variation of shear stress t13 due to fault movement 

with depth: 
 Similar computational work is carried out for t13 
also. It is found that the shear stress t13 get released by a  
initially up to a depth of about 7 km. The magnitude of 
the amount of stress release depends upon the distance 
of the points from the fault; it decreases significantly as 
we move away from the fault. After the initial release of 
stress t13, it is found to accumulate and attains a 
maximum at a distance of 20 km (Fig5) depending upon 
the position of the points. After attaining its maximum 
value the magnitude of stress accumulation gradually 
decreases and tends to zero at a depth of about 40-50km 
below the surface.  
(C) Surface shear strain due to fault -movement one 

year after the commencement of the creep: 
The shear strain E12 at distances from the strike of 

the fault y1=10 km.  is computed.  
The magnitude of the surface shear strain due to the 

fault movement is found to be of the order of (1− 6)× 
10−6 per year, which is conformity with the observed 
rate of shear strain accumulation during the aseismic 
period in seismically active regions. The nature of shear 
strain is clear from the Fig6. 
 
(D)Minimum distance between the faults so that one 
fault can influence other. 
 
From the Fig2, Fig 2(a) and by the numerical 
calculation we see that if D=50km ,the value of 
U1=0(app) and consequently stress and strains are also 
zero. Therefore the faults can not  influence one 
another if D>50km.But this distance obviously depends 
on the length and the depth of the faults. The influence 
of fault length and depth on stress and strain is given in 
[38]. 
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4).Conclusions: 
It is therefore found that the shear and normal stress due 
to the fault movement sometimes get accumulated in 
certain region while there are some other region where 
the stress is found to get released due to the fault 
movement. The movement of one fault   causes  stress 
accumulation/ release near the other fault which 
essentially depends on the dimensions of the faults as 
well as the distance between the faults and the nature of 
stress accumulation/release with depth depends upon the 
position of the points on the free surface relative to the 
strike of the fault. 
 
 

5. AppendixA: 
[36], [37],[38],[39],[40],[41] and[42] 
Solutions for displacements, stresses and 
strains in the absence of any fault 
movement: 
 
 We take Laplace transform of all the constitutive 
equations and the boundary conditions (1.1)-(1.19) with 
respect to time and we get, 
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where, 011
0

11 >= −∞

∫ pdte pt (ττ ,Laplace 

transformation variable) and similar other equations. 
Also the stress equations of motions in Laplace 
transform domain as: 
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 For y2 = 0, 0 < y3 < D1    
       (1.11a) 
On the free surface y3 = 0, (−∞ < y1, y2 < ∞) 

)(),,,( tpyyy ∞→ ττ 32112 as  

00312 ≥≥∞<<−∞∞→ tyyy ,,,||  (1.12a) 

032113 =),,,( pyyyτ    (1.13a) 

032123 =),,,( pyyyτ    (1.14a) 

032133 =),,,( pyyyτ    (1.15a) 
Also as y3 → ∞ (−∞ < y1, y2 < ∞) 

032113 =),,,( pyyyτ    (1.16a) 

032123 =),,,( pyyyτ    (1.17a) 

032133 =),,,( pyyyτ    (1.18a) 

032122 =),,,( pyyyτ  as |y2|→∞, −∞<y1<∞,  
y3 > 0     (1.19a) 
 Using (3.1), other similar equations and assuming 
the initial fields to be zero, we get from (1.7a). 

  01
2 =∇ )( u    (3.2) 

Thus we are to solve the boundary value problem (3.2) 
with the boundary conditions (1.10a)-(1.19a). 
Let 

312111
01

3211 yCyByA
p

u
pyyyu +++=

)(
),,,(,  

       (3.3) 
be the solution of (3.2). 
 Using the boundary conditions (1.10a)-(1.19a) and 
the initial conditions we get, 
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and C1 = 0    (3.6) 
On taking inverse Laplace transformation, we get, 
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       (3.7) 
Similarly we can get the other components of the 
displacements. 
The stress are given by, 
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te )/()( ηµττ −= 02222    (3.11) 
te )/()( ηµττ −= 02323    (3.12) 

03333 )( ττ =     (3.13) 
Using the displacements the strains can also be found 
out to be, 
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6. Appendix-B: 
 
Solutions after the fault movement: 
[36], [37],[38],[39],[40] ,[41] and [42]. 
 
 We assume that after a time T1 the stress component 
τ12 (which is the main driving force for the strike-slip 
motion of the fault) exceeds the critical value τc, the 
fault F1 starts creeping and after a time T2 the fault F2 
starts creeping then (3.1)-(1.19a) are satisfied with the 
following conditions of creep across F1 and F2 : 
 
[ ] )(),()()( 1311111 tHyyftUu F =  

                                               (4.1) 
where [ ]Fu )( 1  = The discontinuity of u1 across F1 

given by 
[ ] )(lim)(lim)( 1)0(1)0(1
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−=  (4.2) 

)0,0,( 1321 DyyLyL ≤≤=≤≤−  

where H (t1) is the Heaviside function. 
 
 Taking Laplace transformation in (4.1), we get, 

[ ] ),()()( 31111 yyfpUu F =   (4.3) 

 The fault creep commences across F1 after time T1, 
clearly 
[ ] 0)( 11 =Fu     

for t1 < 0, where t1 = t − T1, F is located in the region 

)0,0,( 1321 DyyLyL ≤≤=≤≤− .  

 and 
 
[ ] )(),()()( 2312221 tHyygtUu F =  

                                               (4.1.1) 
where [ ] 21 )( Fu  = The discontinuity of u1 across F2 

given by 
[ ] )(lim)(lim)( 1

)0(
1

)0(21
2
'

2
'

uuu
yyF −→+→

−=  (4.2.1) 

)0,( 23
'

111 DyLyL ≤≤≤≤−  
where H (t2) is the Heaviside function. 
 Taking Laplace transformation in (4.1), we get, 

[ ] ),()()( 31221 yygpUu F =   (4.3.1) 

  
The fault creep commences across F1 after time T1, 
clearly 
[ ] 0)(
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for t2 < 0, where t2 = t − T2, F2 is located in the region.  
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We try to find the solution as : 
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where (ui)1, (τij)1, are continuous everywhere in the 
model and are given by (A); i,j=1,2,3. While the second 
part (ui)2, (τij)2 are obtained by solving modified 
boundary value problem as stated below. We note that 
(u2)2, (u3)2, are both continuous even after the fault 
creep, so that 00 2322 == )][(,)][( uu , while (u1)2 
satisfies the dislocation condition given by (4.2) and 
the   third part (ui)3, (τij)3 are obtained  from (ui)2, 
 (τij)2  by the substitution y1=y’

1,y2=y’
2+D,y3=y’

3.  
                                                                           (4.4.1) 
 
 
 The resulting boundary value problem can now be 
stated as: (u1)2 satisfy 3D Laplace equation as  

  021
2 =∇ )( u    (4.5) 

where 21 )( u  is the Laplace transformation of (u1)2 with 
respect to t, with the modified boundary condition. 

032112 =),,,( pyyyτ  as [y2]→∞, −∞<y1<∞, 
y3 > 0.     (1.14b) 
and the other boundary conditions are same as (1.13a)-
(1.19a). 
 We solve the above boundary value problem by 
modified Green’s function method following [6], [7], 
[31], and the correspondence principle. 
 Let Q (y1, y2, y3) be any point in the field and 

),,( 321 xxxP  be any point on the fault, then we have, 
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Taking inverse Laplace transformation, 

)(),,()()()( 13211121 tHyyytUQu φ=  

where H (t1) is the Heaviside step function, which gives 
the displacement at any points Q (y1,y2,y3). 
 
 
 
We also have, 
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Where 
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Using (4.11) and taking inverse Laplace transformation, 
we get 
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 Similarly the other components of the 
displacements, stresses and strains can be found out. 
These are given in (B). 
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Fig2: Variation of displacement U1  with y2>0  for 

y1=10km   , y3=0 and t1=1 year due to fault 
movement. 

 
Fig 2(a): Variation of displacement U1  with y2<0  for 

y1=10km   , y3=0 and t1=1 year due to fault 
movement. 

 
 

 
Fig3: Variation of displacement U1  with y1  for 
y2=10km   , y3=0 and t1=1 year due to fault movement. 
. 

 
Fig4: Variation of shear stress t12    with y3 for y2 =10km  

and y1 =10km. t1=1year due to fault movement. 
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Fig4(a): Variation of shear stress t12    with y3 for y2 =-
10km  and y1 =-10km. t1=1year due to fault movement. 

 
Fig 4(b): Variation of shear stress t12    with y3 for y2 =-
30km  and y1 =-10km. t1=1year due to fault movement 

 
 

Fig5: Variation of shear stress t13  with y3  for, 

 y1 =10km. and  
y2 =10km. t1=1year due to fault movement. 

 
 
Fig6: Variation of strain e12 × 1010  for y3=0km.t1=1year 
with y2 and y1 =10km. due to fault movement. 
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