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Abstract: - An analysis is carried out to study free convective flow and heat transfer of a viscous incompressible 
fluid over a linearly moving vertical porous plate with suction and viscous dissipation. The fluid viscosity is 

assumed to vary as a linear function of temperature. The governing boundary layer equations are reduced to 

boundary value problem using the concept of similarity transformations. The corresponding coupled ordinary 

differential equation is solved numerically using the Runge Kutta fourth order method along with shooting 

technique. Graphical results for the dimensionless velocity and temperature distributions are shown for various 

values of the thermophysical parameters controlling the flow regime. Numerical values of physical quantities 

such as the local Skin-friction coefficient and the Local Nusselt number are presented in tabular form. 
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I. INTRODUCTION 
The physics of fluid flow in different media and conduits is a well-researched area in engineering with 

groundbreaking works by pioneer workers in the field of engineering. Likewise, transportation of heat through 

porous media has gained considerable attention due to its vast applications in the industry and also due to the 

increasing need for a better understanding of the associated transport processes. There are numerous practical 

applications in the industry which can be modeled or can be approximated as transport through porous media 

such as grain storage, heat exchanger devices, petroleum reservoirs, chemical catalytic reactors and processes, 

geothermal and geophysical engineering, moisture migration in a fibrous insulation and nuclear waste disposal 

and others. Bejan and Khair [2] investigated the free convection boundary layer flow in a porous medium owing 

to combined heat and mass transfer. Lai and Kulacki [8] used the series expansion method to investigate 

coupled heat and mass transfer in natural convection from a sphere in a porous medium. The suction and 
blowing effects on free convection coupled heat and mass transfer over a vertical plate in a saturated porous 

medium were studied by Raptis et al. [18]. The analysis of convective transport in a porous medium with the 

inclusion of non-Darcian effects has also been a matter of study in recent years. The inertia effect is expected to 

be important at a higher flow rate and it can be accounted for through the addition of a velocity squared term in 

the momentum equation, which is known as the Forchheimer’s extension of the Darcy’s law. A detailed review 

of convective heat transfer in Darcy and non-Darcy porous medium can be found in the book by Nield and 

Bejan [14]. The problem of flow and heat transfer in a laminar boundary layer over a stretching sheet in a 

saturated porous medium has an important application in the metallurgy and chemical engineering fields. Layek 

et al. [7] considered the flow and heat transfer boundary layer stagnation point flow of an incompressible 

viscous fluid towards a heated porous stretching sheet embedded in a porous medium subject to suction/blowing 

with internal heat generation or absorption. 
Sakiadis in 1961 was the first person to study the laminar boundary layer flow caused by a rigid surface 

moving in its own plane. Crane in 1970 extended the work of Sakiadis by considering the same model subject to 

stretching plate. Gupta and Gupta [6] studied the problem in the light of suction or blowing. Recently, Prasanna 

et al. [17] studied MHD Boundary Layer Flow of Heat and Mass Transfer over a Moving Vertical Plate in a 

Porous Medium with Suction and Viscous Dissipation; the governing boundary layer equations are reduced to a 

two-point boundary value problem using similarity transformations. The resultant problem is solved numerically 

using the Runge-Kutta fourth order method along with shooting technique. The momentum boundary layer 

thickness decreases, while both thermal and concentration boundary layer thicknesses increase with an increase 

in the magnetic field intensity. All the above mentioned investigations were carried out for fluids having 

constant viscosity throughout the boundary-layer. However it is known that these physical properties may 

change significantly with temperature. For instance, the viscosity of water decreases about 240% when the 

temperature increases from )10( 0 c to ).50( 0 c  The viscosity of air is ,106924.0 5  ,3289.1  286.2 and 

625.3 at temperature ,1000K ,2000K ,4000K  and K8000 respectively (Cebeci and Bradshaw, [4]). To 
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predict accurately the flow behaviors in the boundary layer, it is necessary to take the variation of viscosity into 

account. The study of viscous incompressible fluid flow with temperature dependent properties is of great 

importance in industries such as food processing, coating and polymer processing where temperature is 

generated. In industrial systems, fluid flow can be subjected to extreme conditions such as high temperature, 

pressure, and shear rates. In addition, external heating such as the ambient temperature and high shear rates can 

lead to a high temperature being generated within the fluid. All these conditions normally have a significant 

effect on the fluid properties. In fluid dynamics, it is well known that the property which is most sensitive to 
temperature rise is viscosity. Fluids used in industries such as polymer fluids, engine oil, palm oil have a 

viscosity that varies rapidly with temperature and this eventually give rise to strong feedback effects which 

normally lead to significant changes in the structure of the fluid flow, Wyle and Huang [21]. Mukhopadhyay et 

al. [12] carried out a comprehensive research on free convective boundary layer flow and heat transfer of a fluid 

with variable viscosity over a porous stretching vertical surface in presence of thermal radiation, Lie group 

transformation was adopted and fourth order classical Runge Kutta method was adopted to solve the 

corresponding coupled ordinary differential equations. They reported that; with an increase of temperature 

dependent fluid viscosity parameter, the fluid velocity increases but the temperature decreases at a particular 

point of the sheet. In the present research, we study free convective flow and radiative heat transfer of viscous 

incompressible fluid having variable viscosity over a stretching porous vertical plate which is an extension of 

Mukhopadhyay et al. [12]. We further assume that the fluid flow is under the influence of viscous dissipation 
and Darcy-Forchheimer. The basic equations governing the flow field are partial differential equations and these 

have been reduced to a set of ordinary differential equations by applying suitable similarity transformations. The 

resultant equations are coupled and non-linear, and hence are solved numerically using the fourth order Runge-

Kutta method along with shooting technique. The effects of various governing parameters on the velocity and 

temperature are presented graphically and discussed quantitatively. 

 

II. MATHEMATICAL FORMULATION 
A steady two-dimensional laminar free convection flow of a viscous incompressible electrically 

conducting fluid along a porous vertical stretching sheet, in the presence of suction and viscous dissipation, is 

considered. The x  axis is taken along the plate in the upward direction and the y axis is normal to the 

sheet. The velocity of the fluid far away from the plate surface is assumed to be zero. Assuming that the 

Boussinesq’s and boundary layer approximation hold and using the Darcy-Forchheimer model, the basic 

equations which govern the problem are given by (Mukhopadhyay et al. [12] and Prasanna et al. [16] ) and 

reformulated as: 
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Subject to boundary conditions 
mBxu           Vv          WTT        at    0y                                        (4a) 

0u        TT    as     y                                                     (4b) 

 

The heat transfer of viscous incompressible fluid flow over a vertical stretching sheet emerging out of a slit at 

origin )0,0(  yx .
, 

The viscous dissipation term in the energy equation is significant (we assumed that the 

fluid velocity is high), x  and y  represent coordinate axes along the continuous surface in the direction of 

motion and perpendicular to it, respectively, u  and v  are the Darcian velocity components along x  and 

y directions,    Density (assumed constant), g is the gravity, 
*b  is the empirical constant,   is the viscosity,  

 )(T  is the kinematic viscosity,  TB  is the coefficients of thermal expansion,  K  is the permeability 

of the porous medium,   is the thermal conductivity, PC  is the specific heat at constant pressure, q   

Dimensional heat absorption coefficient. Using (Brewster [3]), radiative heat flux rq  is described by the 

Rosseland approximation 
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where    is the Stefan-Boltzmann constant and 
*k  is known as the absorption coefficient. Assuming that the 

temperature difference within the flow is such that 
4T  may be expanded in a Taylor series and expanding 

4T  

about  T  and neglecting higher orders. It is assumed that the temperature differences within the flow are 

sufficiently small such that 
4T  can be expressed as a linear function of temperature. This is accomplished by 

expanding 
4T  in a Taylor series about the free stream temperature 

4T  and neglecting higher-order terms.  

The Taylor’s series expansion of a function )(xf  about 0x  
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Making use of (5) and (7), equation (3) becomes 
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We now introduce the following relations for ,u ,v and   
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where u is the stream function. The streamwise velocity and the suction velocity are taken as 
mBxxU )(     and     Vv  . In this research, m is the power law exponent, 2/1m , ,0B WT is the 

wall temperature and T is the ambient temperature, the fluid viscosity   is assumed to vary as a linear 

function of temperature. According to Batchelor [1],  

)]([)( * TTbaT W                                                            (10) 

where 
*  is the constant value of the coefficient of viscosity far from the sheet (reference viscosity) and ba,  

are constants )0( b . In this research, we consider the case when 1a  For a viscous fluid, Ling and Dybbs 

[9] suggest a viscosity dependence on temperature T  of the form   1
)(1



  TT  , where   is a 

thermal property of the fluid and  is the viscosity away from the hot sheet. Others temperature dependent 

viscosity model are Reynold’s model ))(exp()( 00 TTMT    and Vogel’s model 
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(see e.g., Massoudi and Christe [11], Nadeem and Ali [13], Okoya [15]) and Pardemirli and Yilbas [16]. Our 

adopted model (10) does not differ at all with all the model mentioned above. The range of temperature, i.e. 

TT  studied here is .230 00 cc   Making use of (10) and third equation in (9) 
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Using (10) above relations in the boundary layer equation (2) and in the modified energy equation (8), we get 
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To transform equations (11)-(14) into a set of ordinary differential equations, the following similarity 

transformations and dimensionless variables are introduced 
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where SEPNkDFf craS ,,,,,,),(),( 2,,  and GrJ are dimensionless stream function, dimensionless 

temperature, similarity variable, Local Forchhemier parameter, Local Darcy Parameter, Permeability related 

parameter of the porous medium, Radiation parameter, Prandtl number, Heat generation/Absorption parameter, 

Eckert related Parameter, Suction parameter and Grashof related parameter respectively. It is known that 

rGr GJ  (Local Grashof number), in this research. 
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III. NUMERICAL SOLUTION 
The set of coupled non-linear governing boundary layer equations (15) and (16) together with the 

boundary conditions (17 and 18) are solved numerically by using Runge-Kutta fourth order technique along 

with shooting method. First of all, higher order non-linear differential Equations (15) and (16) are converted into 



Analysis on Variable Fluid Viscosity of Non-Darcian Flow over a Moving Vertical Plate in a Porous 

International organization of Scientific Research                                              22 | P a g e  

simultaneous differential equations of first order and they are further transformed into initial value problem by 

applying the shooting technique. The resultant initial value problem is solved by employing Runge-Kutta fourth 

order technique. The step size 05.0  is used to obtain the numerical solution with fifteen decimal place 

accuracy as the criterion of convergence. From the process of numerical computation, the skin-friction 

coefficient, and the Nusselt number, which are respectively proportional to )0(''f and )0('  are also sorted 

out and their numerical values are presented in a tabular form. 

 

IV. FIGURES AND DISCUSSIONS 
The effect of Local Forchheimer parameter, permeability parameter, Radiation parameter, Prandtl 

number, Heat generation/Absorption parameter, Eckert Number and Suction parameter has been formulated and 

solved numerically. In order to understand the flow of the fluid, computations are performed for different 

parameters such as SEPNkDF craS ,,,,,, 2,,  .In this research, 
*B , a and 

GrJ  is chosen to be equal to 

one. Figure 1 exhibit the velocity profiles for several values of   with 72.0rP  in the presence of suction 

1.0S  when 3.0N . In the case of uniform suction, the velocity of the fluid is found to increase with the 

increase of the temperature dependent fluid viscosity parameter . This can be explained physically as the 

parameter   increases, the bond between the fluids becomes weaker and the viscosity decrease and the fluid 

flow at faster rate. In Figure 2, variations of temperature field )(  with   for several values of   using 

01.0,1.0,72.0,3.0,1.0,1,5.0 2  craS EPNkDF   in the presence of suction 

( 1.0)0(  fS ) are shown. It is observed that the temperature decreases with the increasing values of . 

The increase of temperature dependent fluid viscosity parameter leads to decrease of thermal boundary layer 

thickness, which results in decrease of temperature profile )( . Decrease in temperature profiles across the 

thermal boundary layer means a decrease in the velocity of the fluid properties )( . As a matter of fact, in this 

case, the fluid particles undergo two opposite forces which are: (i) One force increases the fluid velocity due to 

decrease in the fluid viscosity with increase in the values of ,
 
(ii) The second force decreases the fluid 

velocity due to decrease in temperature. {Since )(  decreases with increasing }.Very near the vertical 

surface 2.00  , as the temperature )(  is high, the first force dominates and far away from the surface, 

151.14  , the temperature )(  is low; this implies that the second force dominates in that region. 

Figure 3 illustrates the effect of permeability parameter )( 2k  on the velocity. It is noticed that as the 

permeability parameter increases, the velocity decreases. Since the porosity of the plate increases, as the fluid 

flows over the porous plate, the drag tends to increase which draw back the velocity. Also, Figure 4 shows the 

variation of the thermal boundary-layer with the effects of permeability parameter )( 2k . We noticed that the 

thermal boundary layer thickness increases with an increase in the permeability parameter. Physically, this can 

be explained as follows, as the porosity parameter increases, this give rooms to more entrance of heat into the 

flow. As the heat increases, the temperature profiles also become affected and tend to increase. Figure 5 and 

Figure 6 reveal that the effect of Forchhemier parameter is experienced near the plate only, increase in the value 

of SF   leads to decrease in velocity within .1.60  Reverse is the case on temperature profiles, as 

Forchhemier parameter SF  increases, the temperature )(  increases throughout the flow region. We chose 

501.0,376.0,251.0,126.0aD  and high value of Forchhemier number ( 5.0SF ) to analyze the effect 

of the local Darcy number aD  on the velocity profiles and temperature fields as shown in Figure 7 and 8. 

Figure 7 depicts that the velocity increases slightly with an increase in the values of aD . The effect of local 

Darcy number is experienced within a certain range, increase in the value of aD  leads to increase in velocity 

within 5.60  .  Reverse is the case on temperature profiles, as aD  increases, the temperature )(  

decreases slightly. The decrease in )(  across the flow region is of slower rate. This effect is negligible on 

the temperature due to the distinction of the values of Da. On the velocity profiles, effect of aD  is negligible far 

away from the wall (i.e. within 156.6  ). In order to study the behavior of mercury, noble gases with 

hydrogen and air if subjected to flow under our assumptions; Figure 9 and 10 shows that fluids having a smaller 
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Prandtl number (Mercury with 015.0rP ) are much more responsive to thermal radiation than fluids (Air 

with 72.0rP ) having a larger Prandtl number. It is also noted from figures 9 and 10 that temperature and 

velocity decreases with the increasing value of Prandtl number. From figure 9, effects of rP is negligible very 

close to the wall 9.00  and far from the wall 1532.13   

 We have illustrated non-dimensional velocity, temperature against   for some representative values of 

the heat source/absorption parameter ,2.1,8.0,4.0,0  positive value of   represents source i.e. heat 

generation in the fluid while negative value of   represents absorption of the heat that exists within the fluid. 

Figure 11 and 12 shows effect of heat source parameter   over velocity and temperature profiles. It is observed 

that, due to the generation of heat into the fluid flow; the buoyancy force increases which in turn gives higher 

velocity in the velocity and thermal boundary layer. Also, Figure 13 and 14 shows effect of heat absorption 

parameter   over velocity and temperature profiles, due to the absorption of heat from the fluid flow; the 

buoyancy force decreases which in turn gives lower velocity in the velocity and thermal boundary layer. Figure 

15 shows the variation of Eckert number ( cE ) over the momentum boundary-layer, we observed that cE  does 

not have any substantial effect on velocity of the fluid flow. Also, Fig 16 shows the variation of the thermal 

boundary-layer with the Eckert number ( cE ). It is observed that the thermal boundary layer thickness increases 

slightly with an increase in the Eckert number ( cE ). The variation of velocity, and temperature distributions 

with radiation parameter N are shown in Figure 17 and 18 respectively. From Figure 17 and 18, we observe that 

the velocity and the temperature profiles decrease with the increase of radiation parameter N . Radiation can be 

used to control the velocity and the thermal boundary layers quite effectively. The effect of radiation parameter 

N  on the velocity boundary layer is shown in Figure 17 for 

1.0)0(,01.0,1.0,72.0,1,1.0,5.0,2.0 2  fSEPDkF cras  .The velocity profiles 

show a decrease far from the plate with the increase of radiation parameter N . It is noted from Figure 18 that 

the temperature decreases with the increasing value of the radiation parameter N  . The effect of radiation 

parameter N  is to reduce the temperature significantly in the flow region. The increase in radiation parameter 

means the release of heat energy from the flow region and so the fluid temperature decreases as the thermal 
boundary layer thickness becomes thinner. This result can be further explained by the fact that a decrease in the 

value of 3

1

* 4/  TkN   for a given *k  and 
T  means a decrease in the Roseland radiation absorptivity. 

According to momentum and energy equations, the divergence of the radiative heat flux yqr  /  increases as 

k  decreases which in turn increases the rate of radiative heat transferred to the fluid and hence the fluid 

temperature increases. In view of this explanation, the effect of radiation becomes more significant as 

0N )0( N  and can be neglected when N  . Figure 19 and 20 represents the effects of suction 

on fluid velocity and temperature when the fluid viscosity is uniform 0 . With an increase in the value of 

suction and ,01.0,1.0,72.0,3.0,1,1.0,5.0 2  cras EPNDkF  the horizontal velocity is 

found to decrease. This simply means, suction causes to decrease the velocity of the fluid in the boundary layer 

region. This can be explained to layman as follows; in a case of suction, the heated fluid is pushed towards the 

wall where the buoyancy forces can act to retard the fluid due to high influence of the viscosity. This effect acts 

to decrease the wall shear stress. In addition, increase in the value of suction parameter also leads to decrease of 

temperature of the fluid in the boundary layer region. The explanation for such behavior is that the fluid is 

brought closer to the surface and reduces the thermal boundary layer thickness, see figure 20.  
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Figure 1: Velocity Profiles for different values of temperature dependent variable fluid viscosity ( ) 
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Figure 2 : Temperature Profiles for different values of temperature dependent variable fluid viscosity ( ) 
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 Figure 3 : Velocity Profiles for different values of Permeability Parameter ( 2k ) 
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Figure 4 : Temperature Profiles for different values of Permeability Parameter ( 2k ) 
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Figure 5 : Velocity Profiles for different values of Local Forchheimer Parameter ( SF ) 
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Figure 6 : Temperature Profiles for different values of Local Forchheimer Parameter ( SF ) 
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Figure 7 : Velocity Profiles for different values of Local Darcy Parameter ( aD ) 
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Figure 8 : Temperature Profiles for different values of Local Darcy Parameter ( aD ) 
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Figure 9 : Velocity Profiles for different values of Prandtl Parameter ( rP ) 
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Figure 10 : Temperature Profiles for different values of Prandtl Parameter ( rP ) 
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Figure 11 : Velocity Profiles for different values of Heat Generation Parameter ( ) 
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Figure 12 : Temperature Profiles for different values of Heat Generation Parameter ( ) 
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Figure 13 : Velocity Profiles for different values of Heat Absorption Parameter ( ) 
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Figure 14 : Temperature Profiles for different values of Heat Absorption Parameter ( ) 
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Figure 15 : Velocity Profiles for different values of Eckert Parameter ( cE ) 
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Figure 16 : Temperature Profiles for different values of Eckert Parameter ( cE ) 

1.0)0(,1.0,72.0,3.0,1,1.0,5.02.0 2  fSPNDkF ras   

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



f '
 ( 
 

)

 

 

N = 0.01

N = 2.5

N = 5.0

N = 7.5

 
Figure 17 : Velocity Profiles for different values of Radiation Parameter ( N ) 
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Figure 18 : Temperature Profiles for different values of Radiation Parameter ( N ) 
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Figure 19 : Velocity Profiles for different values of Suction Parameter ( S ) 
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Figure 20: Temperature Profiles for different values of Suction Parameter ( S ) 
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Table 1. Skin Friction and Nusselt number For Varying Values Of Controlling Parameters ( 1a ) 

 
 

V. CONCLUSION 
In this paper, a boundary layer analysis for natural convection heat transfer of a variable viscosity, 

incompressible fluid over a linearly moving porous vertical surface is considered. From the numerical results 
pertaining to the present study indicates that the effect of increasing temperature dependent fluid viscosity 

parameter on a viscous incompressible fluid is to increase the flow velocity which in turn causes the temperature 

to decrease. The higher values of the Forchheimer number (
sF ) indicate lower velocity very close to the wall 

but negligible far from the wall and also indicate significant increase of temperature across the flow region. 

Velocity profiles increase with the increasing value of Darcy number (
aD ). Magnetic field retards the motion of 

the fluid and suction stabilizes the hydrodynamic and thermal boundary layers growth. Horizontal velocity 

)(' f and temperature )( decreases with the increase in Prandtl parameter and radiation parameter. 
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