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Abstract— Behavior analysis of harmonically forced diffu-
sively coupled chain of pendulums is given, results of simulation
and experiments are presented.

Index Terms— Complex systems; Mechanical systems; Cy-
berphysical systems

I. INTRODUCTION

Nonlinear oscillations problem falls within the fields of
nonlinear mechanics, nonlinear physics, as well as nonlinear
control theory. During the latest years the subject of non-
linear oscillations control has attracted growing researchers’
attention among the other fields of research where control
theory methods were applied to physical phenomena explo-
ration [1].

The resonant property of nonlinear systems was inten-
sively studied in the areas of charged-particle acceleration
physics [2], plasma physics [3], celestial mechanics [4],
and automatic control. Various definitions of the resonance
phenomenon have been introduced to describe such proper-
ties of the nonlinear oscillations as stochastic resonance [5],
chaotic resonance [6], autoresonance [2], [7], and feedback
resonance [8]-[11].

The resonance property is allied to the synchronization
one. Synchronization is usually treated as corresponding in
time behavior of two or more processes. General definitions
of synchronization were proposed in [12], [13]. Starting with
the work of Christian Huygens [14], the synchronization
phenomena attracted attention of many researchers, see e.g.
monographs [15], [16]. In his study, C. Huygens described
synchronization of the pair of pendulum clocks weakly
coupled one with another owing to the common basement.
Huygens had found the pendulum clocks swung in exactly
the same frequency and 180 degrees out of phase. After
external disturbance was made, the antiphase state was
restored within a half of an hour and remained indefinitely.
Huygens’ synchronization observations have served to in-
spire study of sympathetic rhythms of interacting nonlinear
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oscillators in many areas of science and technology. The
onset of synchronization and the selection of particular phase
relations have been studied in the numerous papers and
monographs, see e.g. [5], [15], [17]-[20]. Exploration of the
synchronization phenomena is usually focused on the study
of the phase relations between motions of the coherent units.
Different studies of the pair of coupled oscillators confirmed
an observation that the asynchronous mode of motion is
a predominant one. At the same time some experiments
show that the synchronous mode can also be observed.
In [21] the system of two coupled pendulums excited via
relay differential feedback is studied. It is shown that there
exists frequency synchronization in the steady-state mode.
The pendulum deviation angles have the same oscillation
frequency and some constant phase shift. In the case if only
one pendulum is excited, for the small coupling gain and
small angular deflections the phase shift is about a quarter-
period. In the same case if the amplitudes are “large” the
approximately inphase oscillations occur. The steady-state
oscillations are antiphase if the coupling gain is not large
enough and both the pendulums are excited, whereas for
large coupling gain both inphase and antiphase motions can
occur, depending on initial phase shift between pendulums.
The problem of controlled excitation of oscillations in a chain
of N coupled pendulums is considered in [22]. Based on
speed-gradient method with the goal function including the
energy term and the “synchronization” term the excitation
control law is derived and its properties for “line” and “ring”
chain topologies are studied.

In the present paper, phase relations between oscillators,
diffusively connected in a chain, which is excited by means
of the harmonic torque applied to its end, is studied.

The model of 1-DOF pendulums coupled by a torsion
spring and controlled by a drive is presented in Section II.
In Section III the phase relations between pendulums are
studied analytically on the basis of the linear model of
the chain dynamics. The computer simulation results are
presented in Section IV. The design features of the laboratory
set-up Multipendulum Mechatronic Setup, created in the
IPME RAS, Saint Petersburg, [23] are briefly described, and
some experimental results are presented in Section V. The
summarized information is given in Conclusion.

II. MODEL OF THE CHAIN OF PENDULUMS

Despite the previous works [21], [22] in the present study
we consider the case, when the control action, applied to a
chain of pendulums, may be treated as a kind of a boundary
condition, rather than a torque, applied to the first pendulum.
Namely, let the control action be a rotation angle of the drive



shaft, connected with the first pendulum via a torsion spring.
Retroaction from the pendulum to drive is omitted. The
last (Nth) pendulum in the chain is mechanically connected
only with the previous one, no boundary conditions for
Nth pendulum are specified. Note that the model of this
kind corresponds to the mechanical multipendulum system,
described in Section V-B. This leads to the following model
of chain dynamics:

@1+ pp1 + wi sin gy — k(2 — 2¢1) = ku(t),

G2 + pp2 + wi sin g — k(ps — 203 + ¢1) =0,

@i + ppi + wi sinp; — k(@ip1 —20i+9i—1)=0, (1)
(i=3,4,...,N—1),

SN+ ppN +wisinpny — k(on —@n—1) =0,

where ¢; = @;(t) (¢ = 1, 2, ..., N) are the pendulum
deflection angles; u=w(t) is the controlling action: rotation
angle of the drive shaft. The values p, wy, k are parameters
of the system: p is the viscous friction parameter; wy is the
natural frequency of small oscillations of isolated pendulums;
k is the parameter of coupling strength, for example, the
stiffness of the spring connecting the pendulums. Schematic
diagram of the chain is shown in Fig. 1.

In what follows it is assumed that the excitation action
u(t) is a harmonic waveform with a certain frequency w and
a magnitude ug: u(t) = ug sin(wt).

In the absence of control and dissipation the model
in question coincides with the classical Frenkel-Kontorova
model, [5], [24], or the sin-Gordon equation in the
continuum-limit approximation. However, it is distinct from
the Frenkel-Kontorova model in the type of the control
appearance: here control is localized and affects only one
pendulum. In terms of control of distributed systems it
corresponds to the boundary control.

Fig. 1. Schematic diagram of the chain of pendulums

III. EXAMINATION OF PHASE RELATIONS BETWEEN
PENDULUMS VIA LINEARIZATION METHOD

A. Linearized model

Assuming the pendulum angles ;(t) (i = 1,...N) be
small, we obtain from (1) the following linearized model:
@1+ pp1 + wipr — k(g2 — 2¢01) = ku(t),
P2 + pp2 + wip2 — k(pz — 202 + 1) =0,

@i + ppi + wiei — k(pig1—20i+pi—1) =0, (2)
(i=34,...,N—1),

SN + pon +wion — k(on —pn—1) =0.

Let us study phase relations in the steady-state mode for
the system (2), forced by the harmonic input signal u(t) =
ug sin(wt). To simplify exposition, consider, for example,
the case of NV = 5 pendulums. We obtain that the transfer
functions W;(s) = i’i((ss)) of the system (2) from input u to
outputs ¢;, i = 1,...,5 have a polynomial A(s) of degree
ten as the denominator and the following numerator B;(s):

Bi(s) = k(s® +4s7p + (Tk + 6p* + 4w ?)s®

+ (21pk + 12pwo? + 4p%)s® + (15K 4 21kwy?

+ 21kp? + 6wp® + 12p%wp? + ph)s* + (4p3wp? + 12wp*p

+ 30K%p 4 42w pk + Tkp?)s® + (30k3wy? + 103

+ 6p%wot 4+ 21wk + 21kp*we? + 15k%p? 4 4w ®)s?

+ (30k2 pwo? + 21wo? pk + 103 p + 4w ®p)s

+ wp® + 10k%wp? + 15k%wo* + TwoSk + k%),

By(s) = k*(s°+3s° p+ (3wg® +3p° +5k) s*

+(p34+10pk+6pwi?)s® + (3wo* +6k2 +5kp? +10kwy?

+3p%wp?)s2 4+ (6k2 p+10wo? pk+3wp p)s+6k3wy?

+5wp k+we® +k?),

Bs(s) = k*(s*+25° p+ (2wg” +3k+p?) s

+(2pwo?+3pk)s+ 3k:w02—|—w04—|—k;2),

Buy(s) = k' (s> + sp+ k +wo?),

Bs(s) = k°.

Since all the transfer functions W;(s), ¢ = 1,...,5 have a

common denominator A(s), phase relations between outputs

i(t) in the steady state. mode are defined by fractions

w;(s) = B ( ) Functions ; ;(w) = argw;;(jw) (where

j? = —11is an imaginary unit) for [ = i+1,7=1,...,4 give

the required phase shifts between system outputs as functions

of the excitation frequency w. The relative degree of each

fraction w; ;+1(s) is two. Since the polynomials B;(s) are

Hurwitz, the following relations are valid: limf}J Yiip1(w) =
w—

0 and lim v;;41(w) = —m. The first case (the case of
small frequogncy of the excitation signal) corresponds inphase
motion of the pendulums, while the second one (when
the excitation frequency is large), corresponds antiphase
motion of neighboring pendulums. This general observation



is illustrated numerically in Section IV and experimentally
confirmed in Section V.

IV. NUMERICAL ANALYSES OF THE PHASE RELATIONS

For getting more detailed information about system be-
havior let us consider the following numerical example.
Assume that the system (1) has the following parameters:
E=1722s5"2 p=0.11s"", wy = 4.3 s~1. Then then the
fractions w; ;41 have following zero-pole representation with
3-digits accuracy:
~7.22(s? +0.115 4 19.9)(s® + 0.11s + 30)
w12(8) = = 0115 £ 19.3) (52 + 0.115 1 25)

" (s 4+ 0.11s + 41.9)
(s2+0.11s + 36)(s2 + 0.11s + 44)’
7.22(s? +0.11s + 21.2)
wa,3(s) = 7 2
(s2+0.11s + 19.9)(s? + 0.11s + 30)
y s240.11s +37.3
s240.11s +41.9’
7.2254(s% + 0.1084s + 25.65)
52 +0.1084s + 21.19)(s2 + 0.1084s + 37.35)
7.2254
52 +0.1084s + 25.65°
This result shows that there exist certain frequencies w; and
wo such that motion of the pendulums close to inphase if
w < wp and is approximately antiphase if w > wy. The

frequency response plots (functions 1); ;(w)) are depicted in
Fig. 2.
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Fig. 2. Frequency response plots 1; j+1(w) v.s. w, i =1,...,4.

Remark. 1t is interesting to derive an analytical estimation
of the frequencies w; and wy from the analytical expressions
of the phase relations between the neighboring oscillators.
This problem looks rather complex since it is related to the
zero-poles estimation problem for a high order dynamical
system. The similar problem is study of the system parame-
ters influence on both position and size of the “uncertain
region” [wy,ws]. These problems are intended for future
researches.

The logarithmically scaled magnitude responses H;(w) =
|Wi(jw) , 4 = 1,2,...,5, are depicted in Fig. 3, demon-
strating the resonant property of the system. It is seen that
in the intermediate frequency range [w;,ws], the magnitude
responses H;(w) are close to one, and that they become lower
as the excitation frequency w goes apart this interval. There-
fore, the pendulum chain may play a role of a mechanical
band pass filter.
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Fig. 3. Magnitude response plots H;(w) v.s. w, 1 =1,2,...,5.

V. EXPERIMENTAL STUDY

Below the multipendulum mechatronic setup, designed in
the Institute for Problems of Mechanical Engineering of
RAS (Saint Petersburg, Russia) and some experiments with
harmonically forced motion for this setup are presented.

A. Multipendulum Mechatronic Setup of IPME RAS

The Multipendulum Mechatronic Setup of IPME RAS

includes [23]:

— a modular multi-section mechanical oscillating system;

— an electrical equipment (with computer interface facilities);
— the personal computer for experimental data processing,
representation of the results the real-time control.

For data exchange via standard In-Out ports of the com-
puter, the special exchange routine is written. The devices
are connected by means of the elastic link. In Sec. V-B a
brief description of the construction is presented. For making
laboratory experiments and on-line control, electrical design,
data exchange interface and software tools were created.
Their description is given in Sec. V-C.

B. Design of the mechanical part

The setup consists of a number of identical pendulum sec-
tions connected with springs. The schematics of a pendulum
section is presented in Fig. 4, while a photo of five sections
and an electric motor is given in Fig. 5. The foundation of
the section is a hollow rectangular body. Inside the body
an electrical magnet and electronic controller board are
mounted. On the foundation the figure support containing the
platform for placing the sensors in its middle part is mounted.
The pendulum itself possesses a permanent magnet tip in the
bottom part. The working ends of the permanent magnet and
the electrical magnet are posed exactly opposite each other
and separated with a non-magnetic plate in a window of the
body. The idea behind control of the pendulum is changing
the poles of the electrical magnet by means of switching
the direction of the current in the windings of the electrical



magnet. In order to allow changing the eigenfrequency of
the pendulum oscillations the pendulum is endowed with
additional plummets and counterparts changing its effective
length (the distance between the suspension point and the
center of mass. On the rotation axis of the pendulum the
optical encoder disk for measuring the angle (phase) of the
pendulum is mounted. It has 90 slits. The peripheral part
of the disk is posed into the slit of the sensor support. The
sensor consists of a radiator (emitting diode) and a receiver
(photodiode). The obtained sequences of signals allow to
measure angle (phase) and angular velocity of the pendulum,
evaluate amplitude and crossing times and other variables
related to the pendulum dynamics.

Axes of the neighbor sections are connected with the
torsion springs, arranging force interaction and allowing
exchanging energy between neighbor sections. The set of
interconnected pendulum sections represents a complex os-
cillatory dynamical system, characterized by nonlinearity and
high number of degrees of freedom. Such a mechanical
system can serve as a basis for numerous educational and
research experiments related to dynamics, control and syn-
chronization in the networks of multidimensional nonlinear
dynamical systems. In principle, any number of sections can
be connected. At the moment mechanical parts of 50 sections
are manufactured.
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Fig. 4. Schematics of the pendulum section.

Fig. 5.

Photo of the chain consisting of five pendulum sections.

Fig. 6.

Inphase (w = 6 s~ 1) and antiphase (w =9 s—h synchronization
of pendulums.

C. Electronics of the multipendulum setup

Oscillation control is provided on the basis of combined
hardware/software method [23]. The energy for excitation
is transmitted by the pulse-width modulated (PWM) signal
with the constant level and variable duty cycle. From the
programming point of view, hardware is represented by the
write-only registers (WO) for putting in the prescribed duty
cycle of control signal from the computer, and the read-only
registers (RO) for transfer oscillation half period duration
values to the computer. The PWM based method provides
more precise control than the number-pulse one, because of
averaging the high frequency pulses by the mechanical sub-
system. The control unit generates the exciting action applied
to the pendulums via the opposite magnetic fields. It includes
bi-channel asynchronous pulse-width modulator (APWM),
the Data Exchange System and the power amplifiers to drive
the electromagnets.

The Data Exchange System of the setup is intended
to transfer data and control commands from the Control
Computer to the interface board of the pendulum sections.
Each interface board is an intelligent measuring/controlling
electronic devise, assigned for unloading processor of the
Control Computer from chores of forming the control signal
and preventing the Control Computer from a wasteful wait
state of the sensor replies.

D. Results of experiments

A number of the experiments have been fulfilled with the
multipendulum setup to verify results of theoretical analysis,
given in Section III. In our experiments the chain of N =5
pendulums (see Fig. 5) has been taken. The sinusoidal signal
u(t) = ug sin(wt) with the magnitude g and the frequencies
w € [2,10] s~ has been applied to the control circuit of the
electric motor. The experiments confirm theoretical results.
It was obtained by the experiments, that for the considered
setup, the boundary frequencies are w; ~ 6.5 s7L, wy &
8 s~1. The results are illustrated by Fig. 6, where the chain
photos for the cases of inphase (w = 6 s~') and antiphase
(w =9 s~1) modes of motion are presented.

VI. CONCLUSIONS

In the paper behavior analysis of harmonically forced
diffusively coupled chain of pendulums is given. Based
on the linear model is obtained that there exist certain



frequencies w; and ws such that motion of the pendulums
close to inphase if the excitation frequency w less than w; and
is approximately antiphase if w > ws. It is also obtained that

the

pendulum chain may play a role of a mechanical band

pass filter. This result is confirmed by computer simulation
and experiments on the Multipendulum mechartonic setup of
the IPME RAS.
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