
ISeCure
The ISC Int'l Journal of
Information Security

January 2025, Volume 17, Number 1 (pp. 59–73)

http://www.isecure-journal.org

CST-SDL: A Scenario Description Language for Collaborative

Security Training in Cyber Ranges

Navid Shirmohammadi 1 and Behrouz Tork Ladani 1,∗
1Department of Software Engineering, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran

A R T I C L E I N F O.

Article history:

Received: June 7, 2024

Revised: November 12, 2024

Accepted: December 25, 2024

Published Online: December 31, 2024

Keywords:

Cyber Range, Cybersecurity,
Training, Model-Driven

Engineering, Scenario Description

Language

Type: Research Article

doi: 10.22042/isecure.2024.

462008.1132

A B S T R A C T

As cyber threats grow increasingly sophisticated, the importance of security

training as an effective means of prevention will become even more critical.

Cyber Range (CR) is a platform for creating cyber training programs using

virtualization and simulation technologies to create a realistic training

environment. The main challenge for utilizing a CR is the specialized

human resources required to design and maintain training sessions. To tackle

this challenge, several high-level languages, known as Scenario Description

Languages (SDLs), have been developed to enable the specification of training

environments as models. These models can then be automatically transformed

into deployment artifacts. Our studies showed that the existing SDLs could not

address requirements when designing complex scenarios where multiple trainees

should collaborate to reach a desired goal through various acceptable solutions.

We present the Collaborative Security Training SDL (CST-SDL) for creating

multi-trainee and multi-solution scenarios. CST-SDL uses an acyclic directional

graph for specifying the scenario’s solution routes and allows defining trainees

with unique tasks, goals, and solution routes during the training session. To

evaluate the CST-SDL’s capabilities, we have implemented and integrated it

into the KYPO cyber range.

© 2025 ISC. All rights reserved.

1 Introduction

Cyber range (CR) is a platform that allows indi-
viduals to gain knowledge and hands-on experi-

ence about cyber threats in a low-cost and effective
manner without endangering their data and IT as-
sets [1–3]. CRs have been proven to be an effective
solution for cyber security training and improving
the security position of organizations [4–7]. Organiza-
tions can utilize CR to design training environments

∗ Corresponding author.

Email addresses: n.shirmohammadi@comp.ui.ac.ir,
ladani@eng.ui.ac.ir

ISSN: 2008-2045 © 2025 ISC. All rights reserved.

that correspond to their requirements and decrease
the time employees need between learning new skills
and utilizing them in the working environment [8].

One of the main factors determining the effective-
ness of training is that it should correspond to the ex-
isting challenges of the industry [9–11]. Rapid changes
in the technology stack and cyber threats can sig-
nify this factor in the field of cyber security even
more than in any other context [12]. Designing new
training sessions (scenario) is the obvious solution for
keeping up the skills of the trainees relevant to new
requirements. However, designing a new scenario is
rather challenging and requires solid knowledge about
the requirements of the intended industry sector, re-

ISeCure



60 CST-SDL: A Scenario Description Language for Collaborative ... — Shirmohammadi and Mahdavi

lated cyber threats, and skill in designing appropriate
environments accordingly [9, 13, 14].

Model-driven engineering (MDE) can be used as
an alternative for manually designing and deploying
scenarios [11]. MDE suggests that by developing a
high-level language (metamodel) for describing the
requirements of the target environment, one can ben-
efit from well-developed solutions for integrating ver-
ification and code generation requirements [15, 16].
Scenario description languages (SDL) are the out-
come of implementing MDE in CRs. SDLs enable the
scenario designer to describe their intended training
environment and benefit from the automated verifi-
cation and code generation processes implemented
based on the SDL’s structure [11, 13].

A few SDLs have been developed to address the
different requirements of scenario designers. Exist-
ing SDLs mainly focus on providing utilities for de-
scribing the details of infrastructure used for training,
specifying the software vulnerabilities and the linear
path for solving the scenario [10, 11, 13, 17]. When
analyzing existing SDLs, we identified the inability to
describe complex trajectories for solving the scenario
as the main limitation of these languages. In other
words, existing SDLs were developed assuming that
a single trainee (or a group of trainees with similar
starting conditions) will take advantage of one of the
vulnerabilities in the training environment to solve
the scenario. This assumption differed when we tried
to model complex scenarios with multiple trainees
and acceptable solutions.

In this research, we present the CST-SDL, an SDL
that focuses on describing trainees’ collaboration in
scenarios with multiple solutions. CST-SDL allows
the scenario designer to describe the solutions as a
DAG 1 in which the nodes have a set of pre- and post-
conditions based on the status of the infrastructure
entities (like files, servers, and networks) and permis-
sions. Scenario designers can use CST-SDL to specify
the DAG’s roots as the starting point of individual
trainees and explicitly define the trainees’ collabora-
tion as a training group. We process this information
to automatically verify the feasibility of the scenario
by checking if all training groups can reach the de-
sired nodes of DAG and solve the scenario. The main
contributions of our SDL are:

• CST-SDL can be used to specify all the possible
routes for solving the scenario using the DAG.

• CST-SDL can be used to design scenarios for
red (offensive), blue (defensive), and purple (of-
fensive and defensive) teams.

1 directional acyclic graph

• CST-SDL allows the scenario designer to define
a unique set of questions for each trainee (for
gamification purposes) in the model and couple
them with DAG nodes to specify their unique
solution route.

The paper is organized as follows. Section 2 de-
scribes related works on SDL solutions and compares
their capabilities with CST-SDL. We explain why a
new SDL is needed in Section 3 by listing the short-
comings of existing solutions. Section 4 will present
the CST-SDL and the feasibility verification algo-
rithm, while in Section 5, we use the CST-SDL to
create a scenario and demonstrate our SDL’s capa-
bilities compared to existing solutions. Finally, we
conclude this paper in Section 6.

2 Related Work

Model-driven engineering (MDE) has been used in
earlier cyber ranges to design domain-specific lan-
guages (DSL) for modeling arbitrary scenarios. The
main reasons for using this MDE in the cyber range
can be summarized as follows [7]:

• Verifiability: It is possible to automatically
check the presence of intended features in the
scenario model.

• Expressiveness: The designer can use the lan-
guage (metamodel) to describe an arbitrary sce-
nario.

• Compositionality: Existing scenarios can be
combined to generate a new scenario.

• Integration: Arbitrary output (like deploy-
ment artifacts) can be generated by parsing the
model.

Cheung et al. [18] made one of the early efforts to
design a cybersecurity-related DSL by introducing
the Correlated Attack Modeling Language (CAML).
CAML tries to Identify the logical steps during an at-
tack and specify their relationship. A cyber attack is
a set of modules in which each has specific activation
conditions alongside the pre- and postconditions. The
observed events received from sensor reports are the
source of activation conditions. Preconditions specify
the constraints on the system and service configura-
tions. When the activation and preconditions of a
module are met, the postconditions of that module
will be considered to be satisfied and used for future
inferences. CAML is not an SDL, but its solution for
modeling Attacks inspired CST-SDL’s development.

One of the recent (and few) efforts to design a DSL
was made by Russo et al. [9] and continued in [10],
which offered the Cyber Range Automated Construc-
tion Kit (CRACK) SDL. CRACK SDL was devel-
oped with a focus on design, verification, code gener-

ISeCure



January 2025, Volume 17, Number 1 (pp. 59–73) 61

ation, and automatic scenario testing. This SDL can
describe the infrastructure and vulnerable services
running on the servers, user accounts and their privi-
leges, and basic vulnerabilities on different services.
CRACK SDL uses the pyDatalog 2 module to verify
the scenario models by checking if the trainee can
use their knowledge about the accounts credentials
and vulnerable services to reach a goal. Automated
deployment and testing are other notable features
of CRACK that allow scenario designer to examine
their designs on demand.

Costa et al. [11] presented the Virtual Scenario De-
scription Language (VSDL) for “automating the defi-
nition and deployment of arbitrarily complex cyber
range scenarios.” Scenario designers can use VSDL
to create a high-level model of their intended envi-
ronment’s infrastructure and make time-based modi-
fications to the deployed scenario. A model generated
using the VSDL contains expressions that determine
the changes in hardware resources based on a time-
based trigger, and the VSDL will apply these changes
when the conditions are met.

Somarakis et al. [14] introduced a metamodel called
the Security Assurance Model (SAM) for a cyber
training program. This metamodel records a com-
pany’s cyber assets, corresponding threads, vulnera-
bilities, and security controls. Also, three sub-models
were introduced to cover the cyber range, simulation,
and emulation information. The cyber range sub-
model is the one we are concerned with, as it is used
to describe information related to training programs.
This sub-model can define the actors, the organiza-
tion’s software assets, and training program phases.

Braghin et al. [13] introduced the Cybersecurity
Training Language (CTL). Scenario designers can
use CTL to model an arbitrary scenario by defining
the characteristics and relationships of IT assets and
specifying the network devices, servers, software, and
network connections. Code generation functions con-
sume the CTL-generated models to produce Open-
Stack HEAT 3 templates for deployment. This SDL
can be used to create red and blue team scenarios.

Yamin et al. [17] presented an SDL capable of mod-
eling arbitrary scenarios by defining nodes, routers,
services, vulnerabilities, teams, challenges, and agents.
Besides the notable details in the metamodel, which
allows the designer to model the different aspects
of infrastructure and training process, the provided
graphical user interface is a noticeable contribution
made by the authors. This SDL can be used to create
red and blue team scenarios.

2 https://sites.google.com/site/pydatalog/home
3 https://wiki.openstack.org/wiki/Heat

Table 1. comparison of the SDLs’ capabilities

SDL R
e
d

T
e
a
m

S
c
e
n
a
ri
o

B
lu

e
T
e
a
m

S
c
e
n
a
ri
o

P
u
rp

le
T
e
a
m

S
c
e
n
a
ri
o

M
u
lt
i-
so

lu
ti
o
n

D
e
si
g
n

N
o
n
-l
in

e
a
r
S
o
lu

ti
o
n

R
o
u
te

s

C
o
ll
a
b
o
ra

ti
o
n

G
a
m
if
ic
a
ti
o
n

T
e
st
in

g

CRACK SDL [10] ∗ ∗ ∗ ∗

VSDL [11] ∗ ∗

CTL [13] ∗

SAM [14] ∗ ∗ ∗

- [17] ∗ ∗ ∗

CST-SDL ∗ ∗ ∗ ∗ ∗ ∗ ∗

We compare the SDLs based on multiple criteria,
such as their capability to describe red, blue, and
purple team scenarios, define scenarios with multi-
ple solutions, consider gamification requirements, and
offer a solution for modeling trainees’ collaboration.
Table 1 shows the result of our comparison according
to these criteria. Most of the reviewed SDLs can de-
sign red and blue team scenarios but are not suitable
for designing purple team scenarios. Our proposed
SDL and CRACK SDL are the only SDLs capable
of describing multiple solutions in their model. How-
ever, CRACK SDL only allows the scenario designer
to describe the goal and vulnerabilities, not the solu-
tion. CST-SDL can define non-linear (graph-based)
solution paths, describe trainees’ collaboration, and
embed the gamification aspect of the scenario within
the model. In CST-SDL, we did not implement the
automated testing of deployment environments like
CRACK SDL since there are reliable solutions, like
Ansible 4 and Terraform 5 , for configuring the envi-
ronment based on the model criteria.

3 Motivation

Existing SDL solutions allow the scenario designers
to specify their intended training environment based
on the hardware specifications and software configu-
rations. The designer can describe the network topol-
ogy, select the software running on each server, man-
age files, and make changes at the run time if a trig-
ger happens (see VSDL [11]). Other capabilities of
existing SDLs are specifying the vulnerabilities and
training goals, defining trainees, and creating primary
training groups.

To demonstrate the need for a new SDL, let us con-
sider the workflow of designing a scenario using exist-
ing SDLs. First, the scenario designer uses the SDL
to define the infrastructure they intend to use during

4 https://www.ansible.com/
5 https://www.terraform.io/

ISeCure



62 CST-SDL: A Scenario Description Language for Collaborative ... — Shirmohammadi and Mahdavi

training. Depending on the SDL’s capabilities, this
includes the network topology, vulnerable software,
and other related aspects. Depending on the SDL,
designers can specify the training goal as infiltrating
a particular account using a chain of vulnerabilities.
Designers can define time-based triggers to modify
the hardware depending on the training environment
and their expectations of trainees’ progress. After de-
signing the scenario infrastructure, the designer has
to write questions to guide the trainees through the
scenario and provide them with the required knowl-
edge about their targets and steps (gamification). Cy-
ber ranges usually provide the designer with basic
facilities for gamification. Finally, the designer should
deploy and check their design to ensure the trainees
have the information and resources to play the sce-
nario (feasibility). It requires playing as each trainee
and considering the collaboration of different training
teams. In many training scenarios, designers can only
go up to one trainee or a group of similar trainees as
the time required for testing will grow.

The scenario design workflow requires a consider-
able amount of manual processing, interacting with
cyber range after designing the infrastructure for de-
ploying gamification and testing the feasibility of the
scenario. Reusing the scenario or modifying it, in the
best case, requires going through the test stage again,
which can be time and resource-consuming. All these
issues can be addressed by designing an SDL that
integrates gamification into the models and allows
the designer to specify the resources required for each
step individual trainees should take during the ses-
sion. If an SDL contains such information, the testing
process can be automated by checking the resources
of training groups, which reduces the testing time af-
ter designing or reusing the model to a few seconds.
Such automation allows the designers to create com-
plex scenarios with different routes for each trainee
and to verify their design to ensure the availability of
information and resources for every training group.

4 The Proposed Approach

This paper offers a new scenario description language
(SDL), called CST-SDL, that aims to verify scenarios
in which a group of trainees works together toward a
goal. In this type of scenario, the initial resources of
each trainee and the status of different infrastructure
components can play a role in the achievable outcome
of a trainee group. The following are our intentions
for designing a new SDL:

• Custom infrastructure: SDL should be ca-
pable of describing arbitrary infrastructures.

• Arbitrary scenarios: SDL should be capable
of describing Red, Blue, and Purple team sce-
narios.

• Multiple solutions: SDL should offer practical
solutions for specifying all the approaches one
can use to solve a scenario.

• Non-linear solution: SDL must not limit the
progress definition to a single sequence of ac-
tions.

• Collaboration: It is desired to group the
trainees to solve the scenario. SDL should be
capable of describing trainees’ collaboration.

• Gamification: SDL should offer facilities to de-
fine each trainee’s unique questions and progress
paths.

4.1 SDL’s Anatomy

Our studies of existing SDLs and experiments while
designing multiple security training sessions showed
that an SDL should address four topics: infrastruc-
ture, instructions, collaborations, and gamification.
CST-SDL was developed by absorbing existing SDLs’
concepts and extending them by applying our find-
ings. One can better understand the language struc-
ture and novelty by separately analyzing these topics
in the CST-SDL. Figure 1 shows the left half of the
metamodel diagram, while Figure 2 shows the right
half.

• Infrastructure: SDL should offer facilities to
describe arbitrary infrastructures. CST-SDL
offers classes representing networks, routers,
servers, accounts, software, services, and files
in our SDL. Each class provides a unique set of
properties for addressing the relevant informa-
tion. An abstract class, called ITEntity, acts as
the parent on which the preceding infrastructure
classes are built and offers common properties,
like initial permissions and status. Table A.1
(Appendix A) shows the definition of ITEntity
and infrastructure classes in our SDL. all the
classes end with Options inherit from ITEn-
tity and offer related properties of the entity in
their name. The NetworkMapping, Route, and
RouteMapping classes use basic data structures
within the NetworkOptions and RouterOptions
classes. The ITEntityPermission and ITEntityS-
tatus are data structures to hold information
about resource permissions and status when re-
quired.

• Instructions: In complex training scenarios,
multiple valid approaches might exist for reach-
ing a desired outcome. CST-SDL offers facilities
for describing different methods for solving the
scenario. We considered modeling the solutions
for solving a scenario as a directional acyclic
graph (DAG) in which every node has a set of
pre- and postconditions. This choice lets the
designer describe complicated solution patterns

ISeCure



January 2025, Volume 17, Number 1 (pp. 59–73) 63

Figure 1. CST-SDL’s metamodel diagram (left half)

with minor duplication. In CST-SDL, precon-
dition describes a set of permissions, tags, or
configurations a trainee should gain or cause
before entering a node. The postcondition holds
the same data structure as the precondition and
specifies the new permissions, tags, and config-
urations that a trainee might gain or cause be-
fore leaving the node. Table A.2 (Appendix A)
shows the State class, representing the DAG
node. State class uses the Condition class for
its pre- and postconditions.

• Collaborations: As mentioned earlier, our
SDL aims to verify scenarios where trainees
work together toward a goal automatically.
Each trainee might initially have unique re-
sources and privileges against the scenario
infrastructure. CST-SDL allows the designer
to specify the trainees’ route independently,
using the mapping property and assumes the
first state’s preconditions in the trainee’s map-
ping as his/her initial privileges and resources.
Table A.3 (Appendix A) shows the Trainee

and TrainingGroup classes, which are used to
specify the trainees and their collaboration as
a group. The Path class is used as a data struc-
ture to match the trainee’s path with levels
defined in gamification.

• Gamification: CST-SDL allows embedding
the gamification requirements within the model.
A question-based training session is a common
practice for gamification in many cyber ranges,
such as KYPO CR, and we used this method
as the gamification solution. Table A.4 (Ap-
pendix A) shows the classes used for gamifica-
tion in our SDL. We modified the KYPO CR’s
Training Definition by replacing some platform-
specific properties with general-purpose alterna-
tives. We also added a callback property to our
Level class, allowing the scenario designer to
make a GET request to an API endpoint when
trainees reach a node in DAG, making integrat-
ing custom solutions with CST-SDL easier. We
use Level class to provide trainees with informa-
tion and questions. The Question and Choice

ISeCure



64 CST-SDL: A Scenario Description Language for Collaborative ... — Shirmohammadi and Mahdavi

Figure 2. CST-SDL’s metamodel diagram (right half)

classes allow the designer to design multiple-
choice questions if needed, while the Hint class
provides trainees with basic aids during their
exercise.

4.2 SDL’s Verification

The scenario needs to be verified to ensure it is com-
patible with the constraints enforced by the deploy-
ment tools and the requirements of scenario design-
ers. In CST-SDL, we check the model before gener-
ating deployment artifacts, mainly to prevent errors
related to the tools we use for deployment (Ansible
and Terraforms). We also verify if the training teams
can reach the desired nodes of DAG based on their
members’ resources (feasibility). We implemented our
SDL using the Xtext 6 , a framework for development
domain-specific languages, which allows us to write
our verification logic using Java and Xtend 7 while
offering designers with a real-time verification as they
are making their model. We implemented multiple
constraints for different CST-SDL classes based on
their usage. Some of these constraints are as follows:

6 https://www.eclipse.org/Xtext/
7 https://www.eclipse.org/xtend/

• server’s IP should match the network.
• roots of DAG must have valid preconditions (if

provided) based on the infrastructure instances’
status.

• file paths and repositories should exist.
• time allocated for answering levels must be a

positive number.
• there should be no cycle in DAG.

Verifying the feasibility checks whether a group of
trainees can reach desired nodes of DAG by checking
their initial resources and assuming complete collab-
oration between them. This assumption means the
trainees will share their resources and knowledge dur-
ing the scenario with teammates. Each trainee be-
gins at a specified initial node, and the algorithm
checks whether they can proceed through the graph
by meeting the preconditions and postconditions of
the connected nodes.

The core idea is that the trainees will attempt to
extend their routes by moving through the DAG’s
nodes based on the conditions of the scenario. The
verification concludes when:

• The group collectively reaches all mandatory
nodes (target states).

ISeCure



January 2025, Volume 17, Number 1 (pp. 59–73) 65

• At least one trainee completes their route by
reaching a terminal state (a node with no fur-
ther outgoing edges).

If both conditions are satisfied, the training
group can solve the scenario. Two algorithms de-
termine this: Check Scenario Feasibility (CSF) and
ExtendSolutionGraph (ESG), which are shown in
Algorithm 1 and Algorithm 2 respectively.

4.2.1 The CSF Algorithm

The CSF algorithm is responsible for determining
whether the scenario is solvable by any of the training
groups.

(1) Initialize Infrastructure:
• Line 4: The initial status of the infras-

tructure is stored in the infDesc variable,
which represents the state of all the re-
sources available to the trainees. The state
will be updated as they progress through
the graph.

(2) Identify Terminal States:
• Line 5: The terminal states (endpoints
in the DAG) are fetched and stored in
terminalStates. These are nodes where
a trainee’s route can end successfully.

(3) Group Processing:
• Line 6: The algorithm iterates through

each trainingGroup in TrainingGroups.
• Line 7: For each group, buds (a list of
nodes to be explored) is initialized as an
empty set.

(4) Trainee Initialization:
• Lines 8-10: For each trainee in the
training group, their starting node
(initial state) is added to the buds set,
which represents the initial positions of all
trainees.

(5) Solution Graph Setup:
• Line 11: An empty solutionGraph is ini-

tialized. This graph will store the possible
states each trainee can reach.

• Lines 12-18: For each trainee, the algo-
rithm constructs an initial node in the solu-
tion graph based on their initial state.
The infrastructure description (infDesc)
is updated to reflect the trainee’s initial
position and the set of buds is updated to
include the trainee’s possible subsequent
nodes (children of the current node).

(6) Graph Extension Loop:
• Lines 19-20: A while loop is initiated to

expand the solution graph using the ESG
algorithm iteratively. The loop continues
until no further expansion is possible, at

which point the scenario is determined to
be either feasible or infeasible.

• Line 21: Calls the ESG function to extend
the solution graph.

Algorithm 1 Check Scenario Feasibility (CSF)

1: function CSF(ITEntities, SSG, TrainingGroups)

2: infDesc← initiateInfrastructureDescriptioin(
3: ITEntities)

4: terminalStates← getTreminlaStates(SSG)

5: for trainingGroup ∈ TrainingGroups do
6: buds← {}
7: for trainee ∈ trainingGroup.members do

8: buds← buds ∪ {trainee.initial state}
9: end for

10: solutionGraph← {}
11: for trainee ∈ trainingGroup.members do

12: solutionGraph← solutionGraph ∪ {Node(

13: state← trainee.initial state
14: infDesc← updateInfrastructureDesc-

15: ription(infDesc, trainee.initial state)

16: hasTerminal← False
17: buds← buds ∪ {trainee.initial state.
18: children}/{trainee.initial state}
19: targets← trainingGroup.target states
20: /{trainee.initial state}
21: parent← {}
22: )}
23: end for

24: while True do
25: solutionGraph← ESG(solutionGraph,

26: terminalStates)

27: end while
28: end for

29: end function

4.2.2 The ESG Algorithm

The ESG algorithm extends the solution graph by
checking if trainees can move to new nodes based on
the current infrastructure and node preconditions.

(1) Initialization:
• Line 2: A boolean grown is set to False.
This flag indicates if the solution graph
has been successfully extended.

• Line 3: newNodes is initialized as an empty
set, holding any new nodes added to the
solution graph.

(2) Processing Each Node:
• Line 4: The algorithm iterates through

each node in the current solutionGraph.
• Line 5: For each node, an empty set
removed buds is initialized to track which
buds (candidate nodes) will be removed
after processing.

(3) Precondition Check:
• Lines 6: For each bud (candidate node
to explore), the algorithm checks if the
preconditions of the bud are met, given

ISeCure



66 CST-SDL: A Scenario Description Language for Collaborative ... — Shirmohammadi and Mahdavi

the current infrastructure description
(infDesc).

• Lines 7-9: If the preconditions are satis-
fied, the solution graph is considered to
have grown (grown = True), meaning the
graph can be extended.

• Lines 10-22: A new node is created with
the following details:

◦ Line 13: State: The bud becomes a
new node in the graph.

◦ Lines 14-15: Infrastructure Update:
The infrastructure description is up-
dated to reflect the trainee’s move to
the new node.

◦ Lines 16-17: Terminal Check: If the
new node is a terminal state, the
hasTerminal flag is set to True.

◦ Lines 18-19: Buds Update: The set
of buds is updated to include the
children of the new node.

◦ Line 20: Target States Update: The
targets set is updated to remove
the newly visited node.

◦ Line 21: Parent Update: The parent
is set to node.

(4) Completion Check:
• Lines 24-31: If all target states are satisfied
(i.e., targets is empty) and the trainee
has reached a terminal state, the scenario
is considered feasible (EXIT::FEASIBLE).
The algorithm exits at this point, indicat-
ing success.

(5) Graph Growth Check:
• Lines 35-37: If the graph did not grow
during this iteration (grown = False),
the scenario is deemed infeasible, and
the algorithm exits with a negative result
(EXIT::INFEASIBLE).

• Line 38: If the graph grows, the new nodes
are added to the solution graph, and the
loop continues.

4.2.3 Complexity Analysis

In this section, we delve into the time and space com-
plexity of the CSE (Algorithm 1) and ESG (Algorithm
2). These algorithms are pivotal in constructing and
expanding solution graphs based on specific criteria.
Understanding their computational complexity is not
just a technical exercise but a crucial step in assessing
the performance and scalability of the overall system.

ESG Algorithm: The Extend Solution Graph
(ESG) algorithm (Algorithm 2) operates by iterating
over all nodes and their corresponding buds to expand
the graph when certain preconditions are met. This
iterative process is a crucial aspect of the algorithm’s

Algorithm 2 Extend Solution Graph (ESG)

1: function ESG(solutionGraph, terminalStates)

2: grown← False
3: newNodes← {}
4: for node ∈ solutionGraph do

5: removed buds← {}
6: for bud ∈ node.buds do

7: cond = checkPreconditions(bud, node.

8: infDesc)
9: if cond then

10: grown← True

11: removed buds← removed buds ∪ bud
12: newNodes← newNodes ∪ {Node(

13: state← bud

14: infDesc← updateInfrastruct-
15: ureDescription(node.infDesc, bud)

16: hasTerminal← node.hasTerminal OR
17: terminalStates.contain(bud)

18: buds← node.buds ∪ {bud.children}
19: /{bud}
20: targets← node.targets/{bud}
21: parent← node

22: )}
23: end if

24: if node.targets/{bud} is empty then

25: cond2 = node.hasTerminal
26: cond3 = terminalStates.contain(bud)

27: if cond2 OR cond3 then

28: solutionGraph← solutionGraph∪
29: newNodes

30: return EXIT :: FEASIBLE
31: end if

32: end if

33: end for
34: end for

35: if grown is False then

36: return EXIT :: INFEASIBLE
37: end if

38: solutionGraph← solutionGraph ∪ newNodes

39: return solutionGraph
40: end function

operation. Let N represent the number of nodes in
the solution graph and B represent the maximum
number of buds per node.

Time Complexity: The algorithm consists of two
nested loops. The outer loop runs over the nodes in
the solution graph, while the inner loop processes
each bud. Therefore, the time complexity of the ESG
algorithm is:

O(N ·B)

This analysis indicates that the algorithm’s perfor-
mance scales linearly with the number of nodes and
buds associated with each node, providing a clear
understanding of its scalability.

Space Complexity: The space complexity is de-
termined by the storage of the buds and new nodes
generated during the expansion process. Since the
algorithm processes each bud and stores the interme-
diate results, the space complexity is:

ISeCure



January 2025, Volume 17, Number 1 (pp. 59–73) 67

O(B)

CSF Algorithm: The Compute Solution Frame-
work (CSF) algorithm (Algorithm page 65) constructs
a solution graph for each training group and then
calls the ESG algorithm iteratively to expand it. Let
G be the number of training groups, M be the maxi-
mum number of members in a training group, and C
be the maximum number of buds associated with a
trainee’s initial state.

Time Complexity: The outer loop iterates over
the training groups (G), and for each group, it pro-
cesses the members to collect initial states and build
a solution graph. The construction of the solution
graph for each member involves processing the buds
of their initial state, which takes O(M ·C). Once the
solution graph is built, the algorithm enters a while
loop, calling the ESG algorithm until a specific con-
dition is met. The overall time complexity can be
expressed as:

O(G ·M · C +G ·M ·B)

This complexity accounts for processing the train-
ing groups and their members, constructing the solu-
tion graph, and expanding it through iterative calls
to the ESG algorithm.

Space Complexity: The space complexity of the
CSF algorithm is driven by the storage of the solution
graph and the buds for each trainee. The memory
required for storing the infrastructure description
and terminal states is also considered, leading to the
following space complexity:

O(M +N)

5 Evaluation

This section presents a basic training scenario con-
sisting of two trainees with different initial resources
collaborating to steal information from a target web
service. For this scenario, we use the following story:
“Alice (trainee1) is working for WebObjects, a fictional
startup that provides an object storage web service.
WebObjects currently allows users to store and re-
trieve binary files using their web application. There
are two types of users on WebObjects: normal users
who can only see their files’ URLs and inspector users
who can see all of the files’ URLs. Since WebObjects
was developed without appropriate security consider-
ations, anybody can download any file with the cor-
rect URL. Still, if a user tries to access a non-existing
URL, their IP will be banned for ten minutes. Alice
asks Bob (trainee2), and they make a plan to deceive
the cyber security team of WebObjects and steal the
URLs. Alice will activate the Test account, an old ac-
count used in the early development stage of WebOb-

jects for internal testing, which has inspector access
and an unknown but weak password. Alice then pre-
tends she is testing new features of WebObjects for a
while and unintentionally (very intentionally) forgets
to deactivate the Test account. Bob will brute force
the Test account’s password and download the URL
file from the web application. They will sell the data
to a mysterious customer looking for information.”

The scenario can be designed in four phases: de-
signing the infrastructure, specifying the questions
for guiding users through the scenario, specifying the
progress route per trainee, and grouping trainees into
training groups. With CST-SDL, we can perform all
four phases. Figure 3 shows the required infrastruc-
ture for this scenario. We use two separate networks
for internal and public traffic from WebObjects’ per-
spective. There are three servers: WWW is the web
server hosting the WebObjects web application and
database, PC1 is an internal computer for employees
(Alice), and PC2 is used by the client (Bob) to access
the web application. PC1 only needs a web browser
to access the WebObjects web application. PC2 re-
quires a web browser and Burp Suit 8 to perform the
attack. The WWW server needs to run multiple con-
tainers for storage (MinIO 9 and PostgreSQL 10 ) and
a Django 11 web application.

Listing 1 (Appendix B) shows the infrastructure
definition using CST-SDL. In lines 1-9, we defined
the PC1 as a server entity and specified the operat-
ing system image, hardware flavor (defined in Open-
Stack 12 ), management user, and existing accounts
(which is Alice’s account). We also set the initial sta-
tus as active, which indicates that the server instance
should be running as soon as the scenario begins.
The definition of PC2 and WWW are similar to PC1,
except that they have Bob and WWW accounts, re-
spectively, and Bob uses Kali Linux 13 .

In lines 17-24, we specified Alice’s account (Al-
ice ACC) by specifying the username, password, and
groups. The initial state is set to PRESENT, which
will be used when generating the deployment code
for Ansible to create the account. Bob’s account is
similar to Alice, so its definition is omitted in List-
ing 1 (Appendix B). The www account is defined in
lines 29-43, and besides the basic account informa-
tion, it shows the definition account’s files and soft-
ware. In lines 45-52, we defined the fixtures.json file,
which contains the initial database data and should
be copied to the www account. Installation of MinIO,

8 https://portswigger.net/burp
9 https://min.io/
10https://www.postgresql.org/
11https://www.djangoproject.com/
12https://www.openstack.org/
13https://www.kali.org/

ISeCure



68 CST-SDL: A Scenario Description Language for Collaborative ... — Shirmohammadi and Mahdavi

Figure 3. Motivation example’s infrastructure

PostgreSQL, and the web application are specified in
lines 45-66 (the latter two omitted as they are similar
to the first one) by using Docker 14 images (indicated
by “container: yes” in line 56) and the corresponding
deployment command (line 59). Network topology is
described in lines 68-73 and 76-82 for the internal
and public networks, respectively.

The second phase of defining the scenario is to
specify the questions for guiding the trainees through
the scenario. CST-SDL uses a similar model to KYPO
cyber range’s [19] gamification model, with a few
modifications (discussed in more detail in Section 4).
In CST-SDL, the level class can be used for providing
information and questions to the trainees during the
scenario. Listing 2 (Appendix B) shows the usage of
level class to define an information level (lines 1-4)
and a training level (lines 6-18). the information level
provides the trainees with the game’s story, which
trainees can ignore. In contrast, the training level
asks the trainees to answer a given question correctly
and has a score, hints, and penalty.

The third phase of designing the scenario is to
specify the progress route of each trainee. In this
basic scenario, trainees can play as either Alice or
Bob. Listing 3 (Appendix B) shows the definition

14https://www.docker.com/

of two routes for Alice and Bob using CST-SDL. In
Alice’s Route, the trainee should log in to PC1, log
in to her account on the WebObjects’ website, and
activate the Test account. Bob’s Route consists of
logging in to the PC2, brute-forcing the password
with Burp Suit, logging in to the Test account on the
WebObjects website, and fetching the data.

Listing 3 (Appendix B) defines these steps using
the CST-SDL’s state class. Each state can have a set
of children (which indicate the following steps in the
DAG), preconditions, and postconditions. In step 1
(lines 1-6), we specified a description for more read-
ability, a child step representing the following step
when the trainee finishes the current step, and a post-
condition. Postcondition in state 1 indicated that af-
ter this step, Alice (trainee) would have access to Al-
ice’s account (Alice ACC). step 2 has the same struc-
ture as step 1 with some preconditions added. Bob’s
route is defined using the state 4 through state 7 and
uses the preconditions and postconditions to show the
progressive changes in Bob’s resources and privileges
during his path.

Scenario designers can use pre- and postconditions
to address the state of infrastructure instances (like
line 14), user permissions over resources (like line 6),
or define custom tags when there is no appropriate
infrastructure instance (like line 16). They can decide
to define a trainee who can play multiple users (if
needed) in the scenario by adding appropriate levels
and states. Another important note is that the routes
can share nodes, indicating that multiple approaches
exist for reaching a specific state during the scenario.

In the fourth and final phase of scenario definition,
we define the trainees and group them into training
groups to show collaboration during training. List-
ing 4 shows the definition of Alice (t 1) and Bob
(t 2) using the CST-SDL. we can specify a trainee’s
resources at the beginning of the scenario (lines 2
and 11) and which levels a trainee should go through
(lines 5-8 and 14-18). CST-SDL allows the designer
to specify the corresponding state in DAG when a
trainee answers a level using the mapping property
of the Trainee class (lines 4 and 13). In lines 20-24,
we defined a training group to show the collaboration
between Alice and Bob.

CST-SDL tries to be a general-purpose SDL for de-
signing arbitrary scenarios by addressing some of the
shortcomings of existing SDL solutions. We could not
find any standard metrics or method for comparing
the SDLs except a high-level comparison between the
new features of SDL with the existing solutions (as
provided in Table 1). CST-SDL offers a more capable
modeling solution for addressing training collabora-
tion, multi-solution scenarios, and gamification. We

ISeCure



January 2025, Volume 17, Number 1 (pp. 59–73) 69

modeled other scenarios based on SEED project web
security labs 15 , such as SQL-Injection and XSS at-
tacks. We deployed the generated artifacts on the
KYPO CR to ensure our SDL’s competence.

6 Conclusion and Future Work

This paper presented a scenario description language
(SDL), CST-SDL, for addressing the requirements of
creating training environments in cyber ranges. CST-
SDL enables the designers to describe the training
infrastructure and explicitly specify trainees’ collabo-
ration, address gamification per trainee, and model
complex solution routes in their model. By doing so,
we could perform more complex validation algorithms
to determine the feasibility of the scenario based on
the collaboration of different trainees and reduce the
ambiguity about the gamification and actual progress
paths per trainee. We addressed some of the limita-
tions of CST-SDL, which we will try to handle in
future work. Our SDL can describe the infrastructure
entities, specify steps for solving the challenges, han-
dle trainees’ collaboration, and embed gamification
requirements. It also provides the scenario designer
with verification functionalities to check the proper-
ties and feasibility of their design. We plan to ex-
tend the capabilities of our SDL to detect patterns in
the trainees’ interactions with the infrastructure by
adding image recognition services and including new
algorithms for detecting deadlock situations where
none of the competitive training groups can progress
due to resources other groups have taken.

Acknowledgment

This research was done at the University of Isfahan
CERT Center (UI-CERT). The authors acknowledge
financial support from the Iranian National CERT
Center (Maher) and the Information Technology Or-
ganization of Iran (ITO). We would also like to ex-
press our gratitude to Dr. Behrouz Shahgholi and
other UI-CERT colleagues for sharing their pearls of
wisdom with us during this research.

References

[1] Cuong Pham, Dat Tang, Ken-ichi Chinen, and
Razvan Beuran. Cyris: A cyber range instan-
tiation system for facilitating security training.
In Proceedings of the 7th Symposium on Infor-
mation and Communication Technology, pages
251–258, 2016.

[2] Mika Karjalainen and Tero Kokkonen. Compre-
hensive cyber arena; the next generation cyber
range. In 2020 IEEE European Symposium on

15https://seedsecuritylabs.org/Labs 20.04/Web/

Security and Privacy Workshops (EuroS&PW),
pages 11–16. IEEE, 2020.

[3] Bernard Chng, Bennet Ng, Muhammad M
Roomi, Daisuke Mashima, and Xin Lou. Craas:
Cloud-based smart grid cyber range for scalable
cybersecurity experiments and training. 2024.

[4] Elochukwu Ukwandu, Mohamed Amine Ben
Farah, Hanan Hindy, David Brosset, Dimitris
Kavallieros, Robert Atkinson, Christos Tach-
tatzis, Miroslav Bures, Ivan Andonovic, and
Xavier Bellekens. A review of cyber-ranges and
test-beds: Current and future trends. Sensors,
20(24):7148, 2020.

[5] Michail Smyrlis, Konstantinos Fysarakis, George
Spanoudakis, and George Hatzivasilis. Cyber
range training programme specification through
cyber threat and training preparation models.
In Model-driven Simulation and Training En-
vironments for Cybersecurity: Second Interna-
tional Workshop, MSTEC 2020, Guildford, UK,
September 14–18, 2020, Revised Selected Papers,
pages 22–37. Springer, 2020.

[6] Magdalena Glas, Manfred Vielberth, and Guen-
ther Pernul. Train as you fight: evaluating au-
thentic cybersecurity training in cyber ranges.
In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems, pages
1–19, 2023.

[7] Magdalena Glas, Gerhard Messmann, and
Günther Pernul. Complex yet attainable? an
interdisciplinary approach to designing better
cyber range exercises. Computers & Security,
144:103965, 2024.

[8] Muhammad Mudassar Yamin and Basel Katt.
Modeling and executing cyber security exercise
scenarios in cyber ranges. Computers & Security,
116:102635, 2022.

[9] Enrico Russo, Gabriele Costa, and Alessandro
Armando. Scenario design and validation for
next generation cyber ranges. In 2018 IEEE 17th
International Symposium on Network Computing
and Applications (NCA), pages 1–4. IEEE, 2018.

[10] Enrico Russo, Gabriele Costa, and Alessandro
Armando. Building next generation cyber ranges
with crack. Computers & Security, 95:101837,
2020.

[11] Gabriele Costa, Enrico Russo, and Alessandro
Armando. Automating the generation of cyber
range virtual scenarios with vsdl. arXiv preprint
arXiv:2001.06681, 2020.

[12] Hussain Aldawood and Geoffrey Skinner. Chal-
lenges of implementing training and awareness
programs targeting cyber security social engi-
neering. In 2019 cybersecurity and cyberforensics
conference (ccc), pages 111–117. IEEE, 2019.

[13] Chiara Braghin, Stelvio Cimato, Ernesto Dami-

ISeCure



70 CST-SDL: A Scenario Description Language for Collaborative ... — Shirmohammadi and Mahdavi

ani, Fulvio Frati, Lara Mauri, and Elvinia Ric-
cobene. A model driven approach for cyber se-
curity scenarios deployment. In Computer Secu-
rity: ESORICS 2019 International Workshops,
IOSec, MSTEC, and FINSEC, Luxembourg City,
Luxembourg, September 26–27, 2019, Revised Se-
lected Papers 2, pages 107–122. Springer, 2020.

[14] Iason Somarakis, Michail Smyrlis, Konstanti-
nos Fysarakis, and George Spanoudakis. Model-
driven cyber range training: a cyber security as-
surance perspective. In Computer Security: ES-
ORICS 2019 International Workshops, IOSec,
MSTEC, and FINSEC, Luxembourg City, Lux-
embourg, September 26–27, 2019, Revised Se-
lected Papers 2, pages 172–184. Springer, 2020.

[15] Stuart Kent. Model driven engineering. In Inte-
grated Formal Methods: Third International Con-
ference, IFM 2002 Turku, Finland, May 15–18,
2002 Proceedings, pages 286–298. Springer, 2002.

[16] Douglas C Schmidt et al. Model-driven engi-
neering. Computer-IEEE Computer Society-,
39(2):25, 2006.

[17] Muhammad Mudassar Yamin, Basel Katt, and
Mariusz Nowostawski. Serious games as a
tool to model attack and defense scenarios for
cyber-security exercises. Computers & Security,
110:102450, 2021.

[18] Steven Cheung, Ulf Lindqvist, and Martin W
Fong. Modeling multistep cyber attacks for sce-
nario recognition. In Proceedings DARPA Infor-
mation Survivability Conference And Exposition,
volume 1, pages 284–292. IEEE, 2003.

[19] Jan Vykopal, Radek Ošleǰsek, Pavel Čeleda, Mar-
tin Vizvary, and Daniel Tovarňák. Kypo cyber
range: Design and use cases. 2017.

Navid Shirmohammadi received
his M.Sc. in Secure Computing in
2023 in Information Security at the
University of Isfahan. His work is fo-
cused on Automated Cyber Range
Solutions, emphasizing investigating
techniques for simplifying the Gener-

ation of Training Environments and Simulating Cyber
Attacks.

Behrouz Tork Ladani Behrouz
Tork Ladani received his B.Sc. in
Software Engineering from the Uni-
versity of Isfahan, Iran, in 1996 and
his M.Sc. in Software Engineering
from the Amir-Kabir University of
Technology, Tehran, Iran, in 1998.

He received his Ph.D. in Computer Engineering from
Tarbiat-Modarres University, Tehran, Iran, in 2005.

He is currently a full professor at the Department
of Software Engineering at the University of Isfahan.
Dr. Ladani is a member of the Iranian Society of
Cryptology (ISC). He is also the Managing Editor of
the Journal of Computing and Security (JCS) and a
member of the editorial board of the International
Journal of Information Security Science (IJISS). Dr.
Ladani’s research interests include Security Modeling
and Analysis, Software Security, and Soft Security.

Appendices

A Details of CST-SDL Classes

In this appendix, we provide the detailed properties
and attributes of the classes used in the CTS-SDL

Table A.1. CST-SDL classes used in infrastructure definition

Class Property Description

ITEntity name unique ID

entity type presents the type of ITEntity,
e.g., server

description optional description

initial permissions list of ITEntityPermission

initial status list of ITEntityStatus

options type-specific options

RouterOptions image router operating system

flavour hardware configuration of
router

mgmt user router administrator

mgmt protocol protocol used to access router

routers list of routers using the config-
uration

router mappings list of router mappings

RouterMapping ip router’s IP address

network the network connected to
router interface

RouterMapping ip router’s IP address

network the network connected to
router interface

Router gateway router’s gateway

mask router’s network mask used by
administrator

net router’s network address used
by administrator

NetworkOptions cidr network address and mask

accessible by user a boolean value that deter-
mines if trainees can access the
network

net mappings list of NetMapping

NetMapping ip IP address for a server

server name of the server getting the
IP address

CrontabOptions nm name identifier of crontab en-
try

mins job execution interval in min-
utes

job the job that crontab should
run

FileOptions src source path of the file

dst destination path of the file

owner owner of the file

mode access mode of the file

owner owner of the file

unarchive indicates if the file should be
uncompressed after copy

ISeCure



January 2025, Volume 17, Number 1 (pp. 59–73) 71

Table A.1. Continue

ServiceOptions service name of the service

status status of the service

ServerOptions image operating system image name

flavor hardware configuration file
name

mgmt user management username for de-
ployment

mgmt protocol management protocol for de-
ployment

accounts list of account on accounts on
the server

AccountOptions username account’s username

password account’s password

home account’s home directory

groups account’s groups

shell account’s shell program

services list of services on an account

files list of files on an account

softwares list of software on an account

SoftwareOptions software name software’s name

version software’s version

container a boolean value that deter-
mines if a docker container
should be deployed

repository software’s repository

command commands that should run to
execute the software

files files that should be copied for
executing the software

ITEntityPermission
negative a boolean value that negates

the permission value

value permission value, e.g., Read
and Write

ITEntityStatus negative a boolean value that negates
the state value

value status value, e.g., Active and
Exist

Table A.2. CST-SDL classes used in DAG definition

Class Property Description

State name unique ID

description optional description

callback an API endpoint to be called
using GET request when the
state reached

children list of child states in DAG

preconditions list of Conditions

postconditions list of Conditions

Tag key Tag’s key

value Tag’s value

StatusCondition condition value value of a ITEntityStatus

PermissionCondition
condition value value of a ITEntityPermission

‘

B Motivation Example Codes

This appendix contains the implementation of Sec-
tion 5’s example using the CST-SDL 16 .

16The file referenced as fixtures˙json in line 48 is a stan-
dard JSON file containing the necessary data to initialize the

database using Django’s fixture mechanism.

Table A.3. CST-SDL classes used for defining collaboration

Class Property Description

Trainee name unique ID

description optional description

initial state starting state

mapping list of Path

TrainingGroup name unique ID

description optional description

target states list of States that training
group should enter

members list of Trainee

Mapping level Mapping’s level

state Mapping’s state

Table A.4. CST-SDL classes used for gamification

Class Property Description

Level name unique ID

title level’s title

content level’s content

type level’s type, e.g., info, training
or exam

estimated duration estimated duration to answer
level

max score level’s maximum score

answer level’s answer (optional)

solution level’s solution

incorrect answere limitmaximum number of incorrect
answers before revealing solu-
tion

hints list of Hint

questions list of Question

Question type question’s type, e.g., multi-
choice and text

content question’s content

points question’s points (used for lev-
els with multiple questions)

penalty wrong answer penalty

required a boolean value that indicated
if answering the question is re-
quired

choices list of Choice

Choice content choice’s content

correct a boolean value that indicates
if the choice is the correct an-
swer

Hint title hint’s title

content hint’s content

penalty hint’s penalty

Listing 1: Defining server in CST-SDL

1 entity server PC1:

2 description: Internal PC

3 options:

4 image: ubuntu -focal -x86_64

5 flavor: standard.small

6 mgmt_user: ubuntu

7 accounts:

8 - Alice_ACC

9 initial_state ACTIVE

10
11 entity server PC2:

12 <omitted: similar to 1-9>

13
14 entity server WWW:

15 <ommited: similar to 1-9>

16

ISeCure



72 CST-SDL: A Scenario Description Language for Collaborative ... — Shirmohammadi and Mahdavi

17 entity account Alice_ACC:

18 options:

19 username: Alice

20 password: 4lic3

21 groups:

22 - Alice

23 - sudo

24 initial_state PRESENT

25
26 entity account Bob_ACC:

27 <omitted: similar to 17-24>

28
29 entity account WWW_ACC:

30 options:

31 username: www

32 password: secure9821

33 groups:

34 - docker

35 - www

36 - sudo

37 files:

38 - fixtures_json

39 softwares:

40 - minio

41 - postgresql

42 - webapp

43 initial_state PRESENT

44
45 entity file fixture_file:

46 description: database data

47 options:

48 source: fixtures.json

49 destination: /home/www/fixtures.json

50 owner: www

51 mode: 660

52 initial_state PRESENT

53
54 entity software minio:

55 options:

56 container: yes

57 software_name: https :// nexus.local

:8090/ images/minio

58 version: latest

59 commands: docker run -p 9000:9000 -p

9090:9090 --name minio -v ~/minio/

data:/data -e "MINIO_ROOT_USER=

minio_root" -e "MINIO_ROOT_PASSWORD

=fhd08as" minio server /data --

console -address ":9090" -d

60 initial_state PRESENT

61
62 entity software postgresql:

63 <omitted: similar to 54-60>

64
65 entity software webapp:

66 <omitted: similar to 54-60>

67
68 entity network internal_network:

69 options:

70 cidr: 10.10.10.0/24

71 net_mappings:

72 - 10.10.10.10: PC1

73 - 10.10.10.20: WWW

74 initial_state ACTIVE

75
76 entity network public_network:

77 options:

78 cidr: 10.10.20.0/24

79 net_mappings:

80 - 10.10.20.10: PC2

81 - 10.10.20.20: WWW

82 initial_state ACTIVE

Listing 2: Defining Questions in CST-SDL

1 level level_0:

2 title: Story

3 content: Alice is working for ...<omitted

>

4 type: info

5
6 level level_1:

7 title: Alice mission: Step 1

8 content: It is time to begin ...<omitted >

9 type: training

10 estimated_duration: 2

11 max_score: 10

12 answer: flag{R3ady4Bob}

13 solution: First Logint to ...<omitted >

14 solution_penalty: 10

15 hints:

16 - title: Activatation

17 content: Activate the Test account

18 penalty: 5

19
20 ...<omited >

Listing 3: Defining DAG in CST-SDL

1 state state_1:

2 description: PC1 -Alice Login

3 children:

4 - state_2

5 postconditions:

6 - Alice_ACC: ACCESS

7
8 state state_2:

9 description: WebObjects -Alice Login

10 children:

11 - state_3

12 preconditions:

13 - Alice_ACC: ACCESS

14 - webapp: PRESENT

15 postconditions:

16 - tag: WebObjects -Alice -Login

17
18 state state_3:

19 description: WebObjects=Test Activate

20 preconditions:

21 - tag: WebObjects -Alice -Login

22 postconditions:

23 - tag: WebObjects -Test -Active

24
25 state state_4:

26 description: PC2 -Bob Login

27 children:

28 - state_5

29 postconditions:

30 - Bob_ACC: ACCESS

31
32 state state_5:

33 description: Use PC2 -Bob ’s BurpSuit

repeater and brute force

34 children:

ISeCure



January 2025, Volume 17, Number 1 (pp. 59–73) 73

35 - state_6

36 preconditions:

37 - tag: WebObjects -Test -Active

38 - webapp: PRESENT

39 postconditions:

40 - tag: WebObjects -Test -Access

41
42 state state_6:

43 description: WebObjects -Test Login

44 children:

45 - state_7

46 preconditions:

47 - tag: WebObjects -Test -Access

48 - webapp: PRESENT

49 postconditions:

50 - tag: WebObjects -Test -fetch

51
52 state state_7:

53 description: WebObjects -Test fetches data

54 preconditions:

55 - tag: WebObjects -Test -Access

56 - tag: WebObjects -Test -fetch

57 - webapp: PRESENT

58 postconditions:

59 - tag: fetch -done

Listing 4: Defining training groups in CST-SDL

1 trainee t_1:

2 description: Trainee 1-Alice

3 initial_state: state_1

4 mapping:

5 - level_0:

6 - level_1: state_1

7 - level_2: state_2

8 - level_3: state_3

9
10 trainee t_2:

11 description trainee 2-Bob

12 initial_state state_4

13 mapping:

14 - level_0:

15 - level_4: state_4

16 - level_5: state_5

17 - level_6: state_6

18 - level_7: state_7

19
20 group training_group_1:

21 description: Team 1

22 members:

23 - t_1

24 - t_2

ISeCure


	1 Introduction
	2 Related Work
	3 Motivation
	4 The Proposed Approach
	4.1 SDL's Anatomy
	4.2 SDL's Verification

	5 Evaluation
	6 Conclusion and Future Work
	A Details of CST-SDL Classes
	B Motivation Example Codes

