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A B S T R A C T

In this paper we will construct a lattice-based public-key cryptosystem using

non-commutative quaternion algebra, and since its lattice does not fully

fit within Circular and Convolutional Modular Lattice (CCML), we prove

it is arguably more secure than the existing lattice-based cryptosystems

such as NTRU. As in NTRU, the proposed public-key cryptosystem relies

for its inherent security on the intractability of finding the shortest vector

in a certain non-convolutional modular lattice, yet it is efficient and cost

effective, contrary to cryptosystems such as RSA or ECC. The detailed

specification of the proposed cryptosystem, including the underlying algebraic

structure, key generation, encryption and decryption process and also the

issues regarding key security, message security, and probability of successful

decryption are explained. We will further show, based on the existing results for

lattice-reduction algorithms, that the proposed cryptosystem with a dimension

of 41 will have a security equal to NTRU-167.

c© 2011 ISC. All rights reserved.

1 Introduction

Until 1996, most important public-key cryptosystems
predominantly relied their security on the presumed
difficulty of solving some number-theoretic problems
such as the integer-factoring problem (IFP) or the
discrete-logarithm problem (DLP) in a certain fi-
nite group [1]. Number-theoretic public-key cryptosys-
tems suffer from the problems of slow and resource-
demanding hardware or software implementation, as
well as high-power consumption and more vulnerabil-
ity to side-channel attacks. In addition to these draw-
backs, it is not known whether IFP or DLP are solv-
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able in polynomial time (on a conventional computer)
or not [2].

During the past decade, it has been shown that
the Closest-Vector Problem (CVP) is NP-hard and
the Shortest-Vector Problem (SVP) is also NP-hard
under randomized reduction [3–5]. These results led
to new hopes for designing public-key cryptosystems
based on worst-case hardness of the NP-hard prob-
lems in a certain lattice [6]. Although most of lattice-
based cryptosystems (for example Goldreich, Gold-
wasser, Halevi and Atjai-Dwork cryptosystems) were
soon broken [6], the NTRU public-key cryptosystem,
officially introduced in 1998 [7], managed to win public
trust after numerous modifications and optimizations
[8, 9] and eliminating some minor flaws [10]. It has now
been fully standardized within IEEE P1363.1 [11].

Compared to more well-known cryptosystems such
as RSA or ECC, the greatest advantage of NTRU
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is that it works based on a class of basic arithmetic
operations whose inherent complexity is rather low,
amounting toO(N2) in worst-case, whereN is at most
a 9-bit integer. Computational efficiency along with
low cost of implementation have turned NTRU into
a suitable choice for a large number of applications
such as embedded systems, mobile phones, portable
devices, and resource constrained devices [12, 13].

After the adoption of NTRU as a secure and safe
scheme, several researches were conducted on general-
ization of the NTRU algebraic structure to different
Euclidean rings, including GF (2k)[x] [14], the non-
commutative ring of k × k matrices of polynomials in
Z[x]/(xN − 1) [15], the non-commutative ring M =
Mk(Z)[X]/(Xn − Ik×k), where M is a matrix ring of
k × k matrices of polynomials in R = Z[X]/(Xn − 1)
[16], and Dedekind domains such asZ[i],Z[

√
−2],Z[ζ3]

and Z[ζ5] [17–19]. Although generalization of NTRU
to GF (2k)[x] in [14] never had a desirable result and
was broken soon after [17], it resulted in a better un-
derstanding of the NTRU cryptosystem and suggested
the idea of replacing NTRU algebraic structure with
other rings and algebras.

In this paper we will extend the NTRU concept to
non-commutative quaternion algebra, and will prove
that the public-key cryptosystem based on this alge-
bra is actually applicable and reasonable, and such a
cryptosystem obtains its security from the hardness of
the shortest-vector problem in a certain non-circulant
lattice.

We considered the proposed scheme (hereafter
called QTRU) exactly identical to NTRU in order to
be able to cite the extensive and elaborate researches
carried out regarding the security aspects of the
cryptosystems in the past ten years. Hence, besides
changing the underlying algebra, no other changes
have been made. In particular, QTRU keeps the prob-
abilistic properties of NTRU intact. Thus, QTRU
inherits the main advantages of NTRU. Yet we argue
that the proposed cryptosystem is not the end but
the beginning of useful and constructive challenges
for innovation of schemes different from NTRU, in a
way that the best is made of the non-commutativity
of this type of algebra.

The least advantage of QTRU is that its lattice
is not fully classified under Convolutional Modular
Lattice (CML), and hence the existing open problems
with regard to the circular structure of this type of
lattice and the probability of cryptosystem failure
(with probable improvement in the Hermite factor of
the future Lattice Reduction Algorithms) will fade.
As a result of non-commutativity in the underlying
algebraic structure, and bi-linearity of multiplication,
many lattice-reduction algorithms work much slower.

Consequently, we can reduce the dimension of the
module considerably and, yet, obtain the same level
of security.

In completely even circumstances, i.e. choosing the
same parameters for both NTRU and QTRU, QTRU
works four times slower than NTRU and the data
are encrypted simultaneously as four vectors, but we
claim that the dimension of QTRU can be reduced and
the imposed speed reduction caused by quaternionic
processing, can be compensated.

This paper is organized as follows: Section 2 pro-
vides an overview of the NTRU public-key cryptosys-
tem. In Section 3 we briefly review some necessary
background in quaternion algebras. We dedicate Sec-
tion 4 to introducing the algebraic structure used in
QTRU. Sections 5 and 6 are devoted to the description
of QTRU and general analysis of the scheme. Last but
not least, Section 7 discusses the security of QTRU
against lattice-based attacks.

2 The NTRU Cryptosystem

The basic operations in NTRU take place in the ring
Z[x]/(xN − 1), which is known as the ring of convolu-
tion polynomials of rank N , where N is a prime [20, p.
392]. In the ring of convolution polynomials, addition
and multiplication require only O(N) and O(N2) op-
erations, respectively. Let define the following three
rings: R = Z[x]/(xN − 1), Rp = (Z/pZ)[x]/(xN − 1),
and Rq = (Z/qZ)[x]/(xN − 1). An element f of the
rings R, Rp, and Rq can be denoted interchange-
ably by a polynomial or its vector of coefficients: f =∑N−1
i=0 fi.x

i , [f0, f1, ..., fN−1]. In the convolution
rings, addition corresponds to the ordinary polynomial
addition, i.e., component-wise, but multiplication, de-
noted by the symbol ?, is explicitly defined as follows

f(x) : =

N−1∑
i=0

fix
i = [f0, f1, . . . , fN−1]1×N , fi ∈ Z

g(x) : =

N−1∑
i=0

gix
i = [g0, g1, . . . , gN−1]1×N , gi ∈ Z

h(x) : =

N−1∑
i=0

hix
i = [h0, h1, . . . , hN−1]1×N , hi ∈ Z

hk :=

k∑
i=0

fi.gk−i +

N−1∑
i=k+1

fi.gN+k−i =
∑

i+j
N
≡ k

fi.gj .

(1)

(Clearly, addition and multiplication in Rp or Rq are
equivalent to performing the same operations inR and
ultimately reducing the resulting coefficients mod p
or mod q, respectively.)
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Table 1. Definition of public parameters of NTRU.

Notation Definition
Typical Value for
N = 167, p = 3, q = 128

Lf {f ∈ R | f has df coefficients equal to +1, (df − 1) equal to -1, the rest 0} df = 61
Lg {g ∈ R | g has dg coefficients equal to +1, dg equal to -1, the rest 0} dg = 20
Lφ {φ ∈ R | φ has dφ coefficients equal to +1, dφ equal to -1, the rest 0} dφ = 18
Lm {m ∈ R | coefficients of m are chosen modulo p, between −p/2 and p/2} -

Let df , dg, dφ, and dm be constant positive integers
less than N (typically df = dg = dφ = dm = d ≈
N/3) and let Lf , Lm, Lφ , Lg ⊂ R be the subsets of
small polynomials as defined in Table 1.

With the above notations and definitions,
the NTRU public-key cryptosystem (known as
NTRUEncrypt) can now be described as follows.

Public Parameters. The public parameters
(N, p, q, d) in NTRU are assumed to be fixed and must
be agreed upon by both the sender and the receiver. N
and p are prime numbers and gcd(p, q) = gcd(N, q) =
1 and q � p, i.e., q is much bigger than p and N
determines the structure of the ring Z[x]/(xN − 1).
(Typical values includeN = 167 for moderate security,
N = 251 for high security, and N = 503 for very high
security along with p = 3, q = 256 and d ≈ N/3.)

Key Generation. To create a pair of public and
private keys, first two small polynomials g ∈ Lg and
f ∈ Lf are randomly generated. The polynomial f
must be invertible in bothRp andRq. Let f−1

p and f−1
q

denote the inverses in Rp and Rq, respectively. Hence,
by counting the number of irreducible polynomials
in Rq, the probability that a randomly generated
polynomial is invertible in Rq will be greater than
(1 − p−n)(N−1)/n, where n is the smallest integer
which satisfies pn ≡ 1 mod N [21]. However, in a rare
event that f is not invertible, a new polynomial f can
be easily generated.

While f , g, f−1
p , and f−1

q are kept secret, the public
key h is computed and published as follows

h = f−1
q ? g (mod q).

Encryption. The cryptosystem initially selects a
random polynomial φ ∈ Lφ, called the ephemeral key,
and encodes the input message into a polynomial m ∈
Lm. The ciphertext is computed as follows:

e = p.h ? φ+m (mod q).

Neglecting the time required for ephemeral key gen-
eration and conversion time of the incoming message
into the polynomial m ∈ Lm, and by pre-computing
and storing p.h, NTRU encryption takes O(N2) steps.

Decryption. The first step of the decryption pro-
cess starts by multiplying (convolving) the received
polynomial e by the private key f

a : = f ? e (mod q) = f ? (p.h ? φ+m) (mod q)

= p.f ? h ? φ+ f ? m (mod q)

= p.f ? f−1
q ? g ? φ+ f ? m (mod q)

= p.g ? φ+ f ? m (mod q).

(2)

In the second step, the coefficients of a ∈ Rq are
identified with the equivalent representatives in S :=
{−q/2 + 1, . . . ,+q/2}. Assuming that the public pa-
rameters have been chosen properly, the resulting poly-
nomial is exactly equal to p.g?φ+f ?m inR. With this
assumption, when we reduce the coefficients of a mod-
ulo p, the term p.g ?φ vanishes and f ?m ( mod p) re-
mains. In order to extract the message m, it is enough
to multiply f ? m (mod p) by f−1

p .

Successful Decryption. If the public parameters
(N, p, q, d) are chosen to satisfy q > (6d+ 1).p (where
d := df = dg = dφ, as defined earlier), the decryption
process will never fail. However, to have a better
performance and also to reduce the size of the public
key, the public parameter q can be chosen in such a way
that the probability of decryption failure is very small
(e.g., 2−80) [20, p. 395]. Successful decryption depends
on whether |p.g ? φ + f ? m|∞ < q or not. With a
few simple assumptions and probabilistic calculations
[17, pp. 16], the upper-bound for the probability of
successful decryption can be approximated as follows

Pr(successful decryption) =

(
2Φ(

q − 1

2σ
)− 1

)N
,

(3)
where Φ(·) denotes the standard normal distribution

function and σ ≈
√

36df .dg
N +

8df
6 .

The NTRU Lattice. The underlying hard problem
of NTRU is to find short vectors in Convolution Mod-
ular Lattices (CML), in which the lattice structure is
cyclic and the entire lattice basis is specified by a sin-
gle vector [22]. The idea of applying lattice-reduction
techniques against NTRU was first introduced by Cop-
persmith and Shamir in [23]. Many articles are pub-
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lished on the subject of lattice attacks against NTRU
[24–27]. The main idea of the attacks is as follows.

Consider the public-key h as a vector h =
[h0, h1, ..., hN−1]. Then, the NTRU lattice LNTRU
is the lattice spanned by the rows of the following
matrix of dimension 2.N

LNTRU =

[
λ.IN×N H
0−
N×N

q.IN×N

]

=


λ.IN×N

h0 h1 h2 · · · hN−1

hN−1 h0 h1 hN−2

hN−2 hN−1
. . . hN−3

...
...

. . .
...

h1 h2 h3 · · · h0

0−
N×N

q.IN×N


(4)

Assuming f ? h = g (mod q), it is clear that the
following vector is in the NTRU lattice LNTRU with
a relatively small L2-norm:

v = (λf0, λf1, · · · , λfN−1, g0, g1, · · · gN−1).

The constant λ > 0, which is known as the balancing
constant, is chosen to maximize the efficiency of the
lattice-reduction algorithms. According to [23] and
[26], the best choice for λ is a value around ‖f‖ / ‖g‖,
where ‖·‖ denotes L2-norm. The difference between
CML and other types of lattices is that if the vector
v = (f, g) is in a CML lattice, then the entireN shifted
vectors will also have the same norm and will be still
in the lattice.

An adversary tries to find a short vector in LNTRU
by using a lattice-reduction algorithm such as the LLL
or Deep Insertion Method. The length of the target
vector (i.e., decryption key) in LNTRU is O(1/

√
N)

times shorter than the one predicted by Gaussian
heuristic [20, pp. 400–403] and with a high probability
it may be one of the shortest vectors in LNTRU . If
an adversary manages to find a short enough vector
in the NTRU lattice LNTRU , then it may be used
as a spurious key. Subsequently in Section 7, we will
study that the lattice basis-reduction algorithms (e.g.,
LLL [28] and its variants) are able to solve SVP to
within a factor of 2O(N). Hence, in order to ensure
that the cryptosystem is secure, the lattice dimension
(which is determined by the parameter N) must be
large enough to provide a reasonable security level.
However, using all peculiar properties of CML [29] and
taking advantage of several tricks introduced in [30],
as well as using the most efficient lattice-reduction
algorithms, one may only be able to break NTRU-107
(N=107) [27].

3 A Brief Introduction to Quaternion
Algebra

In this section, quaternion algebra is briefly intro-
duced. Interested reader may refer to [31] or [32] for a
more elaborate description. Throughout this paper,
we take an algebra A to mean a finite-dimensional vec-
tor space V over a field F equipped with a bilinear and
distributive multiplication (denoted by ◦). Similarly,
by R-algebra we mean a finite-dimensional R-module
with identity over the commutative ring R endowed
with a bilinear multiplication.

Real quaternions, denoted by H := {α+β.i+γ.j+
δ.k | α, β, γ, δ ∈ R}, is the second normed division al-
gebra in the sense of Cayley-Dickson doubling method.
A quaternion can also be shown by ordinary vector
notations q = 〈α, β, γ, δ〉 over R4 or by q = 〈α, β〉 over
C2, as long as there is no ambiguity. As a vector space,
addition and scalar multiplication are defined by ordi-
nary component-wise vector addition and scalar multi-
plication. However, multiplication of two quaternions
(which is not commutative) is defined according to
the following rules:

i2 = j2 = k2 = −1 and ij = −ji = k.

According to the above rules defined for multiplication
of the basis elements, the formula for multiplication
of two quaternions q0 := a+ b.i+ c.j + d.k and q1 :=
α+ β.i+ γ.j + δ.k ∈ H is as follows

q0 ◦ q1 = (a.α− b.β − d.δ − c.γ) +

+ (a.β + b.α− d.γ + c.δ) .i

+ (d.β + c.α+ a.γ − b.δ) .j
+ (b.γ + a.δ − c.β + d.α) .k

(5)

The set of real quaternions together with ordinary
addition and multiplication defined as above, forms
a skew field. For each quaternion α+ β.i+ γ.j + δ.k,
the conjugate, denoted by q̄, is given by q̄ = α −
β.i − γ.j − δ.k, and the norm is defined by N(q) =
q ◦ q̄ = q̄ ◦ q = α2 + β2 + γ2 + δ2. The inverse of the
quaternion q is defined by q−1 = q̄

N(q) , provided that

N(q) 6= 0. The set of all real quaternions with norm 1
forms a non-commutative multiplicative group known
as SU(2), which is isomorphic to the multiplicative
group of all 2× 2 matrices of determinant 1 over C.

Quaternion algebra can be generalized by replacing
the field of real numbers R by any commutative ring
R with identity. Moreover, instead of defining i2 =
j2 = k2 = −1 and ij = −ji = k, one can define i, j
and k as i2 = a, j2 = b, k2 = −ab and ij = −ji = k,
provided that the product ab is not zero. Assume R
is an arbitrary commutative ring of characteristic not
equal to 2. Then, the quaternion algebra A can be
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defined over R as

A :=

(
a, b

R

)
=
{
α+β.i+γ.j+δ.k|α,β,γ,δ∈R, i2=a,j2=b,ij=−ji=k

}
.

Clearly, if we let a and b be −1 andR be the field of
real numbersR, we obtain the Hamiltonian quaternion,
i.e., H =

(−1,−1
R
)
. Based on the choice of a, b and the

nature of the ring R, we get two different isomorphic

types for A =
(
a,b
R

)
:

(1) A =
(
a,b
R

)
is a Euclidean division ring (i.e., a

ring that is equipped with a degree function,
see [33, pp. 151]) if and only if R is a field of

characteristic 0 and for q ∈
(
a,b
F

)
, N(q) = 0

implies q = 0.

(2) A =
(
a,b
R

)
is isomorphic to M2(R), the ring of

all 2× 2 matrices with entries from R. Such an
algebra is called a split algebra. In a split algebra,
there are some nonzero elements q ∈ A which
have no multiplicative inverses. Assuming R :=

GF (p) or R := GF (pn), algebra A =
(
a,b
R

)
is

absolutely a split algebra [32, 34].

Definition 1. The set of all integral quaternions L,
i.e., the set of quaternions whose all components are
in Z, is known as Lipschitz quaternions and indeed
forms a subring of the Hamiltonian quaternions H.

L = {a+ bi+ cj + dk | a, b, c, d ∈ Z} (6)

The set of all Lipschitz quaternions may be regarded
as a lattice in R4 which is not densely well-packed (in
the sense of Conway-Smith, see [31]) and so, factor-
ization of a Lipschitz quaternion into primes (up to
reordering and units) is far from unique.

4 Algebraic Structure of the
Proposed Scheme

We begin this section by defining the following algebras
over the finite fields GF (p) and GF (q), where p and
q are prime numbers

Lp := {a+ bi+ cj + dk | a, b, c, d ∈ GF (p)}
Lq := {a+ bi+ cj + dk | a, b, c, d ∈ GF (q)} .

(7)

Evidently, Lp and Lq are two finite split algebras
which are isomorphic to M2(Fp) and M2(Fq), respec-
tively, while the ring of Lipschitz quaternions L (6)
is a normed division algebra. Let ω be the ring ho-
momorphism from Z to Zp, given by ω(x) = x mod p.
We define the maps ψp and ψq from L to Lp and Lq,
respectively:

ψp (a0 + a1i+ a2j + a3k)

= ω(a0) + ω(a1)i+ ω(a2)j + ω(a3)k

= [a0]p + [a1]pi+ [a2]pj + [a3]pk

(8)

ψp will be defined in the same manner.

One can easily verify that the maps ψp and ψq are
homomorphisms from L to Lp and Lq, respectively.
Thus, every element in the finite split algebras Lp and
Lq can be represented by a coset representative in L.
Evidently, there are infinite coset representatives for
each of the equivalence class in L. Sometimes, certain
conditions can be imposed on each coset representative
to form a complete and unique set of representatives for
the equivalence classes (or a set of possibly non-unique
representatives that satisfies some specific conditions).
For example, the representatives can be chosen from
the equivalence classes such that each representative
has a minimum Euclidean norm among its infinite
alternatives.

Before we proceed, let us prove the following lemma
which will be helpful in the proof of the main result
of Section 7:
Lemma 1. Given H := 〈h0, h1, h2, h3〉 ∈ Lp, and
assuming that the quaternionic equation F ◦H = G
has at least one solution in Lp, the set of all solutions
(which are not all distinct) forms an integer lattice of
dimension 8 in Z8.

Proof. LetF := 〈f0, f1, f2, f3〉 and G := 〈g0, g1, g2, g3〉
∈ Lp be a pair of solutions for the quaternionic equa-
tion F ◦ H = G. According to the multiplication
formula (5), the relation F ◦H = G ∈ Lp leads to
the following system of linear equations

f0.h0 − f1.h1 − f2.h2 − f3.h3 = g0 + k0.p

f0.h1 + f1.h0 + f2.h3 − f3.h2 = g1 + k1.p

f0.h2 − f1.h3 + f2.h0 + f3.h1 = g2 + k2.p

f0.h3 + f1.h2 − f2.h1 + f3.h0 = g3 + k3.p

(9)

Now, consider the lattice Lh generated by the rows
of the following matrix

Mh :=



1 0 0 0 h0 h1 h2 h3

0 1 0 0 −h1 h0 −h3 h2

0 0 1 0 −h2 h3 h0 −h1

0 0 0 1 −h3 −h2 h1 h0

0 0 0 0 p 0 0 0
0 0 0 0 0 p 0 0
0 0 0 0 0 0 p 0
0 0 0 0 0 0 0 p


(10)

As we can see, the rows of the above matrix are lin-
early independent and the latticeLh is full rank. From
(9), it is clear that

〈f0, f1, f2, f3,−k0,−k1,−k2,−k3〉 ·Mh =

〈f0, f1, f2, f3, g0, g1, g2, g3〉 (11)
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and hence, 〈f0, f1, f2, f3, g0, g1, g2, g3〉 ∈ Lh. Con-
versely, by taking a linear combination of the
rows of Mh, we can get the vectors of the form
〈f0, f1, f2, f3, g0, g1, g2, g3〉 that satisfy the system
of equations (9). Thus, the lattice Lh of determi-
nant p4 comprises all the solutions to the equation
F ◦H = G as one of the lattice points.

Consider the rings Zp[x]/(xN −1) and Zq[x]/(xN −
1) that are used in NTRU and let define the following
quaternionic algebras A, Ap and Aq:

A :=

(
−1,−1

Z[x]/(xN − 1)

)
Ap =

(
−1,−1

Zp[x]/(xN − 1)

)
,Aq =

(
−1,−1

Zq[x]/(xN − 1)

)
.

(12)

For simplicity, p, q and N are all assumed to be
prime numbers. Since Zp[x]/(xN−1) and Zq[x]/(xN−
1) are finite rings of characteristics p and q, respec-
tively, one can easily conclude that Ap and Aq are
finite split algebras. In other words, Ap and Aq alge-
bras possess all features of quaternion algebras, except
that there are some nonzero elements whose norm is
zero, and naturally such elements do not have a mul-
tiplicative inverse. Let us elaborate more on algebras
Ap and Aq

Ap : =

(
−1,−1

Zp[x]/(xN − 1)

)
= {f0(x) + f1(x).i+ f2(x).j + f3(x).k |
f0, f1, f2, f3 ∈ Zp[x]/(xN − 1)}.

Aq : =

(
−1,−1

Zq[x]/(xN − 1)

)
= {g0(x) + g1(x).i+ g2(x).j + g3(x).k |
g0, g1, g2, g3 ∈ Zq[x]/(xN − 1)}.

Assume that q0, q1 ∈ Ap (or Aq), q0 = a(x) +
b(x).i + c(x).j + d(x).k and q1 = α(x) + β(x).i +
γ(x).j+δ(x).k. Then, the addition and multiplication
of two quaternions, norm and multiplicative inverse
are defined as follows

• Addition: q0 + q1 = (a(x) + α(x)) + (b(x) +
β(x)).i+ (c(x) + γ(x)).j + (d(x) + δ(x)).k.
• Multiplication:

q0 ◦ q1 = (a(x)?α(x)−b(x)?β(x)−d(x)?δ(x)−c(x)?γ(x))

+(a(x)?β(x)+b(x)?α(x)−d(x)?γ(x)+c(x)?δ(x)).i

+(d(x)?β(x)+c(x)?α(x)+a(x)?γ(x)−b(x)?δ(x)).j

+(b(x)?γ(x)+a(x)?δ(x)−c(x)?β(x)+d(x)?α(x)).k,
where ? denotes the convolution product, and
addition and multiplication of the coefficients are
performed modulo p and q.

• Conjugation: q̄0 = a(x)−b(x).i−c(x).j−d(x).k.

• Norm: By a slight abuse of the word norm, we de-
fine the squared norm of a quaternion as N(q0) =
q0 ◦ q̄0 = a(x)2 + b(x)2 + c(x)2 + d(x)2.

• Multiplicative inverse

N(q0) 6= 0⇒

q−1
0 =

q̄0

N(q0)

=
(
a(x)2 + b(x)2 + c(x)2 + d(x)2

)−1 ·
(a(x)− b(x).i− c(x).j − d(x).k).

Note that multiplication of two polynomials and in-
verse of a polynomial are taken in the underlying ring.
The following operations will be needed for computing
the inverse of an element in Aq

(I) Calculation of g(x)← a(x)2 + b(x)2 + c(x)2 +
d(x)2 in the underlying ring Zq[x]/(xN − 1)
(including 4.N2 multiplications and 3.N addi-
tions) with the worst-case complexity ofO(N2).

(II) Calculation of g(x)−1 in the ring Zq[x]/(xN−1)
with complexity ofO(N2log(q2)), where q is the
characteristic of the underlying field/ring([35]).

(III) Calculation of g(x)−1.(a(x)− b(x).i− c(x).j −
d(x).k) (including 4N2 multiplications) with
the worst-case complexity of O(N2).

One can easily prove that the rings
(

−1,−1
Zp[x]/(xN−1)

)
and

(
−1,−1

Zq [x]/(xN−1)

)
are isomorphic to the ring ofN×N

circulant matrices with entries in F = Zp and F = Zq,
respectively. Thus, each of the isomorphic representa-
tion of these rings can be used without any ambiguity.
Hence, we will use polynomial representation for the
description of the proposed scheme and matrix repre-
sentation for lattice analysis.

Definition 2. For a quaternion F := f0(x) +
f1(x).i + f2(x).j + f3(x).k in A, where fi(x) :=
N−1∑
j=0

fi,j .x
j := [fi,0, fi,1, ..., fi,N−1], define the follow-

ing notations

‖F ‖∞ = max(fi,j)
06i63, 06j6N−1

− min(fi,j)
06i63, 06j6N−1

(13)

‖F ‖2 =

√√√√ 3∑
i=0

N−1∑
j=0

f2
i,j (14)

After setting up the required notation and algebras
A, Ap and Aq, we describe the proposed scheme in
next section in detail.

5 Proposed Scheme: QTRU

In the proposed cryptosystem, encryption, decryption
and key generation are taken place in a module, and
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similar to NTRU, the security of the cryptosystem
depends on three parameters (N, p, q) and four subsets

Lf , Lm, Lφ , Lg ⊂ A =
(

−1,−1
Z[x]/(xN−1)

)
. The constants

N , p and q play a similar role as in NTRU except that
for simplicity these constants are supposed to be all
prime numbers. The constants df , dg, dφ, and dm and
the subsets Lf , Lφ , Lg, and Lm are defined exactly
as in Table 1. The proposed cryptosystem operates as
described below.

Key Generation. In order to generate a pair of pub-
lic and private keys, two small quaternions F and G
are randomly generated. By “small quaternion” we
mean a quaternion with a small ‖·‖∞ norm (see Defi-
nition 2).

F = f0 + f1.i + f2.j + f3.k, f0, f1, f2, f3 ∈ Lf ,

G = g0 + g1.i + g2.j + g3.k, g0, g1, g2, g3 ∈ Lg.

The quaternion F must be invertible in Ap =(
−1,−1

Zp[x]/(xN−1)

)
and Aq =

(
−1,−1

Zq [x]/(xN−1)

)
. As men-

tioned in the previous section, the necessary and suffi-
cient condition for F to be invertible in Ap and Aq is
that the polynomial ‖F ‖ = (f2

0 + f2
1 + f2

2 + f2
3 ) be in-

vertible in the rings Zp[x]/(xN−1) and Zq[x]/(xN−1).
Given the fact that invertibility of quaternion F
depends on the four polynomials f0, f1, f2, f3, there
is much more freedom in choosing the polynomials. If
the generated quaternion is not invertible in Ap and
Aq, a new quaternion can easily be generated.

In the second step, the inverses of F (denoted by
F p and F q ) will be computed as follows

F p = (f2
0 + f2

1 + f2
2 + f2

3 )
−1︸ ︷︷ ︸

a scalar from Zp[x]/(xN−1)

·F ∗=µ0+µ1.i+µ2.j+µ3.k

F q = (f2
0 + f2

1 + f2
2 + f2

3 )
−1︸ ︷︷ ︸

a scalar from Zq [x]/(xN−1)

·F ∗=η0+η1.i+η2.j+η3.k.

Now, the public key, which is a quaternion, is calcu-
lated and then will be made public as follows.

H = F q ◦G =
(η0 ? g0 − η1 ? g1 − η3 ? g3 − η2 ? g2)+
(η0 ? g1 + η1 ? g0 − η3 ? g2 + η2 ? g3).i+
(η3 ? g1 + η2 ? g0 + η0 ? g2 − η1 ? g3).j+
(η1 ? g2 + η0 ? g3 − η2 ? g1 + η3 ? g0).k.

(15)

The quaternions F , F p and F q will be kept secret in
order to be used in the decryption phase. It seems that
the key generation in QTRU is 16 times slower than
that of NTRU, when the same parameters (N, p, q)
are used in both cryptosystems. However, in QTRU,
we can work with a smaller dimension N , without
reducing the system security.

We note that if the coefficients of i, j, and k in F
and G are all set to zero, then QTRU is completely
converted into NTRU.

Encryption. In the encryption process, the system
first generates a random quaternion Φ = φ0 +
φ1.i + φ2.j + φ3.k, where φ0, φ1, φ2, φ3 ∈ Lφ. The
plaintext must be converted into a quaternion M =
m0 +m1.i+m2.j+m3.k, including four small polyno-
mials m0,m1,m2,m3 ∈ Lm. The messages could be
generated from the same or four different sources but
transformed into one quaternion based on a simple
and pre-determined encoding scheme. The ciphertext
will be computed as follows

E = p.H ◦Φ + M ∈ Aq. (16)

Encryption needs one quaternionic multiplication in-
cluding 16 convolution multiplications with the worst
case running time O(N2), and 4 polynomial additions
which take fewer than O(N) steps. In the encryption
phase, a total of four data vectors are encrypted at
once.

Decryption. In the first step, the received ciphertext
E is multiplied by the private key F on the left

B := F ◦E = F ◦ (p.H ◦Φ + M) mod q

= (F ◦ p.H ◦Φ + F ◦M) mod q

= (p.F ◦ F q ◦G ◦Φ + F ◦M) mod q

= (p.G ◦Φ + F ◦M) ∈ Aq.

The coefficients of the four polynomials in the resulting
quaternion B must be reduced mod q, and all of the
coefficients are chosen in the interval (−q/2,+q/2].
In other words, the set of distinct representatives is
chosen to be Ω = {−q/2 + 1, · · · ,+q/2}. Assuming
that B ∈ Zq[x]/(xN − 1) is exactly equal to p.G ◦
Φ +F ◦M in A, when B is reduced mod p, the term
p.G ◦ Φ vanishes and F ◦M (mod p) remains. In
order to extract the original message M , it will suffice
to multiply F ◦M (mod p) by F p on the left and
adjust the resulting coefficients within the interval
Λ = [−p/2,+p/2].

6 Analyzing QTRU

In this section, we analyze QTRU and discuss the
probability of successful decryption, key security, mes-
sage security, and the message expansion rate. More-
over, we suggest a set of parameters for the proposed
scheme.

Successful Decryption. Probability of successful
decryption in QTRU is calculated in the same way
as NTRU and under the same assumptions consid-
ered in [21] and [17]. Moreover, for successful decryp-
tion in QTRU, all integer coefficients of F ◦ E =
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(p.G◦Φ+F ◦M) must lie in the interval
[−q+1

2 , +q−1
2

]
.

Hence, we obtain

A := F ◦E = (p.G◦Φ+F ◦M) = a0+a1.i+a2.j+a3.k,
(17)

where

a0 : = p.g0 ? φ0 − p.g1 ? φ1 − p.g3 ? φ3 − p.g2 ? φ2

+ f0 ? m0 − f1 ? m1 − f3 ? m3 − f2 ? m2

= [a0,0, a0,1, ..., a0,N−1],

a1 : = p.g0 ? φ1 + p.g1 ? φ0 − p.g3 ? φ2 + p.g2 ? φ3

+ f0 ? m1 + f1 ? m0 − f3 ? m2 + f2 ? m3

= [a1,0, a1,1, ..., a1,N−1],

a2 : = p.g3 ? φ1 + p.g2 ? φ0 + p.g0 ? φ2 − p.g1 ? φ3

+ f3 ? m1 + f2 ? m0 + f0 ? m2 − f1 ? m3

= [a2,0, a2,1, ..., a2,N−1],

a3 : = p.g1 ? φ2 + p.g0 ? φ3 − p.g2 ? φ1 + p.g3 ? φ0

+ f1 ? m2 + f0 ? m3 − f2 ? m1 + f3 ? m0

= [a3,0, a3,1, ..., a3,N−1].

One can easily estimate that if we consider all NTRU
assumptions, the expected values for all coefficients of
a0, a1, a2, a3 remain equal to zero and their variance
quadruples. We know that fi ?mj(i, j = 0, 1, 2, 3) and
gi ? φj(i, j = 0, 1, 2, 3) are the products of two small
polynomials and that the coefficients of fi, gi, and φi
are assumed to be independent random variables that
randomly take one of the values: −1, 0, and +1. Now,
according to the definition of the subsets Lf and Lg
from Table 1, we obtain

fi = [fi,0, fi,1, ..., fi,N−1] i = 0, 1, 2, 3,

gi = [gi,0, gi,1, ..., gi,N−1] i = 0, 1, 2, 3,

φi = [φi,0, φi,1, ..., φi,N−1] i = 0, 1, 2, 3,

Pr(fi,j = 1) =
df
N
, Pr(fi,j = −1) =

df − 1

N
≈ df
N
,

Pr(fi,j = 0) =
N − 2df

N
,

Pr(gi,j = 1) = Pr(gi,j = −1) =
dg
N
,

Pr(gi,j = 0) =
N − 2dg

N
,

Pr(φi,j = 1) = Pr(φi,j = −1) =
dφ
N
,

Pr(φi,j = 0) =
N − 2dφ

N
,

Pr(mi,j = j) =
1

p
, i = 0, · · · , 3, j =

−p+ 1

2
...

+p− 1

2
.

Under the above assumptions, we get E[fi,j ] ≈ 0,
E[gi,j ] = 0, E[ri,j ] = 0, and E[mi,j ] = 0. Therefore,
we have

E[ai,j ] = 0 i = 0, 1, 2, 3, j = 0, ..., N − 1.

In order to calculate V ar[ai,j ], analogous to NTRU,

it is sufficient to write

V ar[φi,k.gj,l] =
4dφ.dg
N2

(18)

V ar[fi,k.mj,l] =
df (p− 1).(p+ 1)

6.N
(19)

i, j = 0, 1, 2, 3, k, l = 0, ..., N − 1.

Thus we have,

V ar[a0,k] = V ar[
∑

i+j
N
≡ k

(p.g0,i ? φ0,j − p.g1,i ? φ1,j

− p.g3,i ? φ3,j − p.g2,i ? φ2,j + f0,i ? m0,j − f1,i ? m1,j

− f3,i ? m3,j − f2,i ? m2,j)].

(20)

By substituting the values of V ar[φi,kgj,l] and
V ar[fi,kmj,l] from (18) and (19), we obtain

V ar[a0,k] =
16p2dφdg

N
+

4df (p− 1)(p+ 1)

6
.

In a similar way, we have

V ar[a1,k] = V ar[a2,k] = V ar[a3,k] =

16p2dφdg
N

+
4df (p− 1)(p+ 1)

6
.

It is desirable to calculate the probability that ai,k lies
within

[−q+1
2 , +q−1

2

]
, which implies successful decryp-

tion. With the assumption that ai,k’s have normal dis-
tribution with zero mean and the variance calculated
as above, we have

Pr

(
|ai,k| ≤

q − 1

2

)
= Pr

(
−q − 1

2
≤ ai,k ≤

q − 1

2

)
= 2Φ

(
q − 1

2σ

)
− 1,

where Φ denotes the standard normal distribution
function and

σ =

√
16p2dφdg

N
+

4df (p− 1)(p+ 1)

6
.

Assuming that ai,k’s are independent random vari-
ables, the probability for successful decryption in
QTRU can be calculated through the following two
observations

• The probability for each of the messages m0, m1,
m2, or m3 to be correctly decrypted is(

2Φ(
q − 1

2σ
)− 1

)N
.

• The probability for all the messages m0, m1, m2,
and m3 to be correctly decrypted is(

2Φ(
q − 1

2σ
)− 1

)4.N

.

It is apparent that in QTRU, the variance of the
coefficients (p.G ◦Φ + F ◦M) increases by a factor
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Table 2. The probability of successful decryption in QTRU, security level of the private key, and message security according to

some generic parameters dφ , dg , df , p = 3, q, N .

Security

Level

N q df dg dφ Key Security Message

Security

Message

Expansion

Pr(successful
decryption)

Moderate 107 127 15 12 5 1.84× 1060 7.84× 1031 ≈ 4.4 0.9997119974
Moderate 107 191 20 12 10 1.84× 1060 1.95× 1053 ≈ 4.4 0.9999971752

High 149 191 20 12 10 7.78× 1067 3.38× 1059 ≈ 4.6 0.9999998808
High 149 191 22 15 12 1.56× 1079 7.78× 1067 ≈ 4.6 0.9999845041
High 149 255 50 20 15 1.986× 1095 1.56× 1079 ≈ 4.6 0.9999563737
High 149 255 35 25 20 2.877× 10108 1.99× 1095 ≈ 4.6 0.9994484943
High 167 255 40 20 18 7.11× 1099 1.87× 1093 ≈ 4.7 0.9999808954
High 167 255 50 20 18 7.11× 1099 1.87× 1093 ≈ 4.7 0.9999167707
High 167 255 40 24 22 4.91× 10111 9.60×10105 ≈ 4.7 0.9993964435

Highest 211 255 40 20 18 9.24× 10108 2.34×10101 ≈ 4.8 0.9999974680
Highest 211 255 30 24 22 8.37× 10122 1.38×10116 ≈ 4.8 0.9999782250
Highest 257 255 40 20 18 2.93× 10116 1.13×10108 ≈ 5.1 0.9999995888
Highest 257 255 30 24 24 1.29× 10132 1.29×10132 ≈ 5.1 0.9999923928

of 4 and, hence, the probability for decryption failure
increases. In return, constant parameters of the system,
including dφ , dg, df , q, andN , can be chosen in such a
way that the decryption failure rate in QTRU remains
equal to that of NTRU. The rightmost column of
Table 2 shows the probability for successful decryption
for some proposed values of dφ , dg, df , q, and N .

Brute-Force Attack. To conduct a brute-force at-
tack against QTRU, an attacker who knows the public
parameters, including the public key H = F−1

q ◦G,
dφ, dg, df , q, p and N , must simply try each possible
key in Lf (by multiplying on the left) until (s)he finds
a short key for decryption. The size of the key space
Lf (≈ Lg) is calculated as follows

#Lf =

(
N

df

)4(
N−df
df

)4

=
(N !)

4

(df !)8(N − 2df )!4
,

#Lg =

(
N

dg

)4(
N−dg
dg

)4

=
(N !)

4

(dg!)8(N − 2dg)!4
.

Note that just like NTRU, F and all of its scalar
rotations (xi · F ) can be served as decryption keys.
Thus, the total state space which an attacker has to
search for an encryption key is about #Lf/N (see
the values in the 8th column of Table 2). If enough
memory is provided, the search time could be reduced
to
√

#Lf/N using Meet-In-The-Middle attack [36].

Similarly, in order to find the original message using
brute-force attack, the attacker must search in Lφ.
Thus, the message security is #Lφ/N for brute-force
attack (shown at the 9th column of Table 2) and√

#Lφ/N for Meet-In-The-Middle attack, where

#Lφ =
(N !)

4

(dφ!)8(N − 2dφ)!4
.

For typical values of N , a brute-force attack appears
to be practically impossible. Therefore, the QTRU
cryptosystem seems to be completely secure against
the brute-force attack.

Chosen Ciphertext Attacks. Since the basic
scheme in QTRU is similar to NTRU, the security and
survivability of the proposed cryptosystem against
adaptively chosen ciphertext attacks [37] is exactly
equivalent to NTRU, and therefore the techniques
proposed for NTRU to prevent such attacks [8] (e.g.,
Padding techniques), can be used just as well for
QTRU.

Message Expansion. Similar to NTRU, the length
of the encrypted message in QTRU is more than the
original message and that is part of the price one
has to pay for gaining more speed in both cryptosys-
tems. The expansion ratio can be easily calculated as
log |C|
log |P | = log q4N

log p4N
= log q

log p , where C is the state space for

the encrypted message and P is the state space for
plaintext; for NTRU and QTRU, this ratio depends
merely on p and q. Table 2 shows the message expan-
sion rate for some typical values of p and q. Message
expansion rate for typical parameters in both NTRU
and QTRU fluctuates between 4 and 5.

7 Analyzing Lattice Attacks Against
QTRU

In this section we prove that the security of QTRU
relies on the intractability of shortest-vector problem
(SVP) in a certain type of lattice which is not fully
circular. Obviously, Quaternionic matrices (and, more
generally, all the matrices which are defined over a
skew field) lack many properties of the matrices which
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are defined over a field or commutative ring. For ex-
ample, determinant is not generally well-defined for
quaternionic matrices 1 , and, many basic concepts of
the lattice theory, such as unimodular matrices (i.e.,
matrices with det(U) = ±1 which preserve the struc-
ture of a lattice), and fundamental parallelepiped vol-
ume lose their meanings in the context of quaternionic
matrices. Since the public key in QTRU is in the form
H = F q ◦G ∈ Aq, the only way which remains for
attacking this special scheme and finding a suitable
key for decryption is to expand F ◦H = G (mod q)
as a system of linear equations and form a lattice of
dimension 8.N . In the following proposition we prove
that the security of the proposed scheme relies on the
intractability of SVP in a certain type of lattice.
Proposition 1. Given the quaternion H ∈ Aq and
assuming that the quaternionic equation F ◦H = G
has at least a pair of solutions F ,G in Aq, then

(a) the set of all pairs of solutions (which are not all
distinct), forms the integer lattice

LH := Row Span

[
I4N×4N H4N×4N (H)
0−

4N×4N
q.I4N×4N

]
of determinant q4.N and rank 8.N in Z8N .

(b) Assume that ‖F‖2 6 λ and ‖G‖2 6 λ. If λ �√
2N.q
πe , then with a probability greater than 1 −
λ√
2N.q
πe

, finding 〈F ,G〉 will be turned into the

shortest-vector problem in the lattice LH.

Proof. (a) Let F := 〈f0(x), f1(x), f2(x), f3(x)〉 ∈ Aq
and G := 〈g0(x), g1(x), g2(x), g3(x)〉 ∈ Aq be a pair
of solutions for the quaternionic equation F ◦H = G.
Similar to Lemma (1), we expand F ◦H = G as a
system of linear equations (Note that for the sake of
simplicity, the arguments x have been dropped)

f0 ? h0 − f1 ? h1 − f2 ? h2 − f3 ? h3 = g0 + p.k0

f0 ? h1 + f1 ? h0 + f2 ? h3 − f3 ? h2 = g1 + p.k1

f0 ? h2 − f1 ? h3 + f2 ? h0 + f3 ? h1 = g2 + p.k2

f0 ? h3 + f1 ? h2 − f2 ? h1 + f3 ? h0 = g3 + p.k3

for some k0, . . . , k3 ∈ Z. (21)

where ? denotes the convolution product as defined
in (1). Since Z[x]/(xN − 1) is isomorphic to the ring
of circulant N ×N matrices over Z, let us replace h0,
h1, h2, and h3 by matrices which correspond to them
as follows

1 For quaternionic matrices, the determinant is defined in
terms of the cosets modulo the commutator subgroup of the

nonzero elements.

(Hi)N×N
∆
=

hi,0 hi,1 hi,2 · · · hi,N−1

hi,N−1 hi,0 hi,1 hi,N−2

hi,N−2 hi,N−1 hi,0 hi,N−3

...
. . .

...

hi,2 hi,3
hi,1 hi,2 · · · hi,0


i := 0, 1, 2, 3.

Based on the above notations, we can form the lat-
tice LH of dimension 8.N spanned by the rows of the
following matrix

MH := I4N×4N

(H0) (H1) (H2) (H3)
(−H1) (H0) (−H3) (H2)
(−H2) (H3) (H0) (−H1)
(−H3) (−H2) (H1) (H0)

04N×4N q.I4N×4N


As we can see from the system of linear equations
(21) and the matrix MH, it is clear that the vector
〈f0, f1, f2, f3, g0, g1, g2, g3〉1×8N is in the lattice LH,
because we can get this vector as a Z-linear combina-
tion of the rows ofMH as follows

〈f0,0,...,f0,N−1︸ ︷︷ ︸
f0

,...,f3,0,...,f3,N−1︸ ︷︷ ︸
f3

,−k0,0,...,−k0,N−1︸ ︷︷ ︸
k0

,...,

−k3,0,...,−k3,N−1︸ ︷︷ ︸
k3

〉1×8.N · MH=〈f0,0,...,f0,N−1︸ ︷︷ ︸
f0

,...,

f3,0,...,f3,N−1︸ ︷︷ ︸
f3

, g0,0,...,g0,N−1︸ ︷︷ ︸
g0

,...,g3,0,...,g3,N−1︸ ︷︷ ︸
g3

〉1×8.N

(22)

Thus we have 〈f0, f1, f2, f3, g0, g1, g2, g3〉1×8N ∈ LH.

(b) Since ‖F ‖2, and ‖G‖2 are less than or equal to λ,

it is clear that ‖〈f0, f1, f2, f3, g0, g1, g2, g3〉‖2 6
√

2λ,
where

‖〈f0, . . . , f3, g0, . . . , g3〉‖2 ,√√√√ 3∑
i=0

N−1∑
j=0

f2
i,j +

3∑
i=0

N−1∑
j=0

g2
i,j

Based on the Gaussian heuristic, the average length
of the shortest nonzero vector in LH is (see [20, p.
377])

E {‖vShortest‖ 2} =

√
n

2πe
.det (LH)

1
n

n=8N, det(LH)=q4N−−−−−−−−−−−−−−→ ≈
√

4N.q

πe
.

(23)

So, if F and G are taken short enough such

that ‖〈f0, f1, f2, f3, g0, g1, g2, g3〉‖2 �
√

4N.q
πe ,

then based on the Markov inequality (which
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states that Pr {Y > αE[Y ]} < 1
α ), the vector

〈f0, f1, f2, f3, g0, g1, g2, g3〉1×8.N
with a probability

greater than 1 −
√

2λ√
4N.q
πe

= 1 − λ√
2.N.q
πe

will be one

of the shortest vector in LH. Consequently, finding
a solution to the quaternionic equation F ◦H = G

such that ‖F ‖2, ‖G‖2 �
√

4N.q
πe , is transformed into

an SVP in the lattice LH of dimension 8.N .

Here, let us briefly review the results which have
been obtained so far with respect to solving SVP and
lattice-reduction algorithms. In a lattice of relatively
small dimension (e.g., ≤ 70), we can enumerate all
short vectors using exhaustive search, but beyond di-
mension 100, exhaustive search is practically infeasible
[38, 39]. Instead, we can use polynomial-time lattice-
reduction algorithms to approximate the length of the
shortest lattice vectors.

Let λ1(LH) denotes the length of the shortest non-
zero vector in the lattice LH and let b1 be the vector
with minimum length returned by a lattice basis re-
duction algorithm such as LLL, BKZ-LLL or DEEP.
Let define approximation factor as ‖b1‖ /λ1(LH) and
Hermite factor as ‖b1‖ /det(LH)1/n. The LLL basis
reduction algorithm [28] definitely achieves a Hermite
factor / (4/3)(n−1)/4 ≈ 1.07457n−1 and an approxi-
mation factor / (4/3)(n−1)/2 ≈ 1.154n, but in prac-
tice, the LLL algorithm performs much better than
the worst-case theoretical bounds. The authors of [38]
state that based on extensive experiments performed
on a large number of random lattices, the average Her-
mite factor is about (1.0219)n for the LLL algorithm,
(1.013)n for BKZ-20 and (1.011)n for DEEP-50, which
is much better than the theoretical bounds in high
lattice dimension. A probabilistic analysis presented
in [40] confirms that the average-case Hermite factor
is close to the experimental results reported in [38].

Despite the fact that the NTRU lattice (of dimen-
sion 2.N) has a special cyclic structure which may be
exploited to improve the performance of the lattice-
reduction algorithms [29], the best Hermite factor ob-
tained for this kind of lattice is about (1.01)2.N [27],
and with this Hermite factor, only NTRU-107 may be
broken using current lattice-reduction algorithms.

Based upon the analytical and experimental results
presented in [26, 41], the expected running time needed
to find a suitable short vector in LNTRU is exponential
in N (assuming q ≈ 2.N and d = df = dg = dφ =
N/3). For example, the expected running time for
N = 251 is estimated as 1.37× 1013 MIPS-Years.

Now, let us turn our attention to the QTRU lattice
LH as defined in Proposition (1). It is clear that the
vector 〈f0, f1, f2, f3, g0, g1, g2, g3〉1×8.N

is in LH. Find-
ing a short vector in this lattice may be used as the

decryption (spurious) key. For the lattice LH we can
readily find that:

• det(LH) = q4.N .
• Assuming d ≈ N/3, we have

λ =
∥∥〈f0, f1, f2, f3〉1×8.N

∥∥
2

= ‖〈g0, g1, g2, g3〉1×8.N‖2 ≈
√

8.d ≈ 1.633
√
N,

because ∀F ∈ Lf , G ∈ Lg ⇒ λ = ‖F ‖
2

=

‖G‖2 ≈
√

8d ≈
√

8N/3 ≈ 1.633
√
N

• By the Gaussian heuristic (23), the target vectors
inLH are aboutO(

√
q) shorter than the Gaussian

expected shortest length.
• Based on Proposition (1), with a probability

greater than 1 − 1.633.
√
N√

2.N.q
πe

≈ 1 − 3.37√
q , the prob-

lem of finding a decryption (spurious) key for
QTRU is equal to solving SVP to within a fac-
tor of approximately

√
q, which is believed to be

intractable for lattice of dimension greater than
334 (2× 167) [26, 41].

Putting together all of the preceding estimates and
observations, yields the following corollary:
Corollary 1. Assuming a Hermite factor H =
(1.01)n, and given the quaternion H ∈ Aq, solving
the quaternionic equation F ◦H = G over the algebra
A and finding a spurious key for QTRU is intractable
for N > 41 (8.N > 328).

Note that contrary to the NTRU lattice, LH is not
completely circular and achieving a Hermite factor ≈
(1.01)n seems to be too optimistic for this type of lat-
tice. In addition, the open problems and doubts arisen
with respect to the cyclic structure of the NTRU lat-
tice may not exist in this case. As we mentioned earlier,
the main open problem is “Is it possible that the cyclic
structure of the convolutional lattices contribute to
the improvement of the existing lattice-reduction algo-
rithms and finding the shortest vector in polynomial
time?”

A note on Coppersmith’s Attack against Non-

commutative NTRU. Soon after Coppersmith and
Shamir suggested that lattice-based attack on NTRU
might be useful for finding a spurious key, Hoffstein
and Silverman proposed a new public-key cryp-
tosystem called Non-commutative NTRU [42]. This
cryptosystem is based on the group ring R = Z[DN ],
where DN is the dihedral group of order 2N , and it
uses a commutative subringR0 = {α ∈ R|αY = Y α},
where Y is an element of order two in DN [43].

The Non-commutative NTRU was quickly broken
by Coppersmith [44]. He exploited some properties
of the subset R1 = {α ∈ R|αY = −Y α}. Looking
at R0 and R1, Coppersmith makes fake private keys.
Then, he creates a linear map θ : R mod q → R mod q
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and breaks the cryptosystem. The linear map θ needs
to have some specific properties for Coppersmith’s
attack to work. This map should be the identity when
restricted to R0 (mod q). Also, it should map R1

(mod q) to itself. Moreover, w = θ(h), where h is the
public key, should be a factor of p such that w/p has
small coefficients mod q.

Naturally, one may think that the same idea could be
applied to break the proposed scheme for QTRU. We
now discuss why this attack will not work for QTRU.
First and foremost, the underlying algebraic structure
of QTRU is different from that of Non-commutative
NTRU. On the other hand, if we want to use the idea

of finding a linear map θ :
(
−1,−1

Zq

)
→
(
−1,−1

Zq

)
with

such properties, we would have to deal with a lattice of
rank 4N . In particular, when using a lattice-reduction
algorithm, such as LLL, Coppersmith’s attack will
have the same complexity of the finding SVP in the
QTRU lattice, which discussed in the previous part.

8 Conclusions

In this paper, we proved that using non-commutativity
in a lattice-based cryptosystem is not only possible,
but also if we design a noncommutative public-key
cryptosystem similar to NTRU, it will remain both
secure and efficient. Moreover, we claimed that this
cryptosystem is more secure than NTRU, because its
lattice structure does not completely fit into the cate-
gory of Convolutional Modular Lattices. In addition,
we introduced a public-key cryptosystem based on the
non-commutative quaternion algebras.

We discussed the probability of successful decryp-
tion, message and key security, and message expan-
sion ratio in the proposed cryptosystem. In addition,
we compared the results to the NTRU, and a group
of typical parameters for the proposed cryptosystem
were introduced.

Although the proposed method seems to be four
times slower than NTRU (under the same conditions,
i.e., choosing the same parameters for both NTRU and
QTRU cryptosystems), QTRU is much more resistant
to lattice-based attacks when compared to NTRU.
Hence, one can easily compensate for the speed loss by
reducing the dimension and still obtain the same level
of security. In addition, by using parallel algorithms,
QTRU can be modified to a better one.

9 Further Work

This work was inspired by a desire to construct
a Hadamard matrix of order 4 × 167 based on
Williamson’s construction method and Turyn’s Se-

quences with small correlation. Over and above the
discussion on cryptography, quaternionic lattice the-
ory has valuable usages in coding theory, space-time
coding, and quantum physics. Therefore, studying
the nature of quaternionic lattices is of interest in
continuation of this line of research. Furthermore,
since NTRU and QTRU are based on a common
concept that does not depend on a certain underlying
algebra, this concept can be generalized to different
types of rings, modules, and vector spaces, or different
kinds of algebras in order to design new lattice-based
cryptosystems and explore their possible advantages.
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