
Optimizing Completion Time and Resource Provisioning of Pig Programs

Zhuoyao Zhang
University of Pennsylvania

Philadelphia, PA, USA
zhuoyao@seas.upenn.edu

Ludmila Cherkasova
Hewlett-Packard Labs
Palo Alto, CA, USA

lucy.cherkasova@hp.com

Abhishek Verma
University of Illinois

at Urbana-Champaign, IL, USA
verma7@illinois.edu

Boon Thau Loo
University of Pennsylvania

Philadelphia, PA, USA
boonloo@cis.upenn.edu

Abstract—As cloud computing continues to mature, IT man-
agers have started concentrating on the support of additional
performance requirements: quality of service and tailored
resource allocation for achieving service performance goals.
In this paper1, we consider the popular Pig framework that
provides a high-level SQL-like abstraction on top of MapRe-
duce engine for processing large data sets. Programs written
in such frameworks are compiled into directed acyclic graphs
(DAGs) of MapReduce jobs. Often, data processing applications
have to produce results by a certain time deadline. We design
a performance modeling framework for Pig programs that
solves two inter-related problems: (i) estimating the completion
time of a Pig program as a function of allocated resources;
(ii) estimating the amount of resources (a number of map
and reduce slots) required for completing a Pig program
with a given (soft) deadline. To achieve these goals, we first,
optimize a Pig program execution by enforcing the optimal
schedule of its concurrent jobs. This optimization reduces a
program completion time (10%-27% in our experiments), and
moreover, it eliminates possible non-determinism in the DAGs
execution. Based on our optimization, we propose an accurate
performance model for Pig programs. This approach leads
to significant resource savings (20%-60% in our experiments)
compared with the original, unoptimized solution. We validate
our approach in a 66-node Hadoop cluster using two workload
sets: TPC-H queries and a set of customized queries mining a
collection of HP Labs’ web proxy logs.

Keywords-MapReduce, Pig, performance model, resource
allocation, execution optimization, job scheduling.

I. INTRODUCTION

With the increasing popularity of cloud computing, many
companies are now moving towards the use of cloud in-
frastructures to quickly process large quantities of new data
to drive their core business. MapReduce [1] and its open-
source implementation Hadoop offer a scalable and fault-
tolerant framework for processing large data sets. To enable
programmers to specify more complex queries in an easier
way, several projects, such as Pig [2], Hive [3], Scope [4],
and Dryad [5], provide high-level SQL-like abstractions on
top of MapReduce engines. In these frameworks, complex
analytics tasks are expressed as high-level declarative ab-
stractions and then they are compiled into directed acyclic
graphs (DAGs) of MapReduce jobs. There is a growing
number of MapReduce applications, e.g., personalized ad-
vertising, sentiment analysis, spam and fraud detection, real-
time event log analysis, etc., that require completion time
guarantees, i.e., they have specific Service Level Objectives
(SLOs) and are deadline-driven.

1This work was largely completed during Z. Zhang’s and A. Verma’s internship
at HP Labs. B. T. Loo and Z. Zhang are supported in part by NSF grants (CNS-
1117185, CNS-0845552 , IIS-0812270). A. Verma is supported in part by NSF grant
CCF-0964471.

One of the key challenges in the cloud environment is
the need to manage an SLO-driven resource allocation of
cloud resources shared across multiple users. While there
have been some research efforts [6], [7] towards developing
performance models for MapReduce jobs, these techniques
do not apply to complex queries consisting of MapReduce
DAGs. To address this limitation, we consider the popular
Pig framework [2] for solving the following problems: (i)
estimate the completion time of a Pig program as a function
of allocated resources; (ii) estimate the amount of resources
(a number of map and reduce slots) required for completing
a Pig program with a given (soft) deadline.

For a Pig program defined by a DAG of MapReduce
jobs, its completion time might be approximated as the
sum of completion times of the jobs that constitute this Pig
program. However, such model might lead to a higher time
estimate than the actual measured program time. The reason
is that unlike the execution of sequential jobs where the next
job can only start after the previous one is completed, for
concurrent jobs, their executions may “overlap” in time. The
performance model should take this “overlap” in executions
of concurrent jobs into account. Moreover, the execution
order of concurrent jobs in the Pig program may impact the
program processing time. Using this observation, we first,
optimize a Pig program execution by enforcing the optimal
schedule of its concurrent jobs. We evaluate optimized Pig
programs and the related performance improvements using
TPC-H queries and a set of customized queries mining
a collection of HP Labs’ web proxy logs (both sets are
presented by the DAGs with concurrent jobs). Our results
show 10%-27% decrease in Pig program completion times.

The proposed Pig optimization has another useful out-
come: it eliminates existing non-determinism in Pig program
execution of concurrent jobs, and therefore, it enables better
performance predictions. We develop an accurate perfor-
mance model for completion time estimates and resource
allocations of optimized Pig programs. The accuracy of this
model is validated using a combination of TPC-H and web
proxy log analysis queries. We show that for Pig programs
with concurrent jobs, this approach leads to significant
resource savings (20%-60% in our experiments) compared
with the original, non-optimized solution.

While our work is based on the Pig experience, we believe
that the proposed model and optimizations are general and
can be applied for performance modeling and resource
allocations of complex analytics tasks that are expressed as
an ensemble (DAG) of MapReduce jobs.

This paper is organized as follows. Section II provides
a background on the Pig framework. Section III discusses

subtleties of concurrent jobs execution in Pig, introduces
optimized scheduling of concurrent jobs, and offers a Pig
performance model. The accuracy of the model is evaluated
in Section IV. Section V describes the related work. Sec-
tion VI presents a summary and future directions.

II. BACKGROUND: PIG PROGRAMS

There are two main components in the Pig system:
• The language, called Pig Latin, that combines high-level

declarative style of SQL and the low-level procedural
programming of MapReduce. A Pig program is similar to
specifying a query execution plan: it represents a sequence
of steps, where each one carries a single data transforma-
tion using a high-level data manipulation constructs, like
filter, group, join, etc.
• The execution environment to run Pig programs. The Pig

system takes a Pig Latin program as input, compiles it
into a DAG of MapReduce jobs, and coordinates their
execution on a given Hadoop cluster.

The following specification shows a simple example of a
Pig program. It describes a task that operates over a table
URLs that stores data with the three attributes: (url, category,
pagerank). This program identifies for each category the url
with the highest pagerank in that category.
URLs = load ’dataset’ as (url, category, pagerank);
groups = group URLs by category;
result = foreach groups generate group, max(URLs.pagerank);
store result into ’myOutput’

The example Pig program is compiled into a single
MapReduce job. Typically, Pig programs are more complex,
and can be compiled into an execution plan consisting of
several stages of MapReduce jobs, some of which can run
concurrently. Figure 1 shows a possible DAG of five MapRe-
duce jobs {j1, j2, j3, j4, j5}, where each node represents a
MapReduce job, and the edges between the nodes represent
the data dependencies between jobs.

j1

j2

j3

j4

j5 j6

Figure 1. Example of a Pig program’ execution plan represented
as a DAG of MapReduce jobs.

To execute the plan, the Pig engine will first submit all the
ready jobs (i.e., the jobs that do not have data dependency
on the other jobs) to Hadoop. After Hadoop has processed
these jobs, the Pig system will delete those jobs and the
corresponding edges from the processing DAG, and will
submit the next set of ready jobs. This process continues
until all the jobs are completed. In this way, the Pig engine
partitions the DAG into multiple stages, each containing one
or more independent MapReduce jobs that can be executed
concurrently. For example, the DAG shown in Figure 1 will
be partitioned into the following four stages for processing:
• first stage: {j1, j2};
• second stage: {j3, j4};
• third stage: {j5};
• fourth stage: {j6}.

Note that for stages with concurrent jobs, there is no
specifically defined ordering in which the jobs are going
to be executed by Hadoop.

III. PERFORMANCE MODEL FOR PIG PROGRAMS

In this section, we analyze subtleties in execution of
concurrent MapReduce jobs and demonstrate that the job
order has a significant impact on the program completion
time. We optimize a Pig program by enforcing the optimal
schedule of its concurrent jobs. Then we introduce an accu-
rate performance modeling framework for Pig programs.

A. Modeling Concurrent Jobs’ Executions
Let us consider two concurrent MapReduce jobs J1 and

J2 and how they are going to be executed by the Hadoop
cluster with a default FIFO scheduler. Let us also assume
that there are no data dependencies among the concurrent
jobs. Therefore, unlike the execution of sequential jobs
where the next job can only start after the previous one is
entirely finished (shown in Figure 2 (a)), for concurrent jobs,
once the previous job completes its map phase (map phase
is represented by the green color), releases map slots, and
begins reduce phase processing (reduce phase is represented
by the yellow color) , the next job can start its map phase
execution with the released map resources in a pipelined
fashion (shown in Figure 2 (b)). The Pig performance model
should take this “overlap” in executions of concurrent jobs
into account.

J1
M J1

R

J1

J2
M J2

R

J2

(a) Sequential execution of two jobs J1 and J2.
J1

M J1
R

J1 J2
M J2

R

J2
(b) Concurrent execution of two jobs J1 and J2.

Figure 2. Difference in executions of (a) two sequential MapReduce
jobs; (b) two concurrent MapReduce jobs.

We find one more interesting observation about concurrent
jobs’ execution of the Pig program. The original Hadoop
implementation executes concurrent MapReduce jobs from
the same Pig program in a random order. Some ordering may
lead to a significantly less efficient resource usage and an
increased processing time. Consider the following example
with two concurrent MapReduce jobs:
• Job J1 has a map phase duration of JM

1 = 10s and the
reduce phase duration of JR

1 = 1s.
• Job J2 has a map phase duration of JM

2 = 1s and the
reduce phase duration of JR

2 = 10s.
There are two possible executions shown in Figure 3:
• J1 is followed by J2 shown in Figure 3(a). The reduce

phase of J1 overlaps with the map phase of J2 leading
to overlap of only 1s. The total completion time of
processing two jobs is 10s+ 1s+ 10s = 21s.

• J2 is followed by J1 shown in Figure 3(b). The reduce
phase of J2 overlaps with the map phase of J1 leading
to a much better pipelined execution and a larger over-
lap of 10s. The total makespan is 1s+10s+1s = 12s.

J1
M=10s J1

R=1s

J1 J2
M=1s J2

R=10s

J2

(a) J1 is followed by J2.

J1
M=10s J1

R=1s

J1

J2
M=1s J2

R=10s

J2

(b) J2 is followed by J1.

Figure 3. Impact of concurrent job scheduling on their completion time.

There is a significant difference in the job completion time
(75% in the example above) depending on the execution
order of the jobs. We optimize a Pig program execution by
enforcing the optimal schedule of its concurrent jobs. We
apply the classic Johnson algorithm for building the optimal
two-stage jobs’ schedule [8]. The optimal execution of con-
current jobs leads to improved completion time. Moreover,
this optimization eliminates possible non-determinism in Pig
program execution, and enables more accurate completion
time predictions for Pig programs.

B. Completion Time Estimates for Pig Programs

As a building block for modeling a Pig program defined
as a DAG of MapReduce jobs, we apply the approach
introduced in ARIA [6] for performance modeling of a
single MapReduce job. We extract performance profiles of
all the jobs in the DAG from the past program executions.
Using these job profiles we can predict the completion time
of each job (and completion time of map and reduce phases)
as a function of allocated map and reduce slots.

Let us consider a Pig program P that is compiled into
a DAG of MapReduce jobs and consists of S stages. The
Pig engine partitions the DAG into multiple stages that are
executed one after another, where each stage contains one or
more independent MapReduce jobs which can be executed
concurrently. Note that due to data dependencies within a
Pig execution plan, the next stage cannot start until the
previous stage finishes. Let TSi denote the completion time
of stage Si. Thus, the completion of a Pig program P can
be estimated as follows:

TP =
∑

1≤i≤S

TSi
. (1)

For a stage that consists of a single job J , the stage
completion time is defined by the job J’s completion time.

For a stage that contains concurrent jobs, the stage com-
pletion time depends on the jobs’ execution order. Suppose
there are |Si| jobs within a particular stage Si and the jobs
are executed according to the order {J1, J2, ...J|Si|}. Note,
that given a number of allocated map/reduce slots (SP

M , SP
R)

to the Pig program P , we can compute for any MapReduce
job Ji(1 ≤ i ≤ |Si|) the duration of its map and reduce
phases that are required for the Johnson’s algorithm [8] to
determine the optimal schedule of the jobs {J1, J2, ...J|Si|}.

Let us assume, that for each stage with concurrent jobs,
we have already determined the optimal job schedule that

minimizes the completion time of the stage. Now, we intro-
duce the performance model for predicting the Pig program
P completion time TP as a function of allocated resources
(SP

M , SP
R). We use the following notations:

timeStartMJi
the start time of job Ji’s map phase

timeEndMJi
the end time of job Ji’s map phase

timeStartRJi
the start time of job Ji’s reduce phase

timeEndRJi
the end time of job Ji’s reduce phase

Then the stage completion time can be estimated as

TSi
= timeEndRJ|Si|

− timeStartMJ1
(2)

We now explain how to estimate the start/end time of
each job’s map/reduce phase. Let TM

Ji
and TR

Ji
denote the

completion times of map and reduce phases of job Ji
respectively. Then

timeEndMJi
= timeStartMJi

+ TM
Ji

(3)

timeEndRJi
= timeStartRJi

+ TR
Ji

(4)

Figure 4 shows an example of three concurrent jobs execu-
tion in the order J1, J2, J3.

J1
M J1

R

J1 J2
M J2

R

J2 J3
M J3

R

J3
(a)

J1
M

J1
R

J2
M

J2
R

J3
M

J3
R

(b)
Figure 4. Execution of Concurrent Jobs

Note, that Figure 4 (a) can be rearranged to show the
execution of jobs’ map/reduce stages separately (over the
map/reduce slots) as shown in Figure 4 (b). It is easy to
see that since all the concurrent jobs are independent, the
map phase of the next job can start immediately once the
previous job’s map stage is finished, i.e.,

timeStartMJi
= timeEndMJi−1

= timeStartMJi−1
+ TM

Ji−1

(5)
The start time timeStartRJi

of the reduce stage of the con-
current job Ji should satisfy the following two conditions:

1) timeStartRJi
≥ timeEndMJi

2) timeStartRJi
≥ timeEndRJi−1

Therefore, we have the following equation:

timeStartRJi
= max{timeEndMJi

, timeEndRJi−1
} =

= max{timeStartMJi
+ TM

Ji
, timeStartRJi−1

+ TR
Ji−1
} (6)

Finally, the completion time of the entire Pig program P is
defined as the sum of its stages using eq. (1).

C. Resource Allocation Estimates for Pig Programs
Let us consider a Pig program P with a given deadline

D. The optimized execution of P may significantly improve
the program completion time. Therefore, P may need to be

assigned a smaller amount of resources for meeting a given
deadline D compared to its non-optimized execution.

First, we explain how to approximate the resource allo-
cation of a non-optimized execution of a Pig program. The
completion time of non-optimized P can be represented as a
sum of completion time of the jobs that comprise the DAG
of this Pig program. Thus, for a Pig program P that contains
|P | jobs, its completion time can be estimated as a function
of assigned map and reduce slots (SP

M , SP
R) as follows:

TP (S
P
M , SP

R) =
∑

1≤i≤|P |

TJi
(SP

M , SP
R) (7)

The unique benefit of this model is that it allows us to
express the completion time D of a Pig program P via a
special form equation shown below:

D =
AP

SP
M

+
AP

SP
R

+ CP (8)

This equation can be used for solving the inverse problem of
finding resource allocations (SP

M , SP
R) such that P completes

within time D. This equation yields a hyperbola if (SP
M , SP

R)
are considered as variables. We can directly calculate the
minima on this curve using Lagrange’s multipliers similarly
as proposed in ARIA [6] for finding the resource allocation
of a single MapReduce job with a given deadline.

The performance model introduced in the previous Sec-
tion III-B for accurate completion time estimates of an opti-
mized Pig program is more complex. It requires computing a
function max for stages with concurrent jobs, and therefore,
it cannot be expressed as a single equation for solving the
inverse problem of finding the appropriate resource alloca-
tion. However, we can use the “over-provisioned” resource
allocation defined by eq. (8) as an initial point for determin-
ing the solution required by the optimized Pig program P .
The hyperbola with all the possible solutions according to
the “over-sized” model is shown in Figure 5 as the red curve,
and A(M,R) represents the point with a minimal number
of map and reduce slots (i.e., the pair (M,R) results in
the minimal sum of map and reduce slots). We designed
the following algorithm described below that determines the
minimal resource allocation pair (Mmin, Rmin) for an op-
timized Pig program P with deadline D. This computation
is illustrated by Figure 5.

B (M’,R) A (M,R)

D (Mmin,Rmin) C (M,R’)

N
u

m
b

er
 o

f
R

ed
u

ce
 S

lo
ts

 (
R

)

Number of Map Slots (M)

Figure 5. Resource allocation estimates for an optimized Pig program.

First, we find the minimal number of map slots M ′ (i.e.,
the pair (M ′, R)) such that deadline D can still be met
by the optimized Pig program with the enforced optimal
execution of its concurrent jobs. We do it by fixing the
number of reduce slots to R, and then step-by-step reducing
the allocation of map slots. Specifically, our algorithm sets
the resource allocation to (M − 1, R) and checks whether
program P can still be completed within time D. If the
answer is positive, then it tries (M − 2, R) as the next
allocation. This process continues until point B(M ′, R) (see
Figure 5) is found such that the number M ′ of map slots
cannot be further reduced for meeting a given deadline D.

At the second step, we apply the same process for
finding the minimal number of reduce slots R′ (i.e., the pair
(M,R′)) such that the deadline D can still be met by the
optimized Pig program P .

At the third step, we determine the intermediate values on
the curve between (M ′, R) and (M,R′) such that deadline
D is met by the optimized Pig program P . Starting from
point (M ′, R), we are trying to find the allocation of map
slots from M ′ to M , such that the minimal number of reduce
slots R̂ should be assigned to P for meeting its deadline.

Finally, (Mmin, Rmin) is the pair on this curve such that
it results in the the minimal sum of map and reduce slots.

IV. EVALUATION OF THE PIG PERFORMANCE MODEL

In this section, we evaluate performance benefits of intro-
duced Pig program optimization and assess the accuracy of
the proposed performance model.

A. Experimental Testbed and Workload
All experiments are performed on 66 HP DL145 GL3

machines. Each machine has four AMD 2.39GHz cores,
8 GB RAM and two 160GB hard disks. The machines
are set up in two racks and interconnected with gigabit
Ethernet. We used Hadoop 0.20.2 and Pig-0.7.0 with two
machines dedicated as the JobTracker and the NameNode,
and remaining 64 machines as workers. Each worker is
configured with 2 map and 1 reduce slots. The file system
blocksize is set to 64MB. The replication level is set to 3.
We disabled speculative execution since it did not lead to
significant improvements in our experiments.

In our case study, we use the following two workloads 2:
TPC-H. This workload is based on TPC-H [10], a stan-
dard database benchmark for decision-support workloads.
We select three queries Q5, Q8, Q10 out of existing 22
SQL queries and express them as Pig programs. The input
dataset size is 9GB (scaling factor 9 using the standard data
generator). For each query, we select a logical plan that
results in a DAG of concurrent MapReduce jobs shown in
Figures 6 (a),(b),(c) respectively3:
• The TPC-H Q5 query joins 6 tables, and its dataflow

results in 3 concurrent MapReduce jobs.

2We did not use a popular PigMix benchmark [9] because only 1 of 17 Pig programs
of the benchmark contains concurrent jobs.

3While more efficient logical plans may exist, our goal here is to create a DAG
with concurrent jobs to stress test our model.

j1

j2

j3

j4

j5 j6 j7 j8

(a) TPC-H Q5

j1

j2

j3

j4

j5

j6

j7 j8 j9 j10

(b) TPC-H Q8

j1

j2

j3 j4 j5 j6

(c) TPC-H Q10

j1

j2

j3

j4

j5

j6

j7

(d) Proxy Q1

j1

j2

j3

j4

j5 j6

(e) Proxy Q2

j1

j2

j3

j4

j5

j6

j7

j8

(f) Proxy Q3

Figure 6. DAGs of Pig programs in the TPC-H and HP Labs Proxy query sets.

• The TPC-H Q8 query joins 8 tables, and its dataflow
results in two stages with 4 and 2 concurrent jobs.
• The TPC-H Q10 query joins 4 tables, and its dataflow

results in 2 concurrent MapReduce jobs.

HP Labs’ Web Proxy Query Set. This workload consists
of a set of Pig programs for analyzing HP Labs’ web proxy
logs. It contains 6 months access logs to web proxy gateway
at HP Labs. The total dataset size (6 months) is about 18 GB
(438 million records). The fields include information such as
date, time, time-taken, c-ip, cs-host, etc. We intend to create
realistic Pig queries executed on real-world data.
• The Proxy Q1 program investigates the dynamics in

access frequencies to different websites per month and
compares them across the 6 months. The Pig program
results in 6 concurrent MapReduce jobs with the DAG of
the program shown in Figure 6 (d).
• The Proxy Q2 program tries to discover the co-

relationship between two websites from different sets
(tables) of popular websites: the first set is created to
represent the top 500 popular websites accessed by web
users within the enterprise. The second set contains the top
100 popular websites in US according to Alexa’s statis-
tics (http://www.alexa.com/topsites). The program DAG is
shown in Figure 6 (e).
• The Proxy Q3 program presents the intersect of 100

most popular websites (i.e., websites with highest access
frequencies) accessed both during work and after work
hours. The DAG of the program is shown in Figure 6 (f).

B. Optimal Schedule of Concurrent Jobs
Figure 7 shows the impact of concurrent jobs scheduling

on the completion time of TPC-H and Proxy queries when
each program is processed with 128 map and 64 reduce slots.

Figures 7 (a) and (c) show two extreme measurements:
the best program completion time (i.e., when the optimal
schedule of concurrent jobs is chosen) and the worst one
(i.e., when concurrent jobs are executed in the “worst” possi-
ble order based on our estimates). For presentation purposes,
the best (optimal) completion time time is normalized with
respect to the worst one. The choice of optimal schedule of
concurrent jobs reduces the completion time by 10%-27%
compared with the worse case ordering.

Figures 7 (b) and (d) show completion times of stages
with concurrent jobs under different schedules for the same
TPC-H and Proxy queries. Performance benefits at the stage
level are even higher: they range between 20%-30%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q5 Q8 Q10

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e Best-CT
Worst-CT

(a) Job completion time
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q5 Q8 Q10

S
ta

ge
 C

om
pl

et
io

n
T

im
e Best-CT

Worst-CT

(b) Stage completion time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q1 Q2 Q3

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e Best-CT
Worst-CT

(c) Job completion time
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Q1 Q2 Q3

S
ta

ge
 C

om
pl

et
io

n
T

im
e Best-CT

Worst-CT

(d) Stage completion time

Figure 7. Normalized completion time for different schedules of
concurrent jobs: (a-b) TPC-H, (c-d) HP Labs proxy queries.

C. Predicting Completion Time and Required Resource Al-
location of Optimized Pig Programs

Figure 8 shows the Pig program completion time estimates
based on the proposed performance model for TPC-H and
Proxy queries. Figure 8 shows the results when each pro-
gram is processed with 128x64 and 32x64 map and reduce
slots respectively.

 0

 0.5

 1

 1.5

Q5 Q8 Q10

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e CT-Predicted-128x64
CT-Predicted-32x64

Measured-CT

(a) TPC-H
 0

 0.5

 1

 1.5

Q1 Q2 Q3

P
ro

gr
am

 C
om

pl
et

io
n

T
im

e CT-Predicted-128x64
CT-Predicted-32x64

Measured-CT

(b) Proxy’s Queries

Figure 8. Predicted Pig programs completion times.

In most cases (11 out of 12), the predicted completion
times are within 10% of the measured ones.

Let T denote the Pig program completion time when
program P is processed with maximum available cluster
resources. We set D = 2 · T as a completion time goal.
Then we compute the required resource allocation for P to
meet the deadline D. Figure 9 (a) shows measured com-
pletion times achieved by the TPC-H and Proxy’s queries
respectively when they are assigned the resource allocations
computed with the designed resource allocation model. All
the queries complete within 10% of the targeted deadlines.

Figure 9 (b) compares the amount of resources (the sum
of map and reduce slots) for non-optimized and optimized
executions of TPC-H and Proxy’s queries respectively. The

 0

 0.5

 1

 1.5
P

ro
gr

am
 C

om
pl

et
io

n
T

im
e Measured-Proxy-Queries

Measured-TPC-H
Deadline

(a) Can we meet deadlines?
 0

 0.5

 1

 1.5

N
or

m
al

iz
ed

 R
es

ou
rc

e
R

eq
ui

re
m

en
ts

Proxy-Queries-RA
TPC-H-RA

Non-Optimized-RA

(b) Resource requirements
of optimized Pig programs.

Figure 9. Resource allocations for optimized Pig programs.

optimized executions are able to achieve targeted dead-
lines with much smaller resource allocations (20%-60%
smaller) compared to resource allocations for non-optimized
Pig programs. Therefore, the proposed optimal schedule of
concurrent jobs leads to significant resource savings for
deadline-driven Pig programs.

V. RELATED WORK

While performance modeling in the MapReduce frame-
work is a new topic, there are several interesting research
efforts in this direction. Researchers designed job schedul-
ing for MapReduce/Hadoop framework such as FLEX [7],
ARIA [6], etc. Typically, these schedulers utilize a perfor-
mance model of a single MapReduce job execution.

Starfish [11] applies dynamic instrumentation to collect
a detailed run-time monitoring information about job ex-
ecution at a fine granularity: data reading, map process-
ing, spilling, merging, shuffling, sorting, reduce processing
and writing. The authors offer a workflow-aware scheduler
that correlate data (block) placement with task scheduling
to optimize the workflow completion time. In our work,
we propose complementary optimizations based on optimal
scheduling of concurrent jobs within the DAG to minimize
overall completion time.

Tian and Chen [12] aim to predict performance of a single
MapReduce program from the test runs with a smaller num-
ber of nodes. They consider MapReduce processing at a fine
granularity. The authors use a linear regression technique to
approximate the cost (duration) of each processing function.
The problem of finding resource allocations that support
given job completion goals are formulated as an optimization
problem that can be solved with existing commercial solvers.

CoScan [13] offers a special scheduling framework that
merges the execution of Pig programs with common data
inputs in such a way that this data is only scanned once.
Authors augment Pig programs with a set of (deadline,
reward) options to achieve. Then they formulate the schedule
as an optimization problem and offer a heuristic solution.

Morton et al. [14] propose ParaTimer: the progress esti-
mator for parallel queries expressed as Pig scripts [2]. The
approach is based on precomputing the expected schedule
of all the tasks, and therefore identifying all the pipelines
(sequences of MapReduce jobs) in the query. However, this
work does not provide a technique for estimating the amount
of resources (a number of map and reduce slots) required
for completing a Pig program with a given (soft) deadline.

VI. CONCLUSION

Efficient Hadoop management requires new performance
tools to navigate SLO-driven job scheduling and tailored
resource allocation in the shared cluster. In our work, we
have introduced a novel performance modeling framework
for processing Pig programs with deadlines that does not
require any modifications or instrumentation of either the
application or underlying Hadoop/Pig execution engines.
The proposed approach offers an optimized scheduling of
concurrent jobs within a DAG that allows to significantly
reduce the overall completion time. Our performance models
are designed for the case without node failures. We see a
natural extension for incorporating different failure scenarios
and estimating their impact on the application performance
and achievable “degraded” SLOs.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Communications of the ACM,
vol. 51, no. 1, 2008.

[2] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam,
C. Olston, B. Reed, S. Srinivasan, and U. Srivastava., “Build-
ing a High-Level Dataflow System on Top of Map-Reduce:
The Pig Experience.” Proc. of the VLDB Endowment, vol. 2,
no. 2, 2009.

[3] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy., “Hive - a
Warehousing Solution over a Map-Reduce Framework,” Proc.
of VLDB, 2009.

[4] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou., “Easy and Efficient Parallel Process-
ing of Massive Data Sets,” Proc. of the VLDB Endowment,
vol. 1, no. 2, 2008.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed Data-Parallel Programs from Sequential Building
Blocks,” ACM SIGOPS OS Review, vol. 41, no. 3, 2007.

[6] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA:
Automatic Resource Inference and Allocation for MapReduce
Environments,” Proc. of the 8th ACM International Confer-
ence on Autonomic Computing (ICAC’2011), 2011.

[7] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar,
S. Parekh, K.-L. Wu, and A. Balmin, “FLEX: A Slot Al-
location Scheduling Optimizer for MapReduce Workloads,”
Proc. of ACM/IFIP/USENIX Middleware Conference, 2010.

[8] S. Johnson., “Optimal Two- and Three-Stage Production
Schedules with Setup Times Included.” Naval Res. Log.
Quart., 1954.

[9] Apache, “PigMix Benchmark.” [Online]. Available:
http://wiki.apache.org/pig/PigMix

[10] “TPC Benchmark H (Decision Support), Version 2.8.0.”
[Online]. Available: http://www.tpc.org/tpch/

[11] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. Cetin,
and S. Babu, “Starfish: A Self-tuning System for Big Data
Analytics.” in Proc. of 5th Conf. on Innovative Data Systems
Research (CIDR), 2011.

[12] F. Tian and K. Chen, “Towards Optimal Resource Provision-
ing for Running MapReduce Programs in Public Clouds.” in
Proc. of IEEE Conference on Cloud Computing, 2011.

[13] X. Wang, C. Olston, A. Sarma, and R. Burns, “CoScan:
Cooperative Scan Sharing in the Cloud,” in Proc. of the ACM
Symposium on Cloud Computing,(SOCC’2011), 2011.

[14] K. Morton, M. Balazinska, and D. Grossman, “ParaTimer:
a progress indicator for MapReduce DAGs.” in Proc. of
SIGMOD. ACM, 2010.

