
Journal of Theoretical and Applied Information Technology
15th October 2019. Vol.97. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5115

STUDYING SYSTEMS OF OPEN SOURCE MESSAGING

ALEKSANDER BONDARENKO, KONSTANTIN ZAYTSEV

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
Kashirskoe Avenue 31, Moscow, 115409, Russia

ABSTRACT

Modern large industrial and financial structures apply numerous various information systems (IS) which
exchange data while communicating with each other. In order to implement such communication
nowadays, specialized messaging systems are used or transport components comprised of one or several
software products. This article compares four open source software products used in messaging systems:
Apache Kafka, gRPC, ZeroMQ, and RabbitMQ, which satisfy criteria of Secure Sockets Layer/Transport
Layer Security (SSL/TLS) encryption and possibility to operate directly with Java platform applications,
that is, to provide Java API. In order to perform these studies, comparison environment was generated with
four coordinates: supported communication type, productivity, reliability, and community support.

Keywords: Open Source Systems, Apache Kafka, Grpc, Zeromq, Rabbitmq, Messaging,

Publish&Subscribe, RPC, Streaming.

INTRODUCTION

With the increase in applied IS, the scope of
message exchange also increases, hence, aiming at
unification and standardization of exchange, it is
required to develop specialized interconnecting
systems. In modern world, where Internet of Things
(IoT) exerts significant influence on global
economy by amount of investments (about $6
trillion) and is already implemented into global
banking, it would be reasonable to consider
capabilities of various interconnecting software
products [1]. In general, interconnecting systems
use certain patterns of data exchange, they should
be selected prior to selection of protocols,
communication methods, and auxiliary
infrastructure of developed system. This
recommendation is obvious: if it has not been done
in advance, then in the course of IS development,
while modifying interconnecting systems, it would
be required to modify code, architecture, safety
model, and its communications with external world
[2].

Communication pattern should be selected
using several approaches based on message-
oriented middleware. At present messaging on the
basis of enterprise service bus (ESB) is widely
used, it is based on the principles of service-
oriented architecture (SOA) [3]. Such approach
proved its efficiency during recent years, however,
with increased number of transferred data, number
and variety of transactions the drawbacks of such
approach become obvious, and the developers start
to search for more promising and modern
technologies [4, 5, 6].

Some crediting and financial institutions
start development of intermodular communication
for platform architecture. Intermodular
communication is based on any messaging system,
whether it is message broker or transport library. In
large software products, it is also required to
implement several communication types focusing
on messaging rate or high reliability of delivery.
This article compares messaging systems based on
publish/subscribe communications [7] and point-to-
point communications by means of remote
procedure call [8].

Messaging as a basic process of integration
of large information systems is always a relevant
subject for research. A lot of research has been
carried out, characteristic and relevant for its time,
studying the methods of exchange and
transmission, ready-made software solutions at
different stages of the evolution of messaging
systems. For example, in the articles [9, 10], the
authors evaluate the performance of the ESB
architecture, including open source, and in the
article [11] the performance of the middleware as a
whole. A later study [12, 13] evaluates more
modern software solutions, taking into account the
requirements of distributed systems and working
with big data, such as Apache Kafka and Rabbit
MQ. In [14, 15], a comparative analysis of
RabbitMQ vs ActiveMQ vs OpenMQ was carried
out. Thus, due to the long existence and importance
of the messaging process, this topic has been deeply
studied. Since every year the IT industry poses new
challenges in terms of data volume, reliability and
speed of their transmission, new systems appear,

Journal of Theoretical and Applied Information Technology
15th October 2019. Vol.97. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5116

existing ones are updated, which leads to the need
for repeated research.

With the growth of data volume and
complexity of structures, the question arises of the
reliability and speed of data delivery for further
analysis and processing. Modern solutions with an
innovative approach and improved algorithms come
to the market of messaging systems to implement
reliable, safe and fast message delivery, displacing
traditional solutions, for example, based on
message queues and the principles of the corporate
service bus. In this work, in a comparative analysis,
among the software solutions there are such modern
software products as Apache Kafka and gRPC that
meet the modern challenges of the IT industry.
The research hypothesis is as follows: as a result of
comparative analysis, the Apache Kafka software
product is a leader in the group of systems that
implement Publish / Subscribe interactions; gRPC
is a leader in a group of systems that implement
point-to-point interactions.
After reading this article, readers will find out what
promising software solutions exist for messaging
with different types of interaction and the results of

a comparative analysis of these solutions by
significant criteria for building integration
interactions in large IT structures.
2.MATERIALS AND METHODS
2.1. Selection of software for comparison

Software products for analysis were selected
with accounting for three main criteria:

- product should support SSL/TLS
encryption;

- product should communicate directly
with Java platform applications (provision of
Java API);

- it should be open source product.
Initial selection of software products was

based on analysis of publications about messaging
systems. Then, using the mentioned criteria, only
appropriate products were selected, i.e., the
following messaging systems: Apache Kafka [16],
Rabbit MQ [17], ZeroMQ [18], and gRPC [19].
The degree of compliance of the mentioned open
source products with the highlighted criteria is
summarized in Table 1.

Table 1. Compliance of software products with selected criteria
System

Criterion

Apache Kafka Rabbit MQ ZeroMQ gRPC

SSL/TLS encryption + + +/- (CurveZMQ required) +

Java API + + +/- (binding jzmq) +

Open Source + + + +

2.2. Selection of space coordinates for
comparison

The most important characteristic of any
software product is the scope of functions which
can be performed by this product, and productivity,
that is, the scope of performed work per unit time.
Banking integrated software also requires for
reliability in order to store data in the best way, and
community support demonstrating relevance of
solution regarding modern trends facilitating
competition with existing financial and engineering
companies.

Taking this into account, the following
comparison coordinates of software products were
selected:

1) supported communication types;
2) productivity;
3) reliability;
4) community support.

Apache Kafka and RabbitMQ are separate
brokers with midway center, mainly with
Publish/Subscribe messaging strategy, and ZeroMQ
and gRPC are embedded third-party libraries with

point-to-point strategy. Therefore, it would be
incorrect to compare all aforementioned products in
terms of productivity and reliability due to peculiar
features of their architecture. Moreover, since the
second group is comprised of libraries, it would be
incorrect to discuss their reliability and guarantee of
message delivery since this is the task of brokers
from the first group. While using libraries,
developers of modules should pay attention to
reliability of message delivery, the libraries only
provide good rate, minimum latency, and user-
friendly API. In this regard it was decided to carry
out primary comparison of supported
communication types between all software
products, comparison in terms of productivity and
community support in Publish/Subscribe and Point-
to-Point groups; and reliability had to be analyzed
only in the scope of the first group of products. As
a consequence, it would be possible to determine
optimum pair of software products covering both
communication types.

Sum of estimates for each product was
calculated according to Eq. (1).

Journal of Theoretical and Applied Information Technology
15th October 2019. Vol.97. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5117

𝑆 ൌ 100 ∙ 𝜔 ∙ 𝑍

ୀଵ

, ሺ1ሻ

where S was the estimate of tool; n was the number
of comparison criteria; Zi was the value of criterion
compliance; i was the criterion weight (from 0 to
1).

The following scale has been proposed for
criterion estimation: 0 - if criterion is not complied
with or requires for third party software; 1 - if
criterion is complied with completely or with minor
restrictions; 0.5 - if criterion is complied with
significant restrictions.

2.3. Comparison in terms of supported type of
communication

In order to compare in terms of this
coordinate, it was decided to study in detail
specifications of each software and various
publications devoted to nonstandard application of
software product (Publish/Subscribe for Point-to-
Point and vice versa).

Implementation of each communication type
has been assessed using the following scale:

- 0, if implementation is impossible;
- 0.5, if implementation requires for

significant adjustment of system modules or
requires for existence of
supplemental/auxiliary library/software;

- 1, if implementation is absolutely possible.
Cumulative estimate has been calculated by

Eq. (1), where S is the cumulative estimate of
messaging system; n is the number of
communication types; Zi is the estimate of
possibility to implement communication; i is the
criterion weight (from 0 to 1).

2.4. Comparison in terms of productivity

Productivity is one of the key properties of
messaging systems, it is important for integration of
corporate applications, especially in low latency
solutions. Message brokers Apache Kafka and
RabbitMQ were compared according to the
following scenario: one broker of each type was
established, productivity was tested using
specialized utilities of load testing. For Kafka,
reading and recording were carried out from/to one
topic with one partition, for RabbitMQ – from/to
one queue. Messages were read using 10 Java
streams. At the first stage, the message size was
fixed and then, varying number of messages, the
reading/writing rates were measured as well as
latency (average, maximum). Then, the message
size was increased, and new measurement of
varying number of messages was performed.

Transport libraries for remote procedure call
in ZeroMQ and gRPC were compared as follows:

ZeroMQ was tested using native tool for
load testing by library developers in the command
line form. Messages of various size in the range
from 1 byte to 512 Mbytes were generated,
throughput capacity and latency were measured.
gRPC was tested using specialized tool for load
testing: ghz, also in command line form. Messages
of various size in the range from 1 Kbyte to 64
Kbytes were generated, throughput capacity and
latency were measured for two communication
subtypes: simple remote procedure call and
streaming.

2.5. Comparison in terms of reliability

Apache Kafka and RabbitMQ provide
reliability and guaranties of message delivery in
different ways. Table 2 shows which tools are used
by the software products to guarantee message
delivery.

Table 2. Message delivery guarantees

Apache Kafka RabbitMQ
Message durability —
messages stored in
segment are not lost;

Message reliability —
they will not be lost
while stored on
RabbitMQ;

Message notifications —
signal exchange between
Kafka (possibly, Apache
Zookeeper store), on the
one hand, and
producer/consumer, on the
other hand.

Message notifications
— RabbitMQ
exchanges signals
with producers and
consumers.

One of the main indices of reliability is

support of various guaranties of message delivery,
they can be of three types:

 at-most-once delivery. It means that the
message cannot be delivered more than once. In
addition, the message could be lost.

 at-least-once delivery. It means that the
message will never be lost. In addition, the message
could be delivered more than once.

 exactly-once delivery. All messages are
delivered strictly once.

2.6. Comparison in terms of community support

The comparison was based on such criteria
as the number of stars of project in GitHub; the
number of forks directly indicating interest of third
party developers to the considered software; the
number of commits to main repository; the number
of releases; the amount of contributors: active

Journal of Theoretical and Applied Information Technology
15th October 2019. Vol.97. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5118

community committers; the interest of large
companies to projects and time from the last release
of stable version. With the aim of reference, the
date of project start was also mentioned, however,
this information was not used.

2.7. Generalization of results

Ranks were assigned to the software
products according to the results of each
comparison. Thus, Rank 1 was assigned to the best
software, |then, Rank 2, etc.; if one and the same
rank was assigned to several products, then the rank
was determined by averaging equation (2)

𝑟 ൌ
∑ ሺ𝑟ᇱ 𝑖ሻିଵ

ୀ

𝑛
, ሺ2ሻ

where r was the final rank of tools; n was the
number of tools with one and the same rank; r' was
the rank assigned to all tools.

Comparison results were generalized by
summing ranks assigned to the tools in all
comparisons and then by ranking of the obtained
cumulative ranks.

The criteria for interpreting the results are
the ranks assigned to each system in the context of
each comparison and generalized comparison
results: the lower the rank, the better the system.

3. RESULTS
3.1. Comparison in terms of supported
communication types

Software comparisons in terms of supported
communications are summarized in Table 3.

Table 3. Comparison in terms of supported communication types

Interaction type Weight Apache Kafka Rabbit MQ ZeroMQ gRPC

RPC / Point-to-point
synchronous 1/3 0.5 0.5 1 1

asynchronous 1/3 0.5 0.5 1 1

Publish / Subscribe 1/3 1 1 0 0.5

Sums of estimates 66.67 66.67 66.67 83.33

3.2. Comparison in terms of productivity
Software comparisons in terms of

productivity are summarized in Tables 4–7.

Table 4. Productivity of Apache Kafka.

Test scenario Recording Reading Latency

Size, Kb Amount Messages/s Mb/s Messages/s Mb/s average max

1 10,000 13,106.1599 12.5 28,735.63 27.4044 205.56 387

100,000 36,697.24771 35 120,918.9843 115.3173 617.75 838

300,000 28,403.71142 27.09 185,299.5676 176.7154 1,065.61 2,838

100 1,000 245.158127 23.38 1,694.9153 161.6397 1,202.94 2,877

10,000 294.602875 28.1 3,996.8026 381.1648 1,125.8 5,620

100,000 269.065294 25.66 5,442.7693 519.0629 1,247.17 5,765

Recording rate increases nonlinearly with
the amount of sent megabytes, and the reading rate
increases nearly proportionally to the amount of

sent megabytes. In addition, the higher is the load,
the higher is the latency.

Table 5. Productivity of RabbitMQ

Test scenario Recording Reading Latency

Size, Kb Amount Messages/s Mb/s Messages/s Mb/s average max

1

10,000 8,688 8.484375 8,688 8.484375 77.5 154

100,000 14,467 14.12792969 14,467 14.12792969 106 211

300,000 16,143 15.76464844 16,143 15.76464844 95.5 190

100

1,000 619 60.44921875 2,060 201.171875 48.5 94

10,000 274 26.7578125 3,958 386.5234375 78.5 152

100,000 248 24.21875 2,012 196.484375 60.5 118

Journal of Theoretical and Applied Information Technology
15th October 2019. Vol.97. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5119

At reading rate of 1 Kb, message RabbitMQ

is inferior to Kafka by nearly two times, however,
in the case of 100 Kb, the rate is nearly the same,
and in the case of 1000 messages, Rabbit is by far
superior than Kafka. However, in most
measurements the reading rate of Apache Kafka is

higher despite that the latency is also higher.
Therefore, despite high productivity of both

brokers, Apache Kafka is more productive than
Rabbit MQ; let us assign Ranks 1 and 2 to them,
respectively.

Table 6. Productivity of ZeroMQ

Message size Latency, ns Throughput capacity, message/s Throughput capacity, Mb/s

1 B 33.566 7,305,826 58.447

2 B 33.903 6,401,719 102.428

4 B 33.877 6,745,770 215.865

8 B 34.573 6,884,214 440.590

16 B 34.064 6,295,711 805.851

32 B 35.218 4,677,759 1,197.506

64 B 35.736 4,767,554 2,440.988

128 B 35.775 3,885,802 3,979.061

256 B 35.994 2,689,235 5,507.553

512 B 35.932 1,598,083 6,545.748

1 kB 36.836 867,274 7,104.709

2 kB 47.187 407,486 6,676.251

4 kB 44.569 221,717 7,265.223

8 kB 54.324 110,846 7,264.403

16 kB 79.018 54,030 7,081.820

32 kB 93.768 33,698 8,833.729

64 kB 153.736 16,934 8,878.293

128 kB 194.159 8,611 9,029.288

256 kB 312.330 4,377 9,179.234

512 kB 518.899 2,184 9,160.360

1 MB 1,130.965 1,100 9,227.469

2 MB 2,083.748 544 9,126.806

4 MB 3,747.207 269 9,026.142

8 MB 7,212.642 135 9,059.697

16 MB 13,607.344 67 8,992.588

32 MB 27,424.148 33 8,858.370

64 MB 55,334.758 17 9,126.806

128 MB 113,366.031 8 8,589.935

256 MB 222,521.812 4 8,589.935

512 MB 444,433.406 2 8,589.935

Journal of Theoretical and Applied Information Technology
15th October 2019. Vol.97. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5120

Table 7. Productivity of gRPC
Interacti
on type

Message
size

Latency,
ns

Throughput
capacity, Mb/s

Simple

1kB 40.50 50.50

2 kB 94 111

4 kB 148.50 150

8 kB 202 214.50

16 kB 250 256

32 kB 311 307.50

64kB 365 359

Stream

1kB 22.70 90.30

2 kB 65 151.40

4 kB 110 206.50

8 kB 160.30 267

16 kB 206 320

32 kB 250 378.80

64kB 298 439

Therefore, it is obvious that ZeroMQ is

more efficient in terms of both throughput capacity
and latency in comparison with gRPC, which can
be attributed to the fact that the library uses pure
TCP protocol and works over sockets whereas
gRPC operates according to more complicated
http/2 protocol which results in overhead. ZeroMQ
is more productive than gRPC, let us assign Ranks
1 and 2 to them, respectively. Software ranking in
terms of productivity is illustrated in Fig. 1.

Fig. 1. Ranking of products in terms of productivity.

3.3. Comparison in terms of reliability

RabbitMQ is distinguished from Kafka by
usage of batches in messaging. RabbitMQ provides
something similar to batching due to:

 suspending each X messages until all
notifications are received. RabbitMQ usually
groups notifications using "multiple" flag;

 assigning "prefetch" parameter by receivers
and grouping notifications using "multiple".
Nevertheless, messages are not sent in

batches. This looks like continuous stream of
messages and sending notification groups in one
message tagged with "multiple" as in TCP protocol.
Kafka provides more obvious batching of
messages.

In order to prevent failures, Kafka is
provided with master–slave architecture at the level
of log section, in this architecture masters are
referred to as leaders, and the slaves can be referred
to as replicas. Leader of each segment can have
several slaves. If server with leader fails, then it is
assumed that replica becomes leader, all messages
are retained, only handling is terminated for a short
time.

Kafka prefers the concept of In Sync
Replicas (ISR). Each replica can be or not be in
synchronized state. In the first case, it receives the
same messages as leader for short time interval
(usually for the last 10 s). It is excluded from
synchronization if it does not receive these
messages. This can be caused by network delay,
problems with virtual machine node, and the like.
Messages can be lost only in the case of leader
failure and no participants in replica
synchronization. RabbitMQ also provides message
replication by queue mirroring but does not provide
replica synchronization.

Comparison results in terms of all criteria
are summarized in Table 8:

Table 8. Comparison of Apache Kafka and
RabbitMQ in terms of reliability

Wei
ght

Kaf
ka

Rab
bit

At least once 1/10 1 1

At most once 1/10 1 1

Exactly once 1/10 1 1

Message batching 1/10 1 0

Replication 1/10 1 1

Replication synchronization 1/10 1 0

Notification of message
reception for producer

1/10 1 1

Transactionality 1/10 1 1

Idempotent messaging 1/10 1 0

Guarantees with regard to
message precedence

1/10 1 1

Sum of estimates
100
%

70
%

0 1 2

Apache Kafka

RabbitMQ

ZeroMQ

gRPC

Ranks

Journal of Theoretical and Applied Information Technology
15th October 2019. Vol.97. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5121

Both platforms can implement at-most-once
and at-least-one strategies.

Both platforms provide message replication.
Similar factors act on both platforms, thus, it

is necessary to search for compromise between
throughput capacity and risk of message
duplication. Kafka provides idempotent messaging
but only for limited traffic.

Both platforms define restrictions for
messages in transit, notification of which was not
received by sender.

Both platforms provide guarantees
concerning order of messaging.

Kafka supports transactions mainly in
reading-processing-writing scenario. Herewith, it is
necessary to prevent decrease in throughput
capacity of the system.

In Kafka, even if a receiver does not process
some messages due to hardware failures and
incorrect tracing of displacement of last received
message, it is still possible to restore displacement
of this message (if such case is detected). In
RabbitMQ respective messages will be lost.

Kafka can improve its batching efficiency
due to packet switching, RabbitMQ does not

provide batching due to passive receiving model
not preventing receiver conflicts.

In this comparison, Rank 1 is assigned to
Kafka 1, Rank 2 – to RabbitMQ. Software ranking
in terms of reliability is illustrated in Fig. 2.

Fig. 2. Ranking of products in terms of reliability.

3.4. Comparison in terms of community support

After detailed analysis of software
repositories and number of companies using open
source software, the following results were
acquired, see Table 9.

Table 9. Comparison of Apache Kafka and RabbitMQ in terms of community support

Weight

Kafka Rabbit

Index Estimate Index Estimate

GitHub stars 1/7 12,000 1 5,660 0

GitHub forks 1/7 6,500 1 1,600 0

Commits 1/7 6,000 0 18,000 1

Releases 1/7 105 0 244 1

Contributors 1/7 537 1 79 0

Number of using companies (according
to stackshare.io)

1/7 623 0 1,154 1

Date of project initiation 0 February, 11 - February, 07 -

Last stable release 1/7 43 days ago 1 59 days ago 0,5

Sum of estimates 57% 50%
Rank 1 is assigned to Apache Kafka, Rank 2

– to RabbitMQ.

Table 10. Comparison of ZeroMQ and gRPC in terms of community support

Weight

ZeroMQ gRPC

Index Estimate Index Estimate

GitHub stars 1/7 5,160 0 21,000 1

GitHub forks 1/7 1,529 0 4,800 1

Commits 1/7 7,300 0 38,000 1

Releases 1/7 9 0 148 1

Contributors 1/7 376 0,5 456 1

Number of using companies (according 1/7 43 0,5 61 1

0 1 2

Apache Kafka

RabbitMQ

Ranks

Journal of Theoretical and Applied Information Technology
15th October 2019. Vol.97. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5122

to stackshare.io)

Date of project initiation 0 May, 07 - March, 15 -

Last stable release 1/7 3 months ago 0 10 days ago 1

Sum of estimates 14% 100%
In terms of popularity and community

support, Rank 1 is assigned to gRPC, Rank 2 – to
ZeroMQ. Software ranking in terms of community
support is illustrated in Fig. 3.

Fig. 3. Ranking of products in terms of community

support.

 It follows from the presented analysis that
Kafka, RabbitMQ, and gRPC are popular and
active projects, which is not the case of ZeroMQ.
This is confirmed by statistics of Goggle searches
for the last year, which serves as a peculiar metrics
of tool popularity among customers, this is
illustrated in Fig. 4. The data are taken from Google
Trends [13].

Fig. 4. Popularity of search query regarding the considered products.

3.5. Generalization of comparison results

Generalized comparison results of
messaging systems in terms of all coordinates are
summarized in Table 11, the final ranking is
illustrated in Fig. 5.

Table 11. Generalized comparisons of software

products

Comparison
coordinate

I II
Apache
Kafka

Rabbit
MQ

gRPC ZeroMQ

Productivity 1 2 2 1

Reliability 1 2

Community
support

1 2 1 2

Cumulative
rank

3 6 3 3

Final rank 1 2 1 1

Fig. 5. Final ranking of the considered products.

4. DISCUSSION
This work considered only relatively recent

open source messaging systems having interface to
communicate with Java.

0 1 2

Apache Kafka

RabbitMQ

ZeroMQ

gRPC

Ranks

Apache Kafka RabbitMQ gRPC ZeroMQ

0 1 2

Apache Kafka

RabbitMQ

ZeroMQ

gRPC

Ranks

Journal of Theoretical and Applied Information Technology
15th October 2019. Vol.97. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5123

The main difference from similar studies
already existing is that in most of them they
compare software solutions only by the criterion of
reliability and performance, missing such criteria as
the popularity and support of the product by the
community, which affects the number of errors and
the speed of their correction after detection, size
functionality and the use of relevant, fresh and
promising technologies and algorithms. In many
articles studied, an innovative product from Google
- gRPC is almost not found in comparative analyzes
with other systems that implement traditional RPC
interactions.

There is another even more convenient and
time-tested approach with middleware and classical
message queues. In such case, middleware for
message queuing is used in order to solve problems
of synchronous exchange. After recording into such
queue, a calling component does not wait for
response and can perform other useful operation.
Processing component reads the queued messages
and generates responses which are received by the
calling components in separate stream. Numerous
solutions of such type are based, for instance, on
ESB developed by IBM [21]. Research is available
devoted to analysis and comparison exclusively of
middleware; for instance, OpenMQ, ActiveMQ,
and MantarayMQ are compared in [22].

Other software solutions are available which
can be ranged and compared with the considered
products. For instance, Apache ActiveMQ based on
JMS [23] is compared with RabbitMQ [14] and
OpenMQ [15].

However, there are few studies devoted to
comparison of means of remote procedure call:
ZeroMQ and gRPC; moreover, since gRPC is quite
recent product, it is analyzed and described in
significantly less publications than other mentioned
products. Hence, this work attempts to consider in
general and to compare not only solutions of
different architecture but also the recently
developed and scantily studied systems.

According to comparison of messaging
systems of the second group, Rank 1 was assigned
to both products, since ZeroMQ was characterized
by significantly higher productivity, and gRPC – by
higher community support. However, the following
facts should be taken into account: ZeroMQ is a
light wrapper of C++ sockets which makes it
possible to make point-to-point calls using TCP or
IPC; in its turn, gRPC uses modern http/2 protocol
[24] with numerous possibilities where main
attention is paid to productivity, decrease in
latency, use of network and server resources,
compression of headers. In addition, ZMQ has not

been updated for quite a long time, there are issues
of safety regarding encryption, community support
decreases, whereas gRPC becomes more and more
popular, its releases are published frequently, bugs
are corrected quickly, it becomes a standard at RPC
market of communications. Contrary to ZeroMQ,
where only simpleRPC is available by default, in
gRPC communications are expanded to client-side,
server-side, and bi-directional streaming [25].

5. CONCLUSION

This work analyzed the most efficient
messaging systems. Four software products were
considered: Apache Kafka, RabbitMQ, ZeroMQ,
and gRPC, which complied with three predefined
criteria: support of SSL/TLS encryption, possibility
to operate directly with Java platform (provision of
Java API), and being developed as open source
software.

The comparisons were performed in
environment with four coordinates: supported
communication types, software productivity,
reliability, community support.

Comparison in terms of supported
communication types was based on the criteria
selected by studying documentation on each
software and various publications devoted to
nonstandard application of software. The best
software product in this comparison was gRPC.

Comparison in terms of productivity was
carried out in two groups: Kafka+Rabbit and
ZeroMQ+gRPC were compared separately by
specialized utilities for load testing. According to
these comparisons, the best software in the first
group was Apache Kafka, and in the second group
– ZeroMQ.

Comparison in terms of reliability in the first
group (Kafka and Rabbit) was performed by
studying documentation on each software together
with highlighting and comparing mechanisms of
protection against data loss, data replication, etc.
According to these comparisons, the best software
was Apache Kafka.

Comparison of the software products in
terms of community support was based on project
statistics in GitHub repositories, information in
public sources concerning use of this or that
software by large companies. This comparison was
carried out in two groups: Kafka+Rabbit and
ZeroMQ+gRPC were compared separately.
According to these comparisons, the best software
in the first group was Apache Kafka, and in the
second group –gRPC.

Journal of Theoretical and Applied Information Technology
15th October 2019. Vol.97. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5124

The hypothesis set at the beginning of the
article is partially proved, since the Apache Kafka
software product proved to be a leader in the group
of systems that implement Publish / Subscribe
interactions, while gRPC turned out to be on par
with the ZeroMQ product, having an advantage
only in certain criteria.

Therefore, as a result of the study,
generalized data of a comparative analysis of open
source messaging systems were obtained. The best
software in the group of systems implementing
Publish/Subscribe communication was Apache
Kafka, and in the second group implementing
point-to-point communication both software
products were ranked equally. ZeroMQ was more
productive but less promising, functional and
supported than gRPC, which lagged behind only in
terms of operation rate but supported operation
according to modern http/2 protocol, supported
additional streaming calls and many other things. In
this situation developers should make their choice
on the basis of their own preferences upon
implementation of their systems of intermodular
communication.

ACKNOWLEDGMENTS
This work was supported by the Competitiveness
Program of National Research Nuclear University
MEPhI (Moscow Engineering Physics Institute),
contract with the Ministry of Education and Science
of the Russian Federation No. 02.А03.21.0005,
27.08.2013.

REFERENCES:
[1] Gref, H. (2016). 12 technologies will exert

drastic influence on economy.
https://www.computerworld.ru/news/German-
Gref-12-tehnologiy-okazhut-dramaticheskoe-
vliyanie-na-
ekonomiku (Retrieved: 23.12.2018).

[2] Communication patterns for IoT. Geektimes.
(2016). https://geektimes.ru/company/intel/blo
g/279934/ (Retrieved: 23.12.2018).

[3] Chappell, D. A. (2004). Enterprise Service
Bus. Sebastopol: O'Reilly Media, Inc.

[4] Decentralized messaging systems. (2014).
https://habrahabr.ru/post/240053/ (Retrieved:
23.12.2018).

[5] Microservices were developed before their
mainstreaming: Sberbank - Technologies of
development. (2016). https://habrahabr.ru/com
pany/jugru/blog/312582/ (Retrieved: 23.12.20
18).

[6] Queue server. (2014). https://habrahabr.ru/co
mpany/mailru/blog/216363/ (Retrieved: 23.12.
2018).

[7] Eugster, P. T. et al. (2003). The many faces of
publish/subscribe. ACM computing surveys
(CSUR), vol. 35, no. 2, pp. 114-131.

[8] Birrell, A. D. and Nelson, B. J. (1984).
Implementing remote procedure calls. ACM
Transactions on Computer Systems (TOCS),
vol. 2, no. 1, pp. 39-59.

[9] Ahuja, S. P., & Patel, A. (2011). Enterprise
service bus: A performance evaluation.
Communications and Network, 3(03), 133.

[10] Ahuja, S. P., & Patel, A. (2011). Enterprise
service bus: A performance evaluation.
Communications and Network, 3(03), 133.

[11] Desmet, S., Volckaert, B., Van Assche, S.,
Van Der Weken, D., Dhoedt, B., & De Turck,
F. (2007). Throughput evaluation of different
enterprise service bus approaches. In
Proceedings of SERP2007, the 2007
International Conference on Software
Engineering Research & Practice (part of the
2007 World Congress in Computer Science,
Computer Engineering, and Applied
Computing), pp. 378-384.

[12] Sachs, K., Kounev, S., Bacon, J., &
Buchmann, A. (2009). Performance evaluation
of message-oriented middleware using the
SPECjms2007 benchmark. Performance
Evaluation, 66(8), pp.410-434.

[13] Le Noac'H, P., Costan, A., & Bougé, L. (2017,
December). A performance evaluation of
Apache Kafka in support of big data streaming
applications. In 2017 IEEE International
Conference on Big Data (Big Data). IEEE, pp.
4803-4806.

[14] Rostanski, M., Grochla, K., & Seman, A.
(2014, September). Evaluation of highly
available and fault-tolerant middleware
clustered architectures using RabbitMQ. In
2014 federated conference on computer
science and information systems . IEEE, pp.
879-884.

[15] Ionescu V. M. (2015) The analysis of the
performance of RabbitMQ and ActiveMQ.
14th RoEduNet International Conference-
Networking in Education and Research
(RoEduNet NER). IEEE, pp. 132-137.

[16] Klein A. F. et al. (2015). An experimental
comparison of ActiveMQ and OpenMQ
brokers in asynchronous cloud environment.
Fifth International Conference on Digital
Information Processing and Communications
(ICDIPC). IEEE, pp. 24-30.

Journal of Theoretical and Applied Information Technology
15th October 2019. Vol.97. No 19

 © 2005 – ongoing JATIT & LLS

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5125

[17] Introduction Apache Kafka: site. (2018).
https://kafka.apache.org/intro (Retrieved:
14.02.2019).

[18] RabbitMQ (2018). RabbitMQ is the most
widely deployed open source message broker.
Messaging that just works. URL:
https://www.rabbitmq.com/ (Retrieved:
14.02.2019).

[19] RabbitMQ (2018) Distributed Messaging –
zeromq. ZeroMQ. URL: http://zeromq.org
(Retrieved: 14.02.2019).

[20] gRPC (2019). A high performance, open-
source universal RPC framework. URL:
https://grpc.io (Retrieved: 14.02.2019).

[21] Google Trends (2019) Explore what the world
is searching. URL:
https://trends.google.ru/trends/ (Retrieved:
20.03.2019).

[22] Chappell D. (2004). Enterprise service bus.
O'Reilly Media, Inc.

[23] Ahuja S. P., Mupparaju N. (2014)
Performance Evaluation and Comparison of
Distributed Messaging Using Message
Oriented Middleware. Computer and
information science. Vol. 7(4): 9.

[24] Dai J., Zhu X. M. (2010). Design and
implementation of an asynchronous message
bus based on ActiveMQ. Computer Systems
& Applications. Vol. 8: 062.

[25] Corbel R., Stephan E., Omnes N. (2016) 1.1
pipelining vs HTTP2 in-the-clear:
Performance comparison. 2016 13th
International Conference on New
Technologies for Distributed Systems
(NOTERE). IEEE, pp. 1-6.

[26] gRPC: (2019). Documentation. gRPC Basics –
Java. URL:
https://grpc.io/docs/tutorials/basic/java/
(Retrieved: 20.03.2019).

