
Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
517 

 

REPLICATION STRATEGIES BASED ON MARKOV CHAIN 
MONTE CARLO AND OPTIMIZATION ON CLOUD 

APPLICATIONS 

 
AWS ISMAIL ABU EID1, WSW  AWANG2, MZARINA3, AH Zakaria4 

 
1University Sultan Zainal Abdin, Faculty Informatics and Computing, Camps Besut, Terengganu, Malaysia. 
2University Sultan Zainal Abdin, Faculty Informatics and Computing, Camps Besut, Terengganu, Malaysia. 
3University Sultan Zainal Abdin, Faculty Informatics and Computing, Camps Besut, Terengganu, Malaysia. 
4University Sultan Zainal Abdin, Faculty Informatics and Computing, Camps Besut, Terengganu, Malaysia. 

E-mail: 1Aws.abu.eid@gmail.com,2suryani@unisza.edu.my, 3zarina@unisza.edu.my, 4aznida@unisza.edu.my 
 

ABSTRACT 

This work positioned a dynamic replication strategy capable of meeting tenant availability and performance 
criteria concomitantly. The Monte Carlo BAT Optimization MCBO model is a strategy geared towards 
calculating the optimal path to update distributed replicas on cloud sustaining high data availability. In 
general, replica creation is prompted in two circumstances: a specific number of replicas is not achieved or 
in case of unsatisfactory response time objective. Following this, it is necessary for the replication process to 
be successful in order to design the MCBO model for determine optimal path. Data replication and query 
scheduling were combined for ensuring the replica placement in a load-balancing manner while handling 
tenant budget. The experimental outcomes revealed significant improvement for the availability and 
performance following the use of the model. 

Keywords: Data Replication, Cloud Enviroment, Mcbo Model, Bat Algorithm, Optimization  

1. INTRODUCTION 

Wide-ranging and large-scale incorporation of 
Internet services and big data in the current climate 
has rendered the cloud as the optimum answer for 
the burgeoning need for storage due to its provision 
of illimitable capacity, high availability, and swift 
access time. The cloud computing paradigm itself is 
highly popularized in today’s industrial and 
academic sectors, attracting scholarly attention due 
to the possibility of extensive benefits for the 
industry and communityalike Ali et al .2015 [1]. For 
cloud providers, resources reutilization can be done 
following their release by specific users, which 
leads to their enhanced usage Rittinghouse, and 
Ransome 2017 [2]. This allows the establishment of 
multiple large-scale data centresin geographically 
disseminated sites. Following this, data 
replicationis upheld as an effectual approach for 
faulttolerance provisions, minimized end-user 
latency, and reduced data exchange via a network. 
Consequently, replica management has emerged as 
a challenging field for these providers. 

In general, cloud computing is an up-and-coming 
ideal offering service such as computing, 

communication, and storage resources over a 
network. Various cloud applications and their 
service provision are stuck in gridlock due to 
communication resources. This renders data 
replication a favourableanswer as it positions data 
(e.g. databases) closer to the consumers (e.g. cloud 
applications) Boru et al. 2015 [3], as well as 
alleviating issues of network delays and bandwidth 
utilization. As a result, distributed storage is highly 
demanded due to the voluminous amount of data 
handled and disseminated by application services 
on the Internet in providing for multiple tenants [4]. 
Contextually, data replication is deemed a popular 
technique that assures availability and performance 
by distributing many data copies across differing 
locations Selvi et al. 2015[5]. It improves the 
likelihood for a minimum of one copy being 
accessible in case of failures and in consideration of 
various objectives, such as reduced storage cost and 
enhanced fault-tolerance and access delays Kumari 
and Kaur (2018) [6]. Thus, replication is 
unsurprisingly a crucial element of cloud 
computing applications in which the services are 
utilized by a multitude of clientele that accesses 
their data from varying locations at a low frequency 
of latencies. 



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
518 

 

Various works in the literature have described data 
replication in cloud systems Milani et al .2016, 
Tabet et al. 2017 [7,8]. Such strategies have been 
positioned to achieve an increased level of data 
availability and load balancing Limam et al. 2016 
[4], enhanced performances Tos et al.2016, Xiong 
et al. 2011 [9,10], and minimized bandwidth 
consumption Kloudas et al. 2015 [11]. However, 
the outlined goals are shown to be discordant: for 
instance, data replication assures their availability, 
but this may occur in the expense of inter-site 
communication. This results in an overloaded 
network, thus impacting the performance. 
Furthermore, a majority of the strategies dismiss 
replication cost and provider profit both.  

As such, this work designs, applies, and positions 
the Monte Carlo Markov Chain (MCMC) technique 
in producing random samples (paths) in a cloud 
environment in order to undertake the outcome 
assessment using a meta-heuristic algorithm (BAT-
algorithm) one-test-at-a-time. Utilizing MCBO as a 
novel technique, this study uses an optimal path that 
is implementable for solving one of the commonest 
replication-related issues in the cloud. 
Consequently, this study aims  proposed the method 
to reduce the time and resource consuming, which 
will discuss the details of method stages in section 
three. In brief, by generating the likelihood of 
distinct results in a random variables method, input 
analysis, and test suite iteration. Additionally, the 
process of attaining the best outcomes is further 
aided by calibrating pertinent MCBO variables. 

This work is organized according to the following 
structure: section two assesses correlated studies 
undertaken regarding replica placement and 
migration in the cloud, while the consequent section 
details the proposed answer to the issue. Then, 
section four presents the simulation outcomes 
obtained in evaluating the approach and its 
performance. Lastly, section five offers a 
comprehensive conclusion.  

2. LITERATURE REVIEW AND RELATED 
WORK 

Various works have previously positioned 
approaches for data replication in cloud systems. 
For example, Kloudas et al. 2015 study [11] have 
detailed a scheduler termed as Pixida in order to 
achieve reduced data movement across resource-
limited links. This is achieved by the introduction 
of Silo, which is a new abstraction method crucial 
for modeling the Pixida's scheduling objectives as a 
graph partitioning problem. Furthermore, the 

authors reveal that the pre-existing graph 
partitioning problem formulations are not mapped 
to the way substantial data jobs function, thus 
rendering the solutions incongruent with 
opportunities for data movement prevention. 
Consequently, a new graph partitioning problem 
has been formulated and a novel algorithm is 
proposed as a solution. Pixida has been further 
integrated into the Spark in which experimental 
outcomes show that it attains traffic reduction up to 
nine-fold using the links in comparison with current 
schedulers. Meanwhile, Tos et al.2016 [9] have 
positioned an approach for data replication aimed 
for a satisfactory performance assurance for the 
tenants while concomitantly securing cloud 
provider profitability. This strategy offers an 
estimated response time for any queries and the 
expenses impacting the aforementioned 
profitability.  

In another instance, Boru et al. 2015 [3] have 
designed models meant as a solution for energy 
consumption and bandwidth demand posed by 
database access in cloud computing datacentres. 
Furthermore, the work has detailed an effectual 
energy replication strategy according to the models, 
thus resulting in an enhanced Quality of Service 
(QoS) and minimised communication delays. The 
resulting assessment generated via comprehensive 
simulations has revealed performance and energy 
efficiency tradeoffs, which subsequently served as 
guidance in designing upcoming data replication 
solutions. 

Next, study Bonvin et al .2010 [12] have detailed a 
scattered key-value store named Skute in which 
virtual nodes function autonomous agents, which 
makes decisions to the advantage of the data owners 
without external control. Here, the economic model 
positioned revolves around a virtual economy. 
These nodes will make rental payments to other 
nodes for replica hosting with regard to storage 
utilisation and query load. Moreover, they are 
revenue-generating in nature according to the 
number of queries answered. The study positioned 
has taken into consideration the availability first 
followed by the net benefit via replica placement to 
nodes according to their economic fitness. In Skute, 
performance guarantees are not deemed as a crucial 
component of the SLA implemented in it but a 
reduction in the average query load per node is 
recorded and obtained over time. 

The study by Sakr and Liu, 2012 [13] has detailed 
an SLA-focused provisioning approach for cloud 
databases, which is consumer-centric in nature. 



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
519 

 

Here, the database servers are subjected to scaling 
in and out per the SLA requirements; being the 
primary SLA goal for decision-making processes, 
the total execution time of transactions is thus 
selected. This strategy requires close monitoring of 
the cloud system, while the cloud providers 
comprehensively describe application-specific 
rules to ensure adaptive resource scaling. Although 
the benefits of SLA-aware provisioning for scaling 
are known, the economic outcomes of replication 
for cloud providers have not been detailed. 

Janpet and Wen, 2013 [14] have proposed a strategy 
for data replication geared towards reduced data 
access time, which is achieved by identifying the 
shortest access path to data objects. The work has 
modelled the access frequency, delay, and 
replication budget in order to yield the node that is 
the closest and most suited for replica placement. In 
particular, the replication budget is predefined in 
nature and merely implemented as a limiting factor 
for the users towards ensuring a regulated number 
of replicas. However, the work did not address in-
depth regarding the economic correlation between 
the users and cloud provider. Regardless, the work 
has shown that a closer placement between data 
objects and the nodes with high access frequency 
enhances the response time.  

Next, SWORD has been detailed by Kumar et al. 
2014 [15], which is a workload-aware data 
placement and replica selection scheme. The work 
has positioned a novel metric named query span, 
which is the average amount of nodes implemented 
for query execution. This strategy is aimed towards 
reducing the query span in achieving reduced 
communication overhead, resource consumption, 
energy footprint, and transaction costs. The authors 
have thus claimed that SWORD handles 
performance degradation via increments of data 
repartitioning. Additionally, provider profit is not 
emphasised in this work, but the study effectiveness 
has been proven via an experimental analysis 
conducted for the measurement of query span and 
transaction times. 

Meanwhile, Zhang et al. 2014 [16] have depicted an 
auction model in the implantation of a replica 
placement policy, which is geared towards meeting 
the availability aspect in a large-scale cloud storage 
environment. If the coveted level of availability is 
not sustained, the placement of a new replica is 
established by holding bidding. The bidding price is 
reliant upon different node properties, such as 
failure probability, network bandwidth, and space 
availability. The objective function does not 

incorporate the response time, but the authors have 
reported improved performance and satisfactory 
availability during the experiments. 

Besides, Sousa and Machado 2012 [17] have 
offered Replica, which is a strategy for elastic 
multitenant database replication. It considers the 
performance SLA and makes adjustments for the 
number of replicas in an elastic manner by 
observing the system implementation. Any 
workload changes and variations can be dealt with 
by targeting the transactions towards replicas 
having sufficient resources. An experimental work 
has juxtaposed RepliC with a rule-based scaling 
scheme, which yielded outcomes indicative of the 
strategy meeting the QoS satisfactorily with 
minimum SLA violations. 

Boru et al. 2015 [18] have described an approach 
for data replication with an emphasis on enhancing 
the energy efficiency of cloud data centres. Here, 
the strategy advances energy consumption, 
bandwidth implementation, and network delays at 
the levels of inter-data centre and intra-data center 
a like. The data centre power utilisation and 
bandwidth consumption of database operations are 
modelled accordingly in this work, whereby 
recurring assessments are undertaken in 
determining the replication decision. They will also 
estimate the power and bandwidth utilisation of the 
replicas in future periods. A simulation study 
undertaken has thus revealed that a closer 
placement between replicas yields improved power 
consumption and response time. Regardless, the 
economic rewards are not emphasised.  

3. PROPOSED APPROACH  

The approach proposed in this work is termed as the 
MCBO model, which is subjected to four phases 
during the building process in order to attain the 
goals of reduced time and resource consumption 
when updates for the cloud replicas are required. 
This is shown in Figure 3.3 accordingly. 
Meanwhile, Figure 1 displays all four stages and 
their processes as follows: 

Implement the MCMC Algorithm (see Algorithm 
1) to generate more random walks (i.e. more 
iterations). A random walk can be described as a 
mathematical object otherwise known as a 
stochastic or random process, which defines a route 
made up of sequential random moves on certain 
mathematical space, such as the integers. (see figure 
1) 



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
520 

 

1. Assess and obtain the outcomes for every 
iteration yielded from the MCMC algorithm 
(Phase 1) with random walks(i.e. paths), 
parameter time, and location. Software tools 
can be utilized to save such outcomes, such as 
gridsim or excel. 

2. Generate the MCBO test suite (see Algorithm 
2), which implements the Bat Algorithm (BA) 
as the basic algorithm in establishing the 
optimal path (i.e. random walk). This is 
dependent upon the starting position and the 
time taken for random walks as indicated by 
the MCMC method. 

3. The MCBO strategy will save the optimal 
random walk (i.e. path) that is utilisable in the 
scheduler policy in order to update the replica 
on the cloud. 

4. RESULT: 

The model proposed and its phases yield results, 
which will be detailed accordingly across four sub-
sections. 

4.1 Run of the MCBO model 

The current study was associated with the random 
disrupted strategy for the selection of an initial 
location and the amount of step required for the task 
completion. By establishing the starting location for 
the MCBO model, the scale and the limits utilised 
in this work could be identified. Accordingly, the 
scale of 1:100 was implemented, indicative of every 
1 is equivalent to 100 kilometres on the ground. 
Furthermore, preventing a coordinate X or y 
negative signal was achieved by working on the 
first quarter (x, y) of the Cartesian coordinate 
system or Universal Transverse Mercator (UTM). 
Our boundary for scaling from 0 to 100 that mean 
we work in positive area. Distribution system x axis 
and y axis Cartesian level (0,100). Next, one could 
proceed to the subsequent phase in the model using 
the BAT algorithm in establishing the optimal path 
orvariables (i.e. Start location, time (Steps)). This 
allowed a measurement of the model effectiveness 
towards minimising the time and resource 
consumptions upon the use ofthe update operation 
for the replicas in the cloud.  

Start Location: The first location value is arbitrarily 
established in the first iteration. 

Time (Steps): The number of steps recorded upon 
the model movement from the start location until 
the end of the domain border. 

 

4.1.1 Run Random Walk Algorithm  

This phase consisted of two principal sections under 
the umbrella of the processing. The first section 
detailed the output for five iterations generated by 
the random walk algorithm and the extraction of the 
(Start Location, Times (step)). Then, the second 
section implemented the random walk algorithm to 
generate outputs for 9000 iterations. 

4.1.1.1 Outputs for five iterations generated by 
Random Walk Algorithm. 

The outputs were established using the random 
walk algorithm (i.e. start location, current location, 
next location to achieve the final position (100), and 
how long it takes (i.e. steps) to achieve the final 
position (100)). 

 Iteration Number 1 :  

 

Figure 2: Iteration Number 1. 

The route obtained by the random walk algorithm is 
displayed in Figure 3.4.It included the location of 
two required values at the start point 22 and the 
steps necessary to cover boundary 19297.  

𝐼ଵ  ൌ  ሼL1, T1ሽ, represented numerically as {[22] , [ 
19297]}.  

 Iteration Number 2. 

0

100

200

1

6
4
4

1
2
8
7

1
9
3
0

2
5
7
3

3
2
1
6

3
8
5
9

4
5
0
2

5
1
4
5

5
7
8
8

6
4
3
1

7
0
7
4

7
7
1
7

8
3
6
0

Iteration  1
Start Location 22
Steps (Time) 19297



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
521 

 

 

Figure 3: Iteration Number 2. 

The route produced by the random walk algorithm 
is illustrated in Figure 3.It included the location of 
two required values at the start point 16 and the 
steps necessary to cover boundary 10958.  

 𝐼ଶ  ൌ  ሼL2, T2ሽ, represented numerically 
as {[16] , [ 10958]}.  

 

 

 

 

Figure 4:Iteration Number 3. 

The route established by the random walk 
algorithm is depicted in Figure 4.It included the 
location of two required values at the start point 12 
and the steps necessary to cover boundary 16614.  

 𝐼ଷ  ൌ  ሼL3, T3ሽ, represented 
numerically as {[16] , [ 10958]}.  

 Iteration Number4.  

Figure 5:Iteration Number 4. 

The route obtained by the random walk algorithm 
is illustrated in Figure 5.It included the location of 
two required values at the start point 30 and the 
steps necessary to cover boundary 2720.  

 𝐼ସ  ൌ  ሼL4, T4ሽ , represented 
numerically as {[30] , [ 2720]}.  

 

 Iteration Number 5.  

Figure 6:Iteration Number 5. 

The route yielded by the random walk algorithm is 
revealed in Figure 6. It included the location of two 
required values at the start point 30 and the steps 
necessary to cover boundary 2720.  

 𝐼ହ  ൌ  ሼL5, T5ሽ , represented numerically 
as {[29] , [ 369880]}.  
 

4.1.1.2 The output for 9000 iterations Generate 
by Random Walk Algorithm 

 

This section details the output obtained when 9000 
iterations are subjected to the random walk 
algorithm. Every iteration was equipped with their 
respective (Start location, Time (step)) in order to 
achieve the final position (100) in the domain. 
Here, the start location could be replicated due to 
its arbitrary nature, thus requiring all 9000 
iterations to be categorised in order to define the 
values of the start location and the average time 
(steps) for each of these locations. Table 1 displays 
the output values for all 9000 iterations with 
information such as start location, repeated, 
summation, average, and rounded average values 
included.   

4.1.2 Analysis and Result Collection 
This section describes the second phase of the 
MCBO model. The route obtained by the random 

0

100

200

1

6
4
4

1
2
8
7

1
9
3
0

2
5
7
3

3
2
1
6

3
8
5
9

4
5
0
2

5
1
4
5

5
7
8
8

6
4
3
1

7
0
7
4

7
7
1
7

8
3
6
0

Iteration 2
Start Location  16
Steps (Time) 10958

0

100

200

1
1
7
1

3
4
1

5
1
1

6
8
1

8
5
1

1
0
2
1

1
1
9
1

1
3
6
1

1
5
3
1

1
7
0
1

1
8
7
1

2
0
4
1

2
2
1
1

2
3
8
1

2
5
5
1

Iteration 4
Start Location 30
Step (Time) 2720

0

100

200

1
5
6
3

1
1
2
5

1
6
8
7

2
2
4
9

2
8
1
1

3
3
7
3

3
9
3
5

4
4
9
7

5
0
5
9

5
6
2
1

6
1
8
3

6
7
4
5

7
3
0
7

7
8
6
9

8
4
3
1

Iteration 3
Start Location 12
Steps (Time) 16614

0

100

200

1

6
4
4

1
2
8
7

1
9
3
0

2
5
7
3

3
2
1
6

3
8
5
9

4
5
0
2

5
1
4
5

5
7
8
8

6
4
3
1

7
0
7
4

7
7
1
7

8
3
6
0

Iteration 5
Start Location 29

Steps (Time) 369880



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
522 

 

walk algorithm is depicted in Figure 7, detailing the 
outcomes for all 9000 iterations. The information 
was utilised to assess the outcomes obtained and 
extract the values of tworequired values of the start 
location and the steps necessary to cover boundary. 

Figure7: Graph of the start location and time (step) to 
reach the domain boundaries 

The outputs from 9000 iterations were divided into 
20 sets and extracted depending on the Start 
location (0-99), as 
{0,1,5,10,15,20,25,35,35,40,45,50,55,60,65,70,75,
80,85,90,95,99} in establishing the candidate sets. 
Table 2 depicts the candidate set in which each set 
has iterations that yielded the time (steps) required 
to attain the upper boundary. The particular number 
of steps were input into the BAT algorithm in order 
to establish the optimal time (step).    

During this particular phase, the representative 
outcomes for three candidate sets were used to 
clearly delineate the input for the BAT algorithm. 

 Candidate Set Number 1:( see table 3 ) 
 

 Candidate Set Number 2: (see table 4) 
 

 Candidate Set Number 3: (see table 5) 

4.1.3 The Use of BAT Algorithm 

The current phase depicts the representative 
components as Numerical Legal Values𝐼୧  ൌ
 ሼLi, Tiሽ, which is represented numerically 
using Table 2. This was done by extracting the 
candidate sets {[start location], [ (Time)]} 
from Table 1. Typically, defining the sets of 
candidate group required the BAT algorithm 
to undergo three phases in order to assess the 
optimal Solution for each candidate set. This 
is depicted accordingly inTable6. 
 

Table 6: BAT population for candidate sets 

 
Size (N)  

Start location Steps  (Time) 

Set 1   
[0] 

[X1,X2.X3,..
X86] 

[7334, 10925, 
5896,..,5224] 

Set 2   
[5] 

 
[X1,X2.X3,..

X101] 

[3607, 8885, 
24832,..,8857] 

Set 3   
[10] 

[X1,X2.X3,..
X83] 

[4739, 9186, 
16212,…

,3660] 
Set 4  
[15] 

[X1,X2.X3,..
X101] 

[6077, 15842, 
3263,…,10881] 

Set 5   
[20] 

[X1,X2.X3,..
X92] 

[31936, 3792, 
5692,…,10948] 

… …  
… …  

Set 20  
[99] 

[X1,X2.X3,..
X81] 

[1, 83, 37,…,5] 

The phases can be viewed as seen below:  

Phase 1.  
The variable for the BAT algorithm is 
determined using Table 7, wherethe size of 
the BATalgorithm size (N) is established 
using the mean population of the 
algorithm.Meanwhile, the candidate sets 
for each set indicate the iteration for each 
set and the value of each iteration in order 
to obtain the solution = ∑ሺ𝑡𝑖𝑚𝑒 ሻ/
𝑃𝑜𝑝𝑜𝑢𝑙𝑡𝑖𝑜𝑛   

 
Table 7:  Bat input value 

 

Input Name Values Describe  

Bat populations 20 sets 

Each set has 
a specific 
number of 

iteration and 
time 

Solutions 

Defi
ned by 
BAT 

Algorith
m 

Rounde
d 

(Average(Ti
me)) 

Lower boundary 0 
Lower 

boundary 

Upper boundary 3 
Upper 

boundary 

Tolerance 
0.00

1 
Toleran

ce value 
 
 

0

5000

10000

15000

0 7

1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

7
7

8
4

9
1

9
8

Start Location and 
Average Time (Steps)



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
523 

 

Phase 2. Calculate the solution for Bat 
populations. (See figure 8 )   

 
The aforementioned outputs of the BAT algorithm 
were made up of population, solution, speed 
measurement (velocity), and frequency.  

4.1.3.2 Solution for Candidate Sets Generated 
by BAT Algorithm 

 

Each set was subjected in the BAT algorithm in 
order to obtain the solution. Table 8 displays the 
solution obtained for the candidate sets. 

4.1.4 Friedman Test 
The Friedman test was used to assess the 
significant values and best position of the 
candidate sets. The results obtained are shown 
in Table 9. 

Friedman test for collecting the results of MCMC 

In this subsection, the test check was undertaken to 
all 20 sets (refer to Chapter 3) across all candidate 
sets in order to establish the significance or 
insignificance of the outcomes.  

Friedman test for Candidate Set Zero-location  

Table 8. Descriptive Statistics for zero-location 

Descriptive Statistics 

 N 
Mea

n 
Std. 

Deviation 
Minimum Maximum

Start 
Locatio
n 

86 .00 .000 0 0

Time 86 
9587.

52 
6562.659 1170 27707

 

 

 

 

 

 

 

 Friedman Test 
 
Table 9. Friedman rank for zero-location 

Ranks 

Start Location 1.00 

Time 2.00 

 

Table 10. Friedman test for zero-location 

Test Statisticsa 

N 86 

Chi-Square 86.000 

df 1 

Asymp. Sig. .000 

  

The outcomes obtained showed that the Chi-
square value of 86 at the level of 0.01, which was 
indicative of the error that occurred every 100 
iterations at one time. 

5. CONCLUSION 

This work positioned a strategy for data replication 
strategy geared for a concomitant effect of meeting 
the availability and performance criteria both. To 
ensure resource preservation, the MCMC method 
was utilised inproducing random samples (i.e. 
paths) in a cloud environment for outcome 
assessment by implementing a meta-heuristic 
algorithm (i.e. BATalgorithm) one-test-at-a-time. 
The use of a novel model termed as MCBO, one 
could establish the optimal path. 
MCBO benchmarking involves benchmarking of 
current approaches as well as the accompanying 
statistical analysis.MCBO performance achieved 
results that were statistically significant. Building 
on the current content in this chapter, the next 
chapter will summarize all findings, conclude and 
comment on contributions, and provide a roadmap 
for possible future research in this direction. 

6. FUTURE WORK 

Since the application of MCBO presented in this 
study is still a prototype, the realization of 
automated test replication strategies based on 
Markov Chain Monte Carlo and Optimization on 
Cloud Applications will be a clear starting point for 
future work. Many MCBO attributes (i.e. input-



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
524 

 

output interaction, candidate sets and Scale) were 
especially to be included. 

REFERENCES  

[1] Ali, M., Khan, S. U., &Vasilakos, A. V. (2015). 
Security in cloud computing: Opportunities 
and challenges. Information sciences, 305, 
357-383. 

[2] Rittinghouse, J. W., &Ransome, J. F. 
(2017). Cloud computing: implementation, 
management, and security. CRC press. 

[3] Boru, D., Kliazovich, D., Granelli, F., Bouvry, 
P., &Zomaya, A. Y. (2015, June). Models for 
efficient data replication in cloud computing 
datacenters. In 2015 IEEE International 
Conference on Communications (ICC) (pp. 
6056-6061). IEEE. 

[4] Limam, S., Mokadem, R., &Belalem, G. 
(2019). Data replication strategy with 
satisfaction of availability, performance and 
tenant budget requirements. Cluster 
Computing, 1-12. 

[5] Selvi, M. S. A. E., &Anbuselvi, R. (2015, 
March). An Analysis of Data Replication 
Issues and Strategies on Cloud Storage System. 
In International Journal of Engineering 
Research & Technology (IJERT), NCICN-2015 
Conference Proceedings, pp18-21. 

[6] Kumari, P., & Kaur, P. (2018). A survey of 
fault tolerance in cloud computing. Journal of 
King Saud University-Computer and 
Information Sciences. 

[7] Milani, B. A., &Navimipour, N. J. (2016). A 
comprehensive review of the data replication 
techniques in the cloud environments: Major 
trends and future directions. Journal of 
Network and Computer Applications, 64, 229-
238. 

[8] Tabet, K., Mokadem, R., Laouar, M. R., 
&Eom, S. (2017). Data replication in cloud 
systems: a survey. International Journal of 
Information Systems and Social Change 
(IJISSC), 8(3), 17-33. 

[9] Tos, U., Mokadem, R., Hameurlain, A., Ayav, 
T., & Bora, S. (2016, July). A performance and 
profit oriented data replication strategy for 
cloud systems. In 2016 Intl IEEE Conferences 
on Ubiquitous Intelligence & Computing, 
Advanced and Trusted Computing, Scalable 
Computing and Communications, Cloud and 
Big Data Computing, Internet of People, and 
Smart World Congress 
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorl
d) (pp. 780-787). IEEE. 

[10] Xiong, R., Luo, J., Song, A., Liu, B., & Dong, 
F. (2011, September). QoS preference-aware 
replica selection strategy using MapReduce-
based PGA in data grids. In 2011 International 
Conference on Parallel Processing (pp. 394-
403). IEEE. 

[11] Kloudas, K., Mamede, M., Preguiça, N., & 
Rodrigues, R. (2015). Pixida: optimizing data 
parallel jobs in wide-area data 
analytics. Proceedings of the VLDB 
Endowment, 9(2), 72-83. 

[12] Bonvin, N., Papaioannou, T. G., &Aberer, K. 
(2010, June). A self-organized, fault-tolerant 
and scalable replication scheme for cloud 
storage. In Proceedings of the 1st ACM 
symposium on Cloud computing (pp. 205-216). 
ACM. 

[13] Sakr, S., & Liu, A. (2012, June). Sla-based and 
consumer-centric dynamic provisioning for 
cloud databases. In 2012 IEEE Fifth 
International Conference on Cloud 
Computing (pp. 360-367). IEEE. 

[14] Janpet, J., & Wen, Y. F. (2013, March). 
Reliable and available data replication 
planning for cloud storage. In 2013 IEEE 27th 
International Conference on Advanced 
Information Networking and Applications 
(AINA) (pp. 772-779). IEEE. 

[15] Kumar, K. A., Quamar, A., Deshpande, A., 
&Khuller, S. (2014). SWORD: workload-
aware data placement and replica selection for 
cloud data management systems. The VLDB 
Journal—The International Journal on Very 
Large Data Bases, 23(6), 845-870. 

[16] Zhang, H., Lin, B., Liu, Z., &Guo, W. (2014, 
September). Data replication placement 
strategy based on bidding mode for cloud 
storage cluster. In 2014 11th Web Information 
System and Application Conference (pp. 207-
212). IEEE. 

[17] Sousa, F. R., & Machado, J. C. (2012, 
November). Towards elastic multi-tenant 
database replication with quality of service. 
In Proceedings of the 2012 IEEE/ACM Fifth 
International Conference on Utility and Cloud 
Computing (pp. 168-175). IEEE Computer 
Society. 

[18] Boru, D., Kliazovich, D., Granelli, F., Bouvry, 
P., &Zomaya, A. Y. (2015). Energy-efficient 
data replication in cloud computing 
datacenters. Cluster computing, 18(1), 385-
402. 

  



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
525 

 

 Indexed 

 

Algorithm 1: MCMC method(Metropolis-Hastings 
Algorithm) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Algorithm 1: MCMC method(Metropolis-Hastings Algorithm) 

Input: Number of iteration (N); Current Position (L);Current Position (U); //distribution limits (L,U) 
Output: Random Walk path(series) ,StepsS //time to cover the path   

1: Define 𝑛, 𝑙௪, , 𝑈௨ 

2: Initialise CurrentMin , CurrentMax; Step S ; Current Position P 

3: Randomly Initialise 𝑅 

4: whileሺ𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ൏ 𝑁ሻdo 

5:  {       while (Current Position P  !=L&&Current Position P !=  U ) do 

6: 
 

              Generate Randomly 𝑅 =Random.math();  

7: 
8: 
 
9: 

                     If (𝑅<Mid(L,U)) 
                         Current Position P  ++ 
 
                                If  (Current Position P  >Current Max) 
                                          Current Max= Current Position 

10: End if 

11:                     Else 

12:                             Current Position P  - - 

13: If  (Current Position P  <Current Min) 

14:                                           Current Min= Current Position  

15: End if  

16: End if  

17:                  Step S ++; 

18:      End while  

19: End while  



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
526 

 

 
 Algorithm 2:  Bat-inspired Algorithm (BA) 

 
  

Algorithm 2: Bat-inspired Algorithm (BA) 

Input: objective function 𝑓ሺ𝑥ሻ, 𝑥 ൌ ൫𝑥ଵ, … , 𝑥൯
்
. 

Output: Best fitness 𝑥∗. 

1: Define 𝑛, 𝑇௫, 𝑄 ∈ ൣ𝑄 ,  𝑄௫൧; 

2: Randomly Initialise 𝑥, 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑄for 𝑖 ൌ 1, 2, … , 𝑛; 

3: Initialise pulse rates 𝑟 and the loudness 𝐴; 

4: whileሺ𝑡𝑠 ൏ T௫ሻdo 

5: for each bat n୧do 

6: 
 

Use movement equations to generate fresh alternatives by 
changing frequency, updating speed and place (4-2 to 4-4); 

7: 
8: 
 

9: 

ifሺ𝑟𝑎𝑛𝑑ሺ0,1ሻ  𝑟ሻthen 
In the present population, select the best solution ; generate a 

local solution for the best solution ; 
Select the best solution in the current population ; produce a 

local solution for the best solution ; 

10: End 

11: By flying randomly, generate a fresh solution ; 

12: For Every Location in 9000  do 

13: Calculate Time (steps) For same Location  ; 

14: Find the solution = ∑ሺ𝒕𝒊𝒎𝒆 ሻ/𝑷𝒐𝒑𝒐𝒖𝒍𝒕𝒊𝒐𝒏; 

15: End for 

16: Extract the result solution in the current population ; 

17: End 

18: End 

19: Processing and visualisation of outcomes ; 



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
527 

 

 
Figure 1: The overview of the Proposed Model. 

  



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
528 

 

Table 1: The output for 9000 iterations 

Start 
location 

Repeat  Total (Time) 

0 86 824527 
1 78 757359 
2 103 1087452 
3 90 1035219 
4 85 928084 
5 101 969729 
6 74 816235 
7 92 905551 
8 98 915197 
9 89 829879 

10 83 814755 
11 94 1015051 
12 89 852482 
13 74 592313 
14 98 1017524 
15 101 876881 
16 85 801942 
17 91 880056 
18 95 930762 
19 87 892180 
20 92 940185 
21 88 821449 
22 104 999976 
23 91 895071 
24 88 943704 
25 89 850592 
26 89 902834 
27 82 711740 
28 92 898882 
29 96 790917 
30 100 824688 
31 95 843790 
32 80 753680 
33 84 772957 
34 87 891337 
35 108 938496 
36 86 742475 
37 96 825666 
38 72 641618 
39 85 608481 
40 84 579951 
41 78 613216 
42 82 722078 
43 90 657173 
44 97 703898 
45 98 814998 
46 92 833236 
47 91 727959 
48 85 606631 

49 96 690201 
50 91 673508 
51 84 791455 
52 92 782037 
53 84 635281 
54 95 598865 
55 79 580065 
56 70 533887 
57 97 756999 
58 89 561937 
59 91 582123 
60 83 605273 
61 78 491410 
62 83 518481 
63 89 454433 
64 98 533737 
65 91 480878 
66 95 508514 
67 88 442326 
68 78 405510 
69 114 664363 
70 87 411019 
71 91 493271 
72 91 447483 
73 86 367529 
74 81 451840 
75 78 266186 
76 85 302429 
77 113 413895 
78 91 293423 
79 84 384836 
80 97 332289 
81 78 173995 
82 95 265213 
83 78 190857 
84 102 246959 
85 86 264135 
86 93 257961 
87 73 131197 
88 81 194620 
89 99 208662 
90 108 159157 
91 83 247811 
92 111 240007 
93 98 90067 
94 110 74258 
95 92 45690 
96 86 90888 
97 100 87061 
98 103 57463 
99 81 6543 

Total 9000 60088883 
  



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
529 

 

 
Table 2: Candidate Set Generation from Random Walk Algorithm. 

  
Set Start location Repeat 

1 0 86 
2 5 101 
3 10 83 
4 15 101 

5 20 92 
6 25 88 
7 30 100 

8 35 108 

9 40 84 

10 45 98 

11 50 91 

12 55 79 

13 60 83 

14 65 91 

15 70 87 

16 75 78 

17 80 97 

18 85 86 

19 90 108 

20 99 81 

  



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
530 

 

Table 3: Result for start location 0 using 
Random Walk Algorithm 

Iteration Start location Steps ( Time) 
1 0 7334 
2 0 10925 
3 0 5896 
4 0 27707 
5 0 22032 
6 0 4569 
7 0 1879 
8 0 11946 
9 0 4823 

10 0 5471 
11 0 16486 
12 0 7948 
13 0 4758 
14 0 4060 
15 0 7415 
16 0 11097 
17 0 21091 
18 0 7776 
19 0 6602 
20 0 11956 
21 0 17456 
22 0 3561 
23 0 18493 
24 0 3365 
25 0 10826 
26 0 2949 
27 0 20403 
28 0 17551 
29 0 13243 
30 0 8717 
31 0 3538 
32 0 2851 
33 0 20190 
34 0 2777 
35 0 9278 
36 0 11602 
37 0 20026 
38 0 3510 
39 0 5775 
40 0 4163 
41 0 5840 
42 0 23899 
43 0 2343 
44 0 1170 
45 0 7168 
46 0 6087 
47 0 10590 
48 0 3744 
49 0 8091 
50 0 25241 

51 0 3285 
52 0 7795 
53 0 7825 
54 0 2777 
55 0 1513 
56 0 10512 
57 0 17116 
58 0 19573 
59 0 6771 
60 0 12867 
61 0 14057 
62 0 2106 
63 0 2451 
64 0 2698 
65 0 15810 
66 0 13741 
67 0 6920 
68 0 9019 
69 0 4420 
70 0 15720 
71 0 3677 
72 0 11216 
73 0 23224 
74 0 13682 
75 0 7004 
76 0 17485 
77 0 3033 
78 0 18209 
79 0 5865 
80 0 11873 
81 0 9041 
82 0 11721 
83 0 1809 
84 0 6000 
85 0 2270 
86 0 5224 

  



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
531 

 

Table 4: Result for start location 5 using Random 
Walk Algorithm 

Iteration Start location Steps ( Time) 
1 5 3607 
2 5 8885 
3 5 24832 
4 5 8795 
5 5 22174 
6 5 5000 
7 5 32249 
8 5 3130 
9 5 7325 

10 5 15868 
11 5 14381 
12 5 5242 
13 5 24064 
14 5 3680 
15 5 2806 
16 5 12647 
17 5 17070 
18 5 3063 
19 5 7231 
20 5 5018 
21 5 2591 
22 5 3223 
23 5 7078 
24 5 4089 
25 5 17023 
26 5 7213 
27 5 13782 
28 5 5684 
29 5 3394 
30 5 6650 
31 5 3573 
32 5 14196 
33 5 1881 
34 5 20285 
35 5 4018 
36 5 3638 
37 5 2171 
38 5 12589 
39 5 3716 
40 5 13704 
41 5 11062 
42 5 6435 
43 5 6244 
44 5 15542 
45 5 2136 
46 5 11445 
47 5 9775 
48 5 3380 
49 5 15579 

50 5 7307 
51 5 24665 
52 5 25484 
53 5 2896 
54 5 6439 
55 5 29566 
56 5 10228 
57 5 9424 
58 5 33144 
59 5 2690 
60 5 24692 
61 5 4293 
62 5 8212 
63 5 12140 
64 5 12701 
65 5 5012 
66 5 14230 
67 5 17438 
68 5 1337 
69 5 11824 
70 5 9558 
71 5 1657 
72 5 15635 
73 5 3921 
74 5 5995 
75 5 10603 
76 5 7211 
77 5 7433 
78 5 4353 
79 5 16967 
80 5 8085 
81 5 4520 
82 5 842 
83 5 4222 
84 5 9628 
85 5 6786 
86 5 2483 
87 5 2492 
88 5 10661 
89 5 3603 
90 5 12510 
91 5 15247 
92 5 12325 
93 5 6148 
94 5 15722 
95 5 9071 
96 5 9155 
97 5 1459 
98 5 4977 
99 5 8593 
100 5 6125 
101 5 8857 

  



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
532 

 

Table 5:Result For Start Location 10 Using 
Random Walk Algorithm 

Iteration Start location Steps ( Time) 

1 10 4739 

2 10 9186 

3 10 16212 

4 10 39767 

5 10 1572 

6 10 10465 

7 10 16032 

8 10 18894 

9 10 4018 

10 10 6936 

11 10 4418 

12 10 12637 

13 10 4880 

14 10 10186 

15 10 18069 

16 10 17822 

17 10 9898 

18 10 17342 

19 10 8369 

20 10 12242 

21 10 15280 

22 10 10539 

23 10 2855 

24 10 22746 

25 10 13834 

26 10 2014 

27 10 8263 

28 10 5052 

29 10 4624 

30 10 19851 

31 10 7053 

32 10 9981 

33 10 1223 

34 10 3924 

35 10 5385 

36 10 11062 

37 10 20798 

38 10 45646 

39 10 6667 

40 10 5220 

41 10 1682 

42 10 5605 

43 10 5757 

44 10 4935 

45 10 9366 

46 10 4597 

47 10 6588 

48 10 9697 

49 10 5349 

50 10 3398 

51 10 6118 

52 10 6679 

53 10 7671 

54 10 4392 

55 10 5023 

56 10 10894 

57 10 2478 

58 10 2438 

59 10 21808 

60 10 9537 

61 10 10199 

62 10 1692 

63 10 9597 

64 10 4458 

65 10 5264 

66 10 5818 

67 10 12227 

68 10 6677 

69 10 19447 

70 10 3531 

71 10 7192 

72 10 1316 

73 10 12743 

74 10 12352 

75 10 13031 

76 10 14225 

77 10 24112 

78 10 21333 

79 10 7984 

80 10 11710 

81 10 2132 

82 10 4342 

83 10 3660 



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
533 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Illustration of Candidate SetsMapped into the 
BA population. 

  



Journal of Theoretical and Applied Information Technology 
15th February 2020. Vol.98. No 03 

 © 2005 – ongoing  JATIT & LLS   

 

ISSN: 1992-8645                                                                  www.jatit.org                                                      E-ISSN: 1817-3195 

 
534 

 

Table 8: Solution for Candidate Set Generated by the BAT algorithm   

 
Set  

xi   

Total (Time) Average (time) Rounded (average(Time)) 

0 86 824527 9587.523256 9588 

5 101 969729 9601.277228 9601 

10 83 814755 9816.325301 9816 

15 101 876881 8681.990099 8682 

20 92 940185 10219.40217 10219 

25 89 850592 9557.213483 9557 

30 100 824688 8246.88 8247 

35 108 938496 8689.777778 8690 

40 84 579951 6987.361446 6987 

45 98 814998 8316.306122 8316 

50 91 673508 7401.186813 7401 

55 79 580065 7342.594937 7343 

60 83 605273 7292.445783 7292 

65 91 480878 5284.373626 5284 

70 87 411019 4724.356322 4724 

75 78 266186 3412.641026 3413 

80 97 332289 3425.659794 3426 

85 86 264135 3071.337209 3071 

90 108 159157 1473.675926 1474 

95 92 45690 496.6304348 497 

99 81 6543 80.77777778 81 

 


