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Abstract
Load instructions occasionally incur very long latencies that can significantly affect system per-
formance. Load value prediction alleviates this problem by allowing the CPU to speculatively
continue processing without having to wait for the slow memory access to complete.

Current load value predictors can only correctly predict about forty to seventy percent of the
fetched load values. To avoid the cycle-penalty for mispredictions in the remaining cases, confi-
dence estimators are employed. They inhibit all predictions that are not likely to be correct.

In this paper we present a novel confidence estimator that is based on prediction outcome histo-
ries. Profiles are used to identify the high-confidence history patterns. Our confidence estimator
is able to trade off coverage for accuracy and vice-versa with great flexibility and reaches an aver-
age prediction accuracy over SPECIint95 of as high as 99.3%. Cycle-accurate pipeline-level
simulations show that a simple last value predictor combined with our confidence estimator out-
performs other predictors, sometimes by over 100%. Furthermore, this predictor is one of two
predictors that yield a genuine speedup for all eight SPECint95 programs.

1. Introduction

Due to their occasional long latency, load instructions have a significant impact on system per-
formance. If the gap between CPU and memory speed continues to widen, this latency will be-
come even longer. Since loads are not only among the slowest but also among the most fre-
quently executed instructions of current high-performance microprocessors [13], improving their
execution speed should significantly improve the overall performance of the processor.

Fortunately, loads often do not fetch random sequences of values. Rather, many load instruc-
tions fetch the same values repeatedly, which makes them predictable [17]. About half of all the
load instructions of the SPECint95 benchmark suite retrieve the same value that they did the pre-
vious time they were executed. This behavior, which has been demonstrated explicitly on a num-
ber of architectures, is referred tovadue locality[6, 17].

A load instruction’s memory-access can take many cycles to complete. As a consequence, all
the instructions that directly or indirectly consume the load value are delayed, which decreases
the performance. A load value predictor quickly provides a predicted value to those consumer in-
structions so that they can start executing without having to wait for the memory to return the re-
quested value. If it later turns out that the predicted value was correct, some cycles are saved. If
the prediction was incorrect, all the instructions that were given an incorrect value have to be
executed again with the correct value. Restarting those instructions requires time. Hence, load
value prediction only makes sense if it is often correct so that the saved cycles outweigh the extra
cycles incurred by incorrect predictions.
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For example, if a load instruction that takes ten cycles to access the memory is followed by ten
consumer instructions that each take one cycle to execute, then it takes a total of twenty cycles to
execute the eleven instructions on a single-issue processor. If a load value predictor that takes
one cycle to make a prediction is added to this processor, that same sequence of eleven instruc-
tions can be executed in eleven cycles (almost twice as fast), given that the predicted value is cor-
rect. However, if the value is mispredicted, it might take 22 cycles to execute the eleven instruc-
tions, ten cycles for the memory access to complete, one cycle to detect the misprediction, one
cycle to reset the consumer-instructions, and finally ten more cycles to execute the ten instruc-
tions with the correct value.

Empirically, papers have shown that the results of most instructions are predictable [6, 15, 24].
However, of all the frequently occurring, result-generating instructions, loads are the most pre-
dictable [15] and incur the longest latencies. Since only about every fifth executed instruction is
a load, predicting only load values requires significantly fewer predictions than predicting every
instruction and leaves more time to update the predictor. As a consequence, smaller and simpler
predictors can be used, which is why we believe that predicting only load values may well be
more cost effective than predicting the result of every instruction.

Context-based load value predictors try to exploit the existing value locality by retaining pre-
viously seen load values. The simplest such predictor always makes a prediction using the previ-
ously fetched value of that same load instruction. We call this sdBasie LVP(last value pre-
dictor).

To reduce the number of mispredictions and to avoid the cost associated with them, context-
based predictors normally contain bothiadue predictorand aconfidence estimatqiCE) to de-
cide whether or not to make a prediction. All previously proposed predictors and our own con-
tain these two parts in some form. The CE only allows predictions to take place if the confidence
that the prediction will be correct is high. This is essential because sometimes the value predictor
does not contain the necessary information to make a correct prediction. In such a case, it is bet-
ter not to make a prediction because incorrect predictions incur a cycle penalty (for undoing the
speculation) whereas making no prediction does not.

CEs are similar to branch predictors in the sense that both have to make binary decisions (pre-
dictable or not-predictable and branch taken or not-taken, respectively). Therefore, we chose to
investigate whether some of the ideas that work well for branch predictors could be used as CEs
for load value predictors.

One very successful idea in branch prediction, which is also applicable to load value predic-
tion, is keeping a small history recording the most recent prediction outcomes (success or failure)
[27]. The intuition is that the past prediction behavior tends to be very indicative of what will
happen in the near future. For example, if an instruction was successfully predicted the last few
times, there is a good chance that the next prediction will be successful, too. Hepoegithe
tion outcome historyas we call it, represents a measure of confidence.

Such histories consist of a short bit-pattern in which every bit indicates whether the corre-
sponding prediction was correct. For instance, the left-most bit represents the most recent pre-
diction outcome, the next bit to the right the second most recent outcome, etc. A correct predic-
tion is recorded by a one and an incorrect prediction by a zero.

Saturating counters are also used as confidence estimators. Such counters can count up and
down within two boundaries, say zero and 15. If the counter has reached 15, counting up will not
change its value. Likewise, counting down from zero leaves the value at zero. Similar to predic-
tion outcome histories, saturating counters can be used to record how many correct predictions
were made in the recent past. The higher the value of the counter, the higher the confidence that
the next prediction will be correct since a high value means that many of the most recent predic-
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tions were correct.

The difference between counters and histories is that counters do not retain any sequence in-
formation and they suffer from saturation effects. For example, it is hard to distinguish two cor-
rect predictions that are followed by two incorrect predictions from two incorrect predictions
followed by two correct predictions using counters because the total number of correct and incor-
rect predictions is the same in both cases. Furthermore, an incorrect prediction followed by a cor-
rect prediction will have no overall effect on a counter that was already at its top for it will be
decremented and then incremented back to the top value. Since the counter would also be at its
top after a long series of correct predictions, the information that the second to last prediction was
incorrect is lost after only one correct prediction due to saturation of the counter.

If load values are predicted quickly and correctly, the CPU can start processing the dependent
instructions without having to wait for the memory access to complete, which potentially results
in a significant performance increase. Of course it is only known whether a prediction was cor-
rect once the true value has been retrieved from the memory, which can take many cycles.
Speculative executioallows the CPU to continue execution with a predicted value before the
prediction outcome is known. Because branch prediction requires a similar mechanism, most
modern microprocessors already contain the necessary hardware to perform this kind of specula-
tion [6].

Unfortunately, branch misprediction recovery hardware causes all the instructions that follow a
misspeculated instruction to be purged esfetched This is a very costly operation and makes
a high prediction accuracy paramount. Unlike branches, which invalidate the entire execution
path when mispredicted, mispredicted loads only invalidate the instructions that depend on the
loaded value. In fact, even the dependent instructions per se are correct, they just need to be
executedwith the correct input value(s). Consequently, a better recovery mechanism for load
misspeculation would only re-execute the instructions that depend on the mispredicted load value.
Such a recovery policy is less susceptible to mispredictions and favors a higher coverage, but may
be prohibitively hard to implement.

We devised a load value predictor with a prediction outcome history-based confidence esti-
mator that performs better than predictors with counter-based CEs. Profiles are used to program
the predictor with the history patterns that should trigger a prediction. The predicted value is al-
ways the value that was previously loaded by the same load instruction. Our predictor reaches a
harmonic mean speedup over SPECIint95 of 12.0% with a re-execute policy and 9.3% with a re-
fetch recovery policy. It is able to attain a positive speedup for all the SPECIint95 programs, even
with the simpler re-fetch mechanism. Of all the other predictors we looked at, only one does not
slow down at least three of the eight benchmark programs when re-fetch is employed, as our de-
tailed pipeline-level simulations revealed. Section 6.2 provides more results.

We also investigated using saturating counters instead of profiling to identify the history pat-
terns that should trigger a prediction [1], hoping that the adaptivity of the counters would result in
better performance. Surprisingly, the profile-based approach presented in this paper outperforms
the dynamic, counter-based approach for more than half the benchmark programs and yields
higher accuracies and a much broader range of possible accuracy-coverage pairs. Furthermore,
the profile-based predictor requires less hardware, is simpler in its design (and therefore poten-
tially faster), and requires only one-level predictor updates.

The remainder of this paper is organized as follows: Section 2 introduces the predictor archi-
tecture and nomenclature. Section 3 illustrates the use of prediction outcome histories and intro-
duces our predictor. Section 4 presents related work. Section 5 explains the methods used. Sec-
tion 6 presents the results. Section 7 concludes the paper with a summary.
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2. Predictor Architecture

Figure 1 shows the components of a context-based load value predictor with a confidence esti-
mator. The largest element is an arraydiries for storing the confidence information and the
previously fetched values. Clearly, this “cache” has to be very fast or there would be no perform-
ance advantage over accessing the conventional memory. The hashing hardware gemerates an
bit index out of the load instruction’s address (and possibly other processor state information).
Finally, the decision logic computes whether a prediction should be made based on the confi-
dence information.

Generic Predictor with Confidence Estimator

instruction conf. previous
address info. value(s)
n-bit,
: : 2" lines
index - .
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64-bit value

A
|predicted valuel
———] predict/don't predict]

1-bit

Figure 1: The components of a load value predictor with a confidence estimator (shaded).

All the predictors in this paper ugC div 4 mod 2as a hash-function. Thiiv 4 eliminates
the two least significant bits that are always zero since the processor we use requires instructions
to be word aligned. Hence, the hash-function extracts thast significant bits from theC ex-
cluding bits zero and one. Adding a more complex hash-function may result in somewhat less
aliasing but will most likely increase the length of the critical path, which is why this very simple
but quite effective approach is normally used.

When a prediction needs to be made, the hash-function computes an index to select one of the
predictor lines. The value stored in the selected line becomes the predicted value. If there are
multiple values, a selector first has to determine which value to use. Finally, the decision logic
decides whether a prediction should be attempted with this value.

Once the outcome of a prediction is known, the corresponding confidence information field is
updated to reflect the new outcome, and the true load value is stored in the line that was used for
making the prediction.

While most other predictors use saturating counters [17, 25, 31], we propose keeping predic-
tion outcome histories as confidence information. Which history patterns should trigger a predic-
tion and which ones should not is determined by profile runs (see Section 3.1) and the decision
logic is preprogrammed accordingly.
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3. Using Prediction Outcome Histories

Histories that record the recent prediction successes and failures are a very successful idea for
branch prediction [27]. We found the same to be true in the domain of load value prediction. In
fact, prediction outcome histories seem to be better suited for load value prediction than other ap-
proaches. For example, they yield higher accuracies, allow accuracy-coverage pairs to be chosen
at a finer granularity, and result in better speedup than saturating counters. We believe the reason
is that histories, as opposed to counters, retain sequence information and do not suffer from satu-
ration effects.

If such histories are to be used as a measure of confidence, it is necessary to know which ones
are (normally) followed by a successful prediction and which ones are not. Heuristics and algo-
rithms to do this exist in the branch prediction literature. For instance, Sechrest et al. [28] de-
scribe a scheme that tries to identify repeating patterns of branch outcomes. If no repeating pat-
tern can be detected, a simple population count is used. They call this stfpemas an alter-
native, Sechrest et al. suggest running a set of programs and recording the behavior. They call
this profile-based approadomp We usecompfor our predictor since it performs considerably
better and is much more flexible thalgo.

To better explain how the two approaches work, we present Table 1. It shows the output of a
4-bit history run based on SPECInt95 behavior and the resulting configurations obruym
schemes and oredgo scheme. The second row of the table, for example, states ftuhire,
failure, failure, succeshistory (denoted bp00)) is followed by a successful last value predic-
tion 26.9% of the time. In this historsyiccesslenotes the outcome of the most recent prediction.

Of all the encountered histories, 2.7% wed®1 All three CE schemes do not allow a last value
prediction to take place following this particular history pattern—thecovopschemes because
the predictability is both under 60% and under 90% andltfesscheme because there is no dis-
cernable repeating bit-pattern in the history and the population count is in favor of a zero.

SPECIint95 Last Value Predictability
history  predictability occurrence |comp 60% comp 90%  algo
0000 6.9% 32.2% no no no
0001 26.9% 2.7% no no no
0010 19.1% 2.9% no no no
0011 49.9% 1.6% no no yes
0100 34.3% 2.9% no no no
0101 33.6% 1.9% no no no
0110 44.9% 1.3% no no yes
0111 59.4% 2.2% no no yes
1000 24.2% 2.7% no no no
1001 46.3% 1.8% no no yes
1010 66.8% 1.9% yes no yes
1011 66.1% 1.9% yes no yes
1100 53.1% 1.6% no no no
1101 57.2% 1.9% no no yes
1110 52.3% 2.2% no no yes
1111 96.6% 38.3% yes yes yes

Table 1: Predictability and occurrence split up by history pattern. The predictability signifies the
percentage of last value predictable loads following the given 4-bit prediction outcome
histories. The occurrence denotes the percentage of the time the respective history was
encountered. The three rightmost columns show how three confidence estimators
would be configured based on the information on the left.
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The table shows the average over all eight programs and is for illustration purposes only. The
results presented in the subsequent sections were generated using cross-validation (Section 5.4).

Note that it is not necessary to make a prediction following every history with a greater than
50% probability of resulting in a correct prediction. Rather, the predictable/not-predictable
threshold can be set anywhere. The optimal setting strongly depends on the characteristics of the
CPU the prediction is going to be made on.

If only a small cost is associated with making a misprediction (e.g., as is the case with a re-
execute architecture), it is most likely wiser to predict a larger number of load values, albeit also a
somewhat larger number of incorrect ones. If, on the other hand, the misprediction penalty is
high and should therefore be avoided (e.g., as is the case with a re-fetch architecture), it makes
more sense not to predict quite as many loads but to be confident that the ones that are predicted
will be correct.

If we want to be highly confident that a prediction is correct, say at least 90% confident, the
decision logic would only allow predictions for histories whose predictability is greater than 90%,
i.e., only for historyl111based on the data in Table 1. This threshold would result in 38.3% of
all loads being predicted (of which 96.6% would be correct). In other words, acodgaton-
fidence estimator with a threshold of 90% yields a 96.6% prediction accuracy and a 38.3% cover-
age for our benchmark suite.

As the example illustrates, four history bits are enough to reach an average accuracy in the
high nineties. With longer histories, our approach yields even higher accuracies and better cover-
ages. In the result section we show that ten-bit histories with thresholds of 67% and 86% work
well for our processor.

A closer look at Table 1 reveals tte¢jo corresponds most closely compwith about a 44%
threshold. This indicates thalgo will probably not perform well because its “threshold” is too
low. Furthermore, defaulting to “predict” (denoted by “yes”) in case the population count results
in a tie is obviously a poor choice and should be changsddfis to be used.

3.1The SSg(comp) Last Value Predictor

Our load value predictor consists of a last value predictor (LVP) and a prediction outcome his-
tory-based confidence estimator. The histories are stored in the confidence information field of
the predictor-lines (see Figure 1). Since the resulting confidence estimator is similar to Yeh and
Patt’'sSSgbranch predictor [33], programmed with Sechrest et ebfapapproach, we call our
predictorSSg(comp) LVP

Predictions are performed as described in Section 2, i.e., predictions are made if the prediction
outcome history of the current load instruction is one of the histories the profile information indi-
cated should be followed by a prediction. Once the outcome of a prediction is known, a new bit
is shifted into the history of the corresponding line in the predictor and the oldest bit is shifted out
(lost). If the true load value is equal to the value in the predictor, a one is shifted in, otherwise a
zero is shifted in. Then the value in the line is replaced by the true value.

We decided to use a direct-mapped approach since we empirically observed few conflicts with
moderate predictor sizes. While this may be an artifact of our benchmark suite, even much larger
programs will not create significantly more conflicts as long as the size of their active working set
of load instructions does not exceed the capacity of the predictor.

Note that, unlike instruction and data caches, load value predictors do not have to be correct all
the time. Hence, neither tag nor valid bits are a requirement. We decided to omit both since
having them only results in a small increase in accuracy, which we believe does not justify the
extra hardware and complexity.
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Note that our predictor requires no content addressable memory and that all the operations can
be performed using at most two table lookups. This is similar to current branch predictors [32]
and should therefore not affect the cycle time.

The only external input to our predictor is the PC of the load instruction. Since the PC of
every instruction is available from the first pipeline stage on, predictions can be made in any
stage. Also, the prediction mechanism works autonomously and can therefore be run in parallel
with any other activity that might be going on in the CPU. Since the predicted values are not
needed before the execute stage, the predictions could even be pipelined (take more than one cy-
cle) over the fetch and decode stages.

With such an architecture, only one prediction or update can be made per cycle. If more than
one access per cycle is needed, the prediction hardware needs to be split into several independent
banks, which would allow multiple predictions or updates to be performed in parallel.

It is possible that a next prediction needs to be made before the previous one has updated the
predictor. Of course, this only poses a problem if both predictions go to the same line and is only
likely to happen in tight loops where the same load instruction is executed repeatedly with few
intervening instructions.

We can think of two possible remedies. Either the predictor lines could be marked as “in use”
and further predictions will stall until the lines have been updated, or further predictions could be
made using the old information. We leave the investigation of the performance impact of these
two schemes to future work. Nevertheless, we believe that the latter will perform much better
since we found that loads only infrequently change behavior from being predictable to not being
predictable or vice-versa. In fact, about half of all executed loads belong to load instructions that
are=95% last-value predictable 285% not predictable. Furthermore, we measured a geometric
mean of about 65 load instructions between any two loads that go to the same line in the 4096-
line predictor, indicating that in most cases the required line is up-to-date.

We believe that the proposed predictor is likely to be easily integrated into any CPU that al-
ready supports speculative execution. The predictor works with any instruction set and requires
no changes to the instruction set architecture, such as adding bits to the op-code.

4. Related Work

In this section we try to give a detailed overview over the current load value prediction literature.

Early Work: Two independent research efforts [6, 17] first recognized that load instructions
exhibitvalue localityand concluded that there is potential for prediction.

Lipasti et al. [17] investigated why load values are often predictable and how predictable the
different kinds of load instructions are. While all types of loads exhibit significant value predict-
ability, it turns out that address loads have slightly better value locality than data loads, instruc-
tion address loads hold an edge over data address loads, and integer data values are more predict-
able than floating-point data values.

In a follow-up paper, Lipasti and Shen [15] broaden their scope to predicting all result-
generating instructions and show how value prediction can be used to exceed the existing instruc-
tion level parallelism (ILP). They found that using a value predictor delivers three to four times
more speedup than doubling the data cache (same hardware increase) and they argue that a value
predictor is unlikely to have an adverse effect on processor cycle time, whereas doubling the data-
cache size probably would. Furthermore, they note that loads are the most predictable frequently
executed instructions.

Gabbay'’s dissertation proposal [6] mostly discusses general value prediction and how to boost
the ILP beyond the data-flow limit, but he also studies load value prediction by itself.
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Load Value Predictors: Lipasti et al. [17] describe a last value predictor (predicts the last
seen load value) that uses 2-bit saturating up/down counters to classify loads as unpredictable,
predictable, or constant. In Section 6.2, we compare our predictor with a predictor similar to
theirs.

Gabbay [6] proposes four predictor schemes: a tagged last value predictor, a tagged stride pre-
dictor, a register-file predictor, and a sign-exponent-fraction (SEF) predictor. We compare our
predictor to the tagged last value predictor in Section 6.2. However, we refrain from comparing
against the register-file and the SEF predictor because the former performs very poorly and the
latter can only be used for floating-point loads. We include a stride predictor in our comparison
as part of a hybrid predictor.

Wang and Franklin [31] are the first to propose a two-level prediction scheme and the first to
make predictions based on the last four distinct values rather than based on just the last value.
They further propose a hybrid predictor that combines their last four distinct value predictor with
a stride predictor, which has the highest prediction accuracy of all the predictors in the literature.
However, our predictor significantly outperforms theirs when a re-fetch misprediction policy is
used (see Section 6.2).

Sazeides and Smith [24] perform a theoretical limit study of the predictability of data values.
They investigate the performance of three models: last value, stride, and finite context. Their fi-
nite context predictor predicts the next value based on a finite number of preceding values by
counting the occurrences of a particular value immediately following a certain sequence of val-
ues. In a follow-up paper [25], Sazeides and Smith design an implementable two-level value pre-
dictor based on the finite context method. They found that their predictor outperforms other,
simpler predictors, but only when large tables are used.

We include a finite context method predictor in our comparison as part of the hybrid predictor
proposed by Rychlik et al. [23]. It combines a stride 2-delta [24] with a finite context method-
based (FCM) predictor. The FCM predictor stores entire sequences of fetched load values. Upon
prediction it tries to identify the current position in the sequence and uses the next value from the
sequence to make a prediction. The stride 2-delta predictor is an improved version of the con-
ventional stride predictor. It maintains two separate strides. The stride used for making predic-
tions is only updated if a new stride has been seen twice in a row, which significantly reduces the
number of mispredictions.

Profiling: Gabbay and Mendelson [7] explore the possibility of using program profiling to en-
hance the efficiency of value prediction. They use their profiling results to insert opcode direc-
tives that allow them to allocate only highly predictable values, which reduces the amount of
aliasing. However, even manual fine-tuning of the user supplied threshold value does not allow
them to outperform their hardware-only predictor in all cases. They found that different input
sets result in very similar behavior, which makes profiling appropriate to use in this context.

Calder et al. [2] examine the invariance found from profiling instruction values and propose a
new type of profiling calle¢onvergent profilingwhich is much faster than conventional profil-
ing. Their measurements reveal that a significant number of instructions (including loads) gener-
ate only one value with high probability. They found that the invariance of load values is crucial
for the prediction of other types of instructions (by propagation). They further found that the in-
variance is quite predictable, even across different sets of inputs.

We also use profiling. However, the novelty of our approach is that we do not profile actual
load values but the success-rate of a last value predictor with respect to its recent prediction be-
havior (see Section 3). The result is then used to configure the confidence estimator rather than to
modify executables. Note that once our confidence estimator has been configured, no further pro-
filing is required.
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As mentioned in the introduction, we also investigated using saturating counters instead of pro-
filing [1]. While the average speedup of this dynamic predictor is slightly higher than the
speedup delivered by the profile-based predictor, the profile-based predictor is simpler in design
and yields higher speedups for more than half of the benchmark programs.

Dependence Predictionin their next paper [16], Lipasti and Shen add dependence prediction
to their predictor and switch to predicting source operand values rather than instruction results.
The latter decouples dependence detection from value-speculative instruction dispatch. They
found their approach to be particularly effective in wide and deeply pipelined machines.

Reinman and Calder [22] also examine dependence prediction and conclude that, due to its
small hardware requirement, dependence prediction should be added to new processors first even
though value prediction provides the larger performance improvement. Furthermore, they found
that both address prediction and memory renaming are inferior to dependence and value predic-
tion.

In another paper [21], Reinman et al. propose a software-guided approach for identifying de-
pendencies between store and load instructions and devise an architecture to communicate these
dependencies to the hardware. Their approach requires changes to the instruction set architecture.

Other Related Work: Rychlink et al. [23] address the problem of useless predictions. They
introduce a simple hardware mechanism that inhibits predictions that were never used (because
the true value became available before the predicted value was needed) from updating the pre-
dictor, which results in improved performance due to reduced predictor pollution. Unfortunately,
the prediction outcome histories we use rely on seeing all updates.

In their next paper [8], Gabbay and Mendelson show that the instruction fetch bandwidth has a
significant impact on the efficiency of value prediction. They found that value prediction (of one-
cycle latency instructions) only makes sense if producer and consumer instructions are fetched
during the same cycle. Hence, general value prediction is more effective with high-bandwidth in-
struction fetch mechanisms. They argue that current processors can effectively exploit less than
half of the correct value predictions since the average true data-dependence distance is greater
than today’s fetch-bandwidth (four). This is one of the reasons why we restrict ourselves to pre-
dicting only load values, which requires considerably smaller and simpler predictors while still
reaping most of the potential.

Gonzalez and Gonzalez [10] found that the benefit of data value prediction increases signifi-
cantly as the instruction window grows, indicating that value prediction will most likely play an
important role in future processors. Furthermore, they observed an almost linear correlation be-
tween the predictor’s effective accuracy (the percentage of all loads that are correctly predicted)
and the resulting performance improvement. Our results in Section 6.2.1 show that our predictor
yields much higher accuracies (with the same coverage) than other predictors from the literature
do, which indeed results in higher speedups, in particular with a re-fetch architecture.

Fu et al. [5] propose a hardware and software-based approach to value speculation that lever-
ages advantages of both hardware schemes for value prediction and compiler schemes for expos-
ing instruction level parallelism. They propose adding new instructions to load values from the
predictor and to update the predictor. We currently only look at transparent prediction schemes,
that is, predictors that do not require changes to the instruction set architecture.

A more detailed study about predictability by Sazeides and Smith [26] illustrates that most of
the predictability originates in the program control structure and immediate values, which ex-
plains the often observed independence of program input. Another interesting result of their work
is that over half of the mispredicted branches actually have predictable input values, implying that
a side effect of value prediction should be improved branch prediction accuracy. Gonzalez and
Gonzalez [10] did indeed observe such an improvement in their study.
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Confidence Estimation:Jacobsen et al. [11] and Grunwald et al. [9] introduce confidence es-
timation to the domain of branch prediction and multi-path execution to decide whether or not to
make a prediction. We adopt their metrics for load value prediction (Section 5.2). While their
goals are similar to ours, the approaches for branch confidence estimation and load value predic-
tion differ. In particular, their confidence estimator (a two-bit saturating up/down counter, which
is what Lipasti et al. [17] use) does not yield very good results when applied to load value predic-
tion (Section 6.2).

Branch Prediction: In the area of branch prediction, a significant amount of related work ex-
ists. Lee and Smith [14] keephéstory of recent branch directions for every conditional branch
and systematically analyze every possible pattern.

Yeh and Patt [32, 33] and Pan, So, and Rahmeh [20] describe sets of two-level branch predic-
tors and introduce a taxonomy to distinguish between them. Their predictors consist of a branch
history register (BHR) and a pattern history table (PHT). Three-letter combinations are used to
describe the two components. By convention, the first two letters are uppercase and the third let-
ter is lowercase.

The first letter characterizes the BHR. If all branches share a common BHIi®, ased for
global. If every branch has its own BHRPas used for per-address. If sets of branches are
mapped to individual BHRs, &is used for set. Note th@andP represent the two extremes of
the set case.P means all sets have size one &daorresponds to one set containing all the
branches.

The second letter specifies whether the PHT is adap8wtands for static, indicating that the
PHT entries are fixedA stands for adaptive, meaning that the PHT entries can be modified on-
the-fly.

The third (lowercase) letter is identical to the first letter, except it describes the PHT instead of
the BHR. Henceg means one global PHE means one PHT per set, gncheans one PHT per
address.

Sechrest, Lee, and Mudge extend this nomenclature [28]. They distinguish between two ways
of programming the fixed entries of the non-adaptive PHT schemes. Profile-based is denoted by
appendingompto the three letters and algorithm-based is denoted by appegiang

We adopt the&sSg(compiilesign for use as a confidence estimator in our load value predictor.
This means that sets of load instructions (i.e., loads that have the same PC modulo the predictor
height) are mapped to the same line in the predictor (the lines correspond to the BHRs). Further-
more, the decision logic (which corresponds to the PHT) is static and cannot be changed during
program execution. Finally, there is only one global decision logic, which is programmed using
the compapproach.

Sprangle et al. [27] describe a technique calp@e predictionwhich reduces the chance that
items mapped to the same predictor slot will interfere negatively. They achieve this by recording
whether the previous predictions were a success or failure instead of whether the branches were
taken or not. We use the same technique.

Summary: The novelty of our predictor is that it uses prediction outcome histories, an idea
taken from the branch prediction literature, for confidence estimation instead of saturating count-
ers. While others have used profiling [2, 7], our use of profiling is different in so far that we do
not profile actual load values and do not need to modify the binaries in any way.

5. Methodology

All our measurements are performed on the DEC Alpha AXP architecture [3]. To perform a
thorough design-space evaluation, we instrumented our benchmark suite using the ATOM tool-kit
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[4, 30]. This allowed us to efficiently simulate the proposed predictor in software and to identify
good configurations. The most promising configurations were then fed to our cycle-accurate
pipeline-level simulator for detailed evaluation.

To obtain actual speedup results, we use the AINT simulator [19] with its out-of-order back-
end, which is configured to emulate a high performance microprocessor similar to the DEC Alpha
21264 [12]. In patrticular, the simulated 4-way superscalar CPU has a 128-entry instruction win-
dow, a 32-entry load/store buffer, four integer and two floating point units, a 64kB 2-way set as-
sociative L1 instruction-cache, a 64kB 2-way set associative L1 data-cache, a 4MB unified direct-
mapped L2 cache, a 4096-entry BTB, and a 2048-line gshare-bimodal hybrid branch predictor.
The modeled latencies are given in Table 2. Operating system calls are executed but not simu-
lated. Loads are only allowed to issue when all prior store addresses are known. The six func-
tional units are fully pipelined and each unit can execute all operations in its class. Furthermore,
up to four load instructions can issue per cycle. As a consequence, all the load value predictors
used in this study are split into four banks that can operate in parallel. Since the modeled CPU
fetches naturally aligned four-tuples of instructions, it is not possible to fetch or issue two load in-
structions during the same cycle that go to the same predictor bank. Load value predictions take
place during the rename-stage in the instruction pipeline.

Instruction Type Latency
integer multiply 8-14
conditional move 2
other int and logical 1
floating point multiply 4
floating point divide 16
other floating point 4
L1 load-to-use 1
L2 load-to-use 12
memory load-to-use 80

Table 2: The functional unit and memory latencies (in cycles) of our simulated processor.

5.1Benchmarks

We use the eight integer programs of the SPEC95 benchmark suite [29] for our measurements.
These programs are well understood, non-synthetic, and compute-intensive, which is ideal for
processor performance measurements. They are also quite representative of desktop application
code, as Lee et al. found [13]. Table 3 gives relevant information about the SPECint95 programs.
The suite includes two sets of inputs for every program and allows two levels of optimization.
To acquire as many load value samples as possible we use the larger reference inputs. However,
due to a restriction in our simulation infrastructure, only the first of the multiple input-files from
the reference set was used with gcc. We ran the more optimized peak-versions of the programs
that were compiled with DEC GEM-CC using the highest optimization lem@gfate -O5 -ifd.
The optimizations include common sub-expression elimination, split lifetime analysis, code
scheduling, nop insertion, code motion and replication, loop unrolling, software pipelining, local
and global inlining, inter-file optimizations, and many more. Furthermore, the binaries were
statically linked which allows the linker to perform additional optimizations that considerably re-
duce the number of run-time constants that are loaded during execution. For ATOM simulations,
all programs are run to completion. The result is approximately 87.8 billion executed load in-
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structions. Note that the few floating point load instructions contained in the binaries are also
measured, that loads to the zero-registers are ignored, and that load immediate instructions are not
taken into account since they do not access the memory and therefore do not need to be predicted.

For the speedup measurements, we executed each of the eight benchmark programs for 300
million instructions on our simulator after having skipped over the initialization code in “fast exe-
cution” mode. This fast-forwarding is very important if only part of the execution is simulated
because the initialization part of programs is not representative of the general program behavior
[22]. The rightmost column of Table 3 shows the number of instructions that were skipped. gcc
is completely executed (334 million instructions) since this amounts to the full compilation of the
first reference input-file.

Information about the SPECint95 Benchmark Suite
total executed load load sites that account for predictability million instrs
program load instructions sites Q50 Q90 Q99 Q100 | lastval l4d vals| skipped| simul.
compress| 10,537 M (17.5%)| 3,961| 0.4% 15% 2.0% 17.4%| 40.4% 41.3%| 6,000 300

gee 80M (23.9%) 72,941 1.2% 7.4% 19.4% 47.1%| 485% 69.1% o| 334
go 8,764 M (24.4%) | 16,239 | 1.3% 105% 26.0% 76.0%| 45.9% 68.1% | 12,000| 300
iipeg 7,141 M (17.2%) | 13,886 | 0.3% 1.3% 3.0% 24.9%| 475% 56.2% | 1,000| 300

li 17,792 M (26.7%) | 6,694| 0.6% 2.1% 4.7% 28.9%| 43.4% 66.6%| 4,000 300
m88ksim | 14,849 M (17.9%) | 8,800 0.6% 25% 5.2% 30.4%| 76.1% 85.9%| 1,000 300

perl 6,207 M (31.1%) | 21,342 0.2% 0.8% 1.1% 16.8% | 50.7% 86.8% | 1,000| 300
vortex 22,471 M (23.5%) [ 32,194 0.2% 1.8% 10.3% 51.7%| 65.6% 82.3%| 5,000| 300
average (22.8%) 0.6% 35% 9.0% 36.6%| 52.3% 69.5%

Table 3: The number of load instructions contained in the binaries (load sites) and executed by
the individual programs (in millions) of the SPECint95 benchmark suite. The numbers
in parentheses denote the percentage of all executed instructions that are loads. The
guantile columns show the percentage of load sites that contribute the given fraction
(e.g., Q50 = 50%) of executed loads. The two predictability columns show the percent-
age of loads that fetch a value that is identical to the last fetched value or identical to
one of the last four distinct fetched values. The two rightmost columns show the num-
ber of instructions (in millions) that are skipped before starting the pipeline-level simu-
lations and the number of simulated instructions.

An interesting point to note is the uniformly high percentage of load instructions executed by
the programs. About every fifth instruction is a load. This is in spite of the high optimization
level and good register allocation.

Another interesting point is the relatively small number of load sites that contribute most of the
executed load instructions. For example, only 3.5% of the load sites contribute 90% of the exe-
cuted loads. Less than 37% of the load sites are visited at all during execution.

In these benchmark programs, an average of 52.3% of the load instructions fetch the same
value that they did the previous time they were executed and 69.5% fetch a value that is identical
to one of the last four distinct values fetched.

5.2 Averaging Speedups

In this paper, the terspeeduplenotes how much faster a processor becomes when a load value
predictor is added to it.
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To obtain the speedup delivered by a load value predictor for a given program, the program is
executed on both a baseline CPU (GRVand a CPU with a load value predictor (Gl The
speedup is the runtime on CRLddivided by the runtime on CRl}. To be independent of the
clock speed the runtime is normally measured in cycles rather than seconds.

Speedup: r.l"lntlrnemithout predictor — CyC|e§/ithout predictor

runtime, ;, predictor CyC|e§/ith predictor

Since a speedup of one indicates no improvement in performanspetaup over baseling
often easier to understand. It is defined as the regular speedup minus one. Hence, the speedup
over baseline is positive if the load value predictor improves the execution speed and negative if
it slows the execution down. Note that the regular speedup is always positive.

speedumverbaseline= speedup-100%

To better estimate the expected performance improvement that a load value predictor will de-
liver, the speedup over more than one program is usually measured. This is done because a suite
of programs is assumed to exhibit a more “average” program-behavior than an individual pro-
gram.

Once the individual speedups have been obtained, they need to be combined into a single
speedup. Several approaches to combining (or averaging) speedups can be found in the literature,
the most prominent of which are th@rmonic meanthe geometric meanand thearithmetic
mean The harmonic mean always yields the lowest and therefore the most conservative result.
Since the arithmetic mean always produces the highest result, the geometric mean is sometimes
used as a compromise.

Intuitively, the combined speedup should be equal to the speedup over the single program
that does nothing but run the benchmark programs one after the other (in any order). However, to
avoid over-representing longer running programsust execute all the programs for the same
amount of time. This corresponds to weighing (i.e., normalizing) the individual benchmark pro-
grams with the inverse of their runtimes.

The runtimes can be normalized for either GRlor CPUyp. If the normalization is done for
CPUsase the combined speedup evaluates tohidwenonic mearof the individual speedups. |If,
on the other hand, the normalization is done for GF,Uhe combined speedup turns out to be
thearithmetic mearof the individual speedups.

For example, let us assume a benchmark suite consisting of the two prégaaaiB that re-
quirec, andc, cycles, respectively, to execute on the baseline CPU. Let us further assume a load
value predictoiL that speeds up prografnby a factor of 10 and prograBiby a factor of one
(i.e.,B’s runtime remains the same). The runtimes on GF&re consequently .t andc,.

When normalizing for CPgdse the combined speedup should be equal to the speedup of the
programP that executes ¢, times andB ¢, times. Doing so takas*c,+cpy*c, = 2*c.* ¢, cycles
on the baseline CPU (both programs are executecifoy cycles). When predictdr is added,
the total runtime becomes d;*c,+cy*Cc, = 1.1%c,* ¢, cycles. The resulting speedup is therefore
2/1.1=1.818, which is equal to the harmonic mean of the two individual speedups.

When normalizing for CPWJp, programP needs to execui c, times and .1*c, times. This
takes .1t.*c,+c,* . 1*c, = .2*c* ¢, cycles on CPUp andc.*cp+cy*.1*c, = 1.1%c* ¢, cycles on the
baseline processor. The speedup now evaluates to 1.1/.2 = 5.5, which is the arithmetic mean of
the individual speedups. For reference, the geometric mean speeddp is2062.

As the example illustrates, normalizing for GRweighs progranB, which cannot be sped
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up by the LVP, ten times less heavily than when normalizing forggRthe weights are shown

in bold face). In general, the more a program can be sped up the relatively more weight it is
given when using the arithmetic mean to compute the combined speedup. Hence, the arithmetic
mean speedup assumes the “average” program to contain proportionately more code that benefits
from a load value predictor than code that does not. We do not believe this to be a valid assump-
tion, which is why all the averaged speedups presented in this study are harmonic mean speedups.

5.3 Metrics for Load Value Predictors

The ultimate metric for comparing load value predictors is of course the speedup attained by in-
corporating them into a CPU. Unfortunately, the speedups are quite dependent on the architec-
tural features of the underlying CPU. This is why non-implementation specific metrics are also
important.

A value predictor with @onfidence estimatazan produce four prediction outcomes: correct
prediction RORR incorrect prediction IRCORR, correct non-prediction NfORR (no prediction
was made, and the guessed value would not have been correct), and incorrect non-prediction
NPINCORR (no prediction was attempted even though the guessed value would have been cor-
rect). RORR PNCORR NPCORR and NENCORR denote the number of times each of the four
cases is encountered. To make the four numbers independent of the total number of executed
load instructions, they are normalized such that their values sum to one.

Normalization: Pcorr + Pincorr + NPcorr + NPincorr = 1

Unfortunately, the four numbers by themselves do not represent adequate metrics for compar-
ing predictors. For example, it is not clear if predictor A is superior to predictor B if predictor A
has both a higherd®RrR and a higher IRCORR than predictor B does, i.e., predictor A makes
both more correct and more incorrect predictions than predictor B. This is why we use standard
metrics for confidence estimation, which have recently been adapted to and used in the domain of
branch prediction and multi-path execution [9, 11]. These metrics are all higher-is-better metrics.

» Potential: Pot = Pcorr+ NPINCORR

Pcorr

» Accuracy. Acc =
Pcorr+ PINCORR

Pcorr Pcorr
» CoverageCov = =

Pcorr+ NPincorr  PorT

The potential represents the fraction of all load values that are predictable, which is a property
of the value predictor alone since predictor updates are not controlled by the confidence estima-
tor. However, if the potential is low, even a perfect confidence estimator is unable to make many
correct predictions.

The accuracy represents the probability that an attempted prediction is correct, and the cover-
age represents the fraction of predictable values identified as such. Together they describe the
quality of the confidence estimator. The accuracy is the more important metric, though, since a
high accuracy translates into more correct predictions (which save cycles) than incorrect predic-
tions (which cost cycles), whereas a high coverage merely means better utilization of the existing
potential. Nevertheless, a high coverage is still desirable.
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Note that Ac, Cov, and BT fully determine BORR RPINCORR, NPCORR and NMNCORR
given that they are normalized.

5.4 Cross-Validation

Cross-validation is a technique used to exclude self-prediction. It is applied throughout this paper
(where applicable) and works as follows. One program is removed from the benchmark suite, the
behavior of the remaining programs is measured to configure the prediction hardware, and then
the program that was removed is run on this hardware. This process is repeated for every pro-
gram in the suite. Thus, the performance of all the programs is evaluated using only knowledge
about other programs.

6. Results

The following subsections list the results. Section 6.1 evaluates the performance of our
SSg(compgonfidence estimator. In Section 6.2 we compare our predictor with a number of pre-
dictors from the literature. To better explore the parameter space, we only show averages over
the eight benchmark programs and not the individual programs. For improved readability, sev-
eral figures in the following subsections are not zero-based.

6.1 SSg(comp)onfidence Estimator Results

Cross-Validation Results for Different Predictor Sizes (10-bit Histories)

100 gso= = —
95 + O °
90 | S~
85 |
o 80 | . o
> —0—128 entries (34.4%)
g 757 —— 256 entries (39.9%)
o
© 70 + —o—=512 entries (44.9%)
——1024 entries (48.0%)
65 |
=0—2048 entries (49.8%)
60 4096 entries (51.1%)
55 4 —o—8192 entries (51.7%)
50 f f f f f f f f L
50 55 60 65 70 75 80 85 90 95 100
Accuracy

Figure 2: Accuracy-coverage pairs for different predictor sizes and 10-bit histories. Each dot cor-
responds to a threshold (in 2% increments). The numbers in parentheses denote the
potential delivered by the respective load value predictor.
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The results for th&Sg(compgonfidence estimator are generated using cross-validation (Section
5.4). Furthermore, all predictor entries are set to zero before every run.

Figure 2 shows the attainable accuracy-coverage pairs for different predictor sizes when ten-bit
histories are used. The numbers are averages over the eight SPECint95 programs. Values closer
to the upper right corner are better.

Each curve was generated by varying the prediction threshold. Each point in the lines corre-
sponds to a threshold setting, starting at 98% (from the right) and decreasing in 2% steps.

The broad range in both dimensions is quite apparent and, hardly surprising, the larger the pre-
dictor the better its performance. As expected, there is a trade-off between the accuracy and the
coverage. Nonetheless, both the performance of the CE and the delivered potential saturate at
about 4096 entries. Apparently, a 4096-entry predictor is big enough for our benchmark suite and
has a performance that is close to the performance of an infinitely large predictor. This was to be
expected based on the quantile numbers from Table 3.

Figure 3 is similar to Figure 2, except the predictor size is held constant (1024 entries) and the
length of the histories is varied.

Cross-Validation Results for Different History Sizes (1024 Entries, 48.0% Potential)

100 ———

Lo
95 -
90 |
85 |
80 |
(0]
2 —o—2 hits
2 nT —o—4 bits
© 0l ——6 bits
8 bits
65 + ——10 bits
12 bits
60 | _
—o—14 bits
55 |
50 f f f f f f f f f
50 55 60 65 70 75 80 85 90 95 100

Accuracy

Figure 3: Accuracy-coverage pairs for different history sizes and 1024-entry predictors. Each dot
corresponds to a threshold (in 2% increments).

The figure shows that longer histories perform better, but saturation sets in at about ten bits.
These results indicate that ten history bits provide good prediction potential over a range of
thresholds while keeping the number of bits low.

Note that we performed a much broader investigation of the parameter space, i.e., we studied
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varying history sizes for predictors with fewer and more than 1024 lines as well as varying pre-
dictor sizes for predictors with fewer and more than ten-bit histories. We show Figure 2 and
Figure 3 because they are representative of the generally observed behavior.

6.2 Predictor Comparison

In this section we compare several confidence estimators and load value prediBtsis: lavVP

(without a confidence estimator),Tagged LVH6], a Bimodal LVP[17], an optimizedlagged
Bimodal LVR our SSg(comp) LVPanSSg(algo) LVPaLast Distinct 4 Valuegredictor [31], a

Last Distinct 4 Values Stride predictor [31], and &tride 2-Deltat+ Finite Context Methogbre-

dictor [23]. We also look at increasing the data cache size as an alternative to adding a load value
predictor.

To make the comparison between the predictors as fair as possible, all of them are allowed to
hold 2048 values plus whatever else they require to support that size. This results in roughly 20
kilobytes of state, which we find reasonable given that the DEC Alpha 21264 microprocessor in-
corporates two 64-kilobyte L1 caches on chip [12]. Table 4 shows the hardware requirement of
the nine predictors in number of state bits. Note that, in order to support up to four predictions or
updates per cycle, the predictors are split into four banks that can operate independently. How-
ever, banking the three predictors marked with a star would result in a significant increase in their
sizes (they were not designed with banking in mind) and would most likely be detrimental for the
FCM predictor since it relies on communicating information between loads. Hence, we did not
bank those three predictors, but allowed them to make an unlimited number of predic-
tions/updates per cycle.

Hardware Cost of Several 2048-Entry Predictors

state info  CE cost
Basic LVP 16.0 kB 0.0%
Tagged LVP (19-bit tags) 20.8 kB 29.7 %
Bimodal LVP (3-bit counters) 16.8 kB 4.7 %
Tag Bim LVP (8 thits, 3 chits) 18.8 kB 17.2 %

SSg LVP (8-bit histories) 18.0 kB 12.7 %
SSg LVP (14-bit histories) 21.5kB 34.4%
Last Distinct 4 Value Pred* 26.6 kB 66.0 %
Last Distinct 4 Value + Stride* 27.2 kB 69.9 %
Stride 2-Delta + FCM Pred* 26.3 kB 64.1 %

Table 4: Hardware cost in kilobytes of state and the percentage of state used for the confidence
estimator (CE) of various load value predictors.

TheBasic LVPrequires the least amount of state information (i.e., counter, cache, history, tag
and valid bits, etc.) because it only retains previously loaded values and no other information.
Since we model a 64-bit machine, Ba&sic LVPneeds 16kB of storage for the 2048 values. This
is our base case.

TheTagged LVRaugments thBasic LVPwith one tag per predictor line. If we assume a 4GB
address space, the tags have to be 19 bits long for a 2048-entry predictor. This scheme requires
29.7% more state than the base case. Predictions only take place if the tag matches. After each
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prediction the value and the tag are updated. Partial tags would considerably reduce the hardware
cost of this scheme, but not even full tags result in good performance.

TheBimodal LVPincorporates 3-bit saturating up/down counters as a CE. (McFarling termed
the corresponding branch predicRimodal[18], hence the name.) Predictions are only made if
the counter value is greater or equal to a preset threshold, which can be varied between one and
seven. If a prediction turns out to be correct, the corresponding counter is incremented by one,
otherwise it is decremented by one. The values are always updated, independent of the current
state of the corresponding counter. This scheme requires only 4.7% additional hardware. In spite
of this marginal increase, it performs a great deal better than the first two schemes, including the
more hardware intensive one.

TheTag Bim LVHs a combination of the previous two predictors. It includes partial 8-bit tags
and 3-bit saturating counters. Predictions are made if the tag matches and the counter value is
greater or equal to the threshold. We performed a detailed parameter space evaluation for this
predictor (see Section 6.2.2). This scheme requires 17.2% additional hardware and performs very
well.

Our SSg(comp) LVKs 12.7% larger than the baseline predictor when 8-bit histories are used
and 34.4% larger with 14-bit histories. The correspon8ig(algo)yredictors require the same
amount of state.

ThelLast Distinct 4 Valuegredictor retains four values per line, so the predictor has only 512
lines. In addition, every line in the predictor includes a 21-bit tag, eight bits of least-recently-
used information, and twelve bits to store which one of the four values was used during the last
six accesses. The twelve bits form an index into a second-level table of 4096 lines containing
four four-bit counters each. The highest of the four selected counters determines which one of
the four values to use for the next prediction. However, no prediction is made if the highest
counter is below a preset threshold. The counters whose corresponding value ends up not
matching the true load value are decremented by three and the remaining counters are incre-
mented by one. The least recently used value is updated with the new load value if the new value
is not currently among the four stored values. The necessary amount of state for this scheme is
66.0% over the base case. The counters saturate at twelve [31], which limits the possible thresh-
old values to one through twelve.

The Last Distinct 4 Values- Stride predictor is identical to the previous predictor except it
also stores an eight-bit partial stride per predictor line and a two-bit state field. The stride is
added to the selected value and used for making a prediction if the four counters are below the
threshold and the same stride has been seen at least twice in a row (the two state-bits record this
information). The partial stride is always updated. This predictor requires 70.3% more state than
the base case.

Finally, theSt2d+ FCM predictor combines a stride 2-delta predictor with a finite context
method predictor. Whichever predictor reports the higher confidence gets to make the prediction
if its confidence is above the preset threshold. Both components are updated in parallel. The
stride component includes an 8-bit partial tag, a 3-bit saturating counter, a 64-bit last value field,
and two 8-bit partial stride values in each of its 512 lines. The FCM component is a two-level
predictor. The first level comprises 1024 lines, each storing an 8-bit partial tag, a 3-bit saturating
counter, and the least significant ten bits of the last three fetched load values. The three ten-bit
values are shifted and combined via the logical exclusive-or function to form an index into the
second level, which comprises 2048 lines storing a 64-bit value each. The 64-bit value is the
value that followed those same three load values the last time they were seen in sequence. This
predictor requires 66.4% more state than the baseline predictor.
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6.2.1Confidence Estimator Comparison

Figure 4 and Figure 5 show how the confidence estimators of several selected predictors perform
with a small (1024 entries) and a large (8192 entries) configuration, respectively.

Confidence Estimator Comparison (1024 Entries)
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Figure 4: Accuracy-coverage pairs of several confidence estimators with 1024-entry predictors.
The dots correspond to various thresholds.

Note that theBasicpredictor is not visible in either figure. Its coverage is 100% but its accu-
racy is only about 50% for both configurations. Traygedand the twoSSg(algo)predictors
allow no variability and are therefore each represented by a single point.

With eight history bits, our CE outperforms all other CEs except the BBbifalgo)CE. We
take this as evidence that prediction outcome histories are indeed better suited for load value pre-
diction than other approaches. Our 148g(compCE outperforms all other CEs. Note how
much larger its range of accuracy-coverage pairs is in both figures and how much higher an accu-
racy it can reach in comparison to the other CEs.

All the CEs benefit from an increase in size. However, our measurements with infinite CE-
sizes show that the 8192-entry results are close to the limit for all predictors and that our predictor
maintains its superiority with one exception. For accuracies under 1922/P slightly sur-
passe$Sg(compin the infinite case.

LD4VP benefits the most from going from 1024 entries to 8192 entries. That is because
LD4VP stores four values per predictor line, which results in four times fewer lines and conse-
quently more aliasing, particularly with the smaller configuration.
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Confidence Estimator Comparison (8192 Entries)
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Figure 5: Accuracy-coverage pairs of several confidence estimators with 8192-entry predictors.
The dots correspond to different thresholds.

6.2.2Speedup Results

Figure 6 shows the speedups we measured using a detailed cycle-accurate pipeline-level simula-
tion of a microprocessor similar to the DEC Alpha 21264 (see Section 5). The displayed results
are harmonic mean speedups over the eight SPECint95 programs.

The results are given for both a re-fetch and a re-execute misprediction recovery policy. For
predictors that allow multiple threshold values, the result of the configuration with the best aver-
age speedup is listed. The thresholds that yield the highest average speedup are seven (out of
seven) for thé&imodal LVPusing re-fetch and five using re-execute, 86%5®g(compyvith re-
fetch, 67% forSSg(compyvith re-execute, twelve (out of twelve) foD4VP andLD4V+Stride
both for re-fetch and re-execute, and seven (out of seven) f&t2de FCM using re-fetch and
five using re-execute.

For Tag Bim LVPwe performed a thorough parameter space evaluation and found that it per-
forms best on the modeled CPU with three-bit counters, a threshold of three and a decrement of
two upon a misprediction when re-execute is used. For re-fetch, the best configuration is four-bit
counters with a threshold of nine and a decrement of seven.

Most predictors perform quite well with a re-execution policy. Neverthed&gcomp) LVP
is only outperformed by the significantly more complex and hardware intdri3d)+Stride hy-
brid predictor.

With the much simpler re-fetch mechanism, which most of today’s CPUs already incorporate
and therefore is the more likely recovery mechanism in the near futur8Sg(@romp) LVBut-
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performs all the other predictors. Surprisinglag Bim LVPis the only predictor that comes

close to the speedup delivered $8g(comp) In looking at more detailed results, we note that
those are the only two predictors that are capable of delivering a genuine speedup for all the eight
benchmark programs. All the other predictors actually slow down at least three of the eight pro-
grams, often significantly, when re-fetch is used.

Average Harmonic-Mean Speedup over SPECint95
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Figure 6: Average speedups of the eight SPECIint95 programs on a DEC Alpha 21264-like proc-
essor. All the predictors are sized to hold an equivalent of 2048 load values.

ThePerfect LVAN Figure 6 contains an oracle that always makes a prediction if the prediction
will be correct and no prediction otherwise. In spite of the good performarg®gétomp)the
comparison with théerfect LVPshows thalSSg(comp)s only able to reach about half of the
theoretically possible speedup using re-fetch and two thirds using re-execute. Clearly, there is
considerable room for improvement left.

Using re-fetch, th&&Sg(compgonfidence estimator causes a prediction following about 150
history patterns. In the re-execute case, the number of prediction causing history patterns in-
creases to about 2500 (out of 16384). It is not feasible to look for this large a number of patterns
using comparators. Rather, one would probably use the history pattern as an index into a prepro-
grammed 1x 2#history-bits it read only memory (ROM) that returns a one for those histories that
should trigger a prediction and a zero otherwise. The ROM effectively represents a second level
of indirection. Performing two table lookups per cycle should be feasible since current branch
predictors also comprise two levels [12].

Of course the extra hardware that a load value predictor requires could also be used to improve

21



BURTSCHER& ZORN

other parts of the processor. For example, the rightmost column in Figure 6 denotes the speedup
resulting from doubling the simulated processor’'s L1 data-cache from 64 kilobytes to 128 kilo-
bytes. Despite this large hardware increase, the resulting speedup is very small. Some of the
predictors outperform the doubled cache by more than a factor of seven while requiring four
times less hardware.

Doubling the L1 data-cache reduces its average load miss-rate from 4.7% to 3.6%. For decent
refill penalties, this small miss-rate reduction does not result in a significant performance im-
provement. Only for very large refill penalties would a 1% miss-rate difference yield an im-
provement comparable to the one we get with our load value predictor. Hence we conclude that
above a certain cache size, it makes more sense to add a load value predictor than to further in-
crease the size of the cache.

Our measurements of most of these predictors for smaller and larger sizes show the same rela-
tive performance that they do for the 2048-entry size. The FCM is the only predictor that may be
able to take advantage of much larger predictor sizes. The other predictors do not benefit from
larger sizes and their performance stays the same.

Non-Overlapping Predictions
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Figure 7: Percentage of dissimilar cross-validation outcomes and the percentage of history pat-
terns that are classified differently bigo than bycomp. The weighted percentages are
weighted by the frequency of occurrence of the respective history patterns.

Figure 7 depicts the percentage of history patterns that do not yield overlapping cross-
validation results and the percentage of history patternalj@tlassifies differently thanomp
The results are shown over the full rangeahpthresholds. Furthermore, there are two curves
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each, one showing the non-weighted result and one showing the same result when the patterns are
weighted by their frequency of occurrence. For instance, the eight cross-validations classify
11.0% of the history patterns not uniformly when a threshold of 67% is used. However, those
patterns only represent 3.7% of all the occurring patterns during program execution. Apparently,
seldom occurring patterns are harder to classify than frequently occurring ones, which may sim-
ply be a consequence of a small sample set. The figure further shoalkythalfssifies 37.9%

of the history patterns differently thaompwith a threshold of 67%. The non-overlapping clas-
sifications affect 8.7% of the patterns encountered during execution.

Figure 7 shows thaiompis closest talgo at a 39% threshold in the weighted case and at 48%
in the non-weighted case. These thresholds are close to the 44% we derived from Table 1 in Sec-
tion 3 for the 4-bit case. The implicit threshold of #hgo scheme is significantly lower than the
thresholds that work well for our CPU, which explains the poor performaratgaf

An interesting point to note is the uniformity of the cross-validation results. According to
Figure 7, all eight cross-validations yield approximately the same classification result (within a
few percent), in particular for the “interesting” thresholds above 66%. The prediction-causing
history patterns hence seem to be quite universal and not very dependent on the programs.

The optimal threshold value and consequently the prediction causing histories are, however,
rather dependent on the characteristics of the underlying CPU. For example, when changing the
misprediction recovery mechanism from re-fetch to re-execute, the optimal threshold drops from
86% to 67%.

These results, in combination with the relatively poor performan&Sg{algo) suggest that
profiling is very effective at finding a good threshold value, i.e., at identifying which history pat-
terns should be followed by a prediction. Fortunately, this has to be done only once for a given
type of CPU and compiler infrastructure.

7. Summary and Conclusions

In this study we describe a novel confidence estimator for load value predictors. It uses histories
of the recent prediction outcomes to decide whether or not to attempt a prediction. Profile infor-
mation is utilized to determine which history patterns should be followed by a prediction. In our
measurements of SPECint95 we observe low variability of high-confidence history patterns, sug-
gesting that the prediction causing history patterns would not have to be changed on a per appli-
cation basis.

Our confidence estimator (CE) reaches higher accuracies than saturating-counter-based CEs,
and, combined with a simple last value predictor, it outperforms previously proposed predictors,
including more complex ones.

When a re-fetch misprediction recovery mechanism is used, which all processors that support
branch prediction already incorporate, our predictor outperforms other predictors from the litera-
ture by over 40% and yields an average speedup of 9.3% on SPECint95. We believe that the
simplicity and the relative low hardware cost combined with its superior performance make our
predictor a prime candidate for integration into next generation microprocessors.
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