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Abstract
Simultaneous Multithreading (SMT) has emerged as an effective method of increasing utiliza-

tion of resources in modern super-scalar processors. SMT processors increase instruction-level
parallelism (ILP) and resource utilization by simultaneously executing instructions from multiple
independent threads. Although simultaneously sharing resources benefits system throughput, co-
scheduled threads often aggressively compete for limited resources, namely the cache memory
system. While compiler and hardware technologies have been traditionally examined for their ef-
fect on ILP, in the context of SMT machines, the operating system also has a substantial influence
on system performance. By making informed scheduling decisions, the operating system can limit
the amount of contention in the memory hierarchy between threads and reduce the impact of mul-
tiple threads simultaneously accessing the cache system. This paper explores the design of a novel
fine-grained hardware cache monitoring system in an SMT-based processor that enables improved
operating system scheduling and recaptures parallelism by mitigating interference.

1. Introduction

Simultaneous Multithreading (SMT) [1, 2, 3, 4] has emerged as a leading architecture model to
achieve high performance in scientific and commercial workloads. By simultaneously executing
instructions from multiple threads, SMT architectures maximize on-chip parallelism by converting
independent thread parallelism to instruction-level parallelism (ILP) [5], thereby improving the uti-
lization of architecture resources. During periods when individual threads might otherwise stall and
reduce the efficiency of a large single-threaded processor, SMT improves execution throughput by
executing instructions from other threads and thereby maintaining on-chip parallelism. Although an
SMT machine can compensate for periods of low ILP due to cache miss delays and branch mispre-
dictions by executing instructions from alternate applications, there are severe limitations to SMT
designs. Among the most pressing of these is contention between threads for the limited capacity
of the memory hierarchy.

Traditionally, researchers have explored microarchitecture ([6]) and compiler techniques ([7]) to
maximize ILP in the presence of increasing cache miss penalties. On the other hand, in the context
of SMT processors both the SMT microarchitecture and operating system can adapt policies to
lessen the memory bottleneck. Microarchitecture ideas in SMT either have been intelligent out-of-
order issue or in the area of adaptive cache management. For example, several fetch mechanisms for
SMT are explored in [8] which were found to increase overall throughput dramatically. Different
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methods of dividing cache space have also been explored. Suh, et al. ([9]) explore methods for
assigning ways within a cache set to each thread as to maximize throughput. Fairness is added to
this scheme in [10]. Finally, reserving certain ways of the cache for a high priority thread was
proposed in [11].

The operating system controls resources and activities at much larger time scales than hardware
and can also greatly affect overall performance. Current operating system scheduling techniques
and traditional hardware approaches have not been sufficiently exploited to improve the interaction
of threads in the presence of the widening gap between processor and memory latencies . For in-
stance, although current SMT techniques such as Intel’s HyperThreading [12] show improvements
in throughput, studies [13] show that contention for cache resources in SMT designs can have
equally negative effects on application performance. Previous work ([14, 15]) has demonstrated the
dramatic effect of OS scheduling decisions on multithreaded performance and propose techniques
to make these decisions intelligently. These techniques are generally directed using prior knowledge
of program execution behavior. Performance of thread combinations in previous scheduling peri-
ods, for example, can be used to predict the performance of those combinations in future scheduling
periods. Even with profile-based scheduling decisions, however, such approaches have a limited
ability to adapt to wide variations in performance of engineering and commercial workloads over
time and their impact on modern memory systems.

In order to increase the cache system effectiveness for SMT architectures, this work investigates
methods of run-time guided thread management, in which cache contention between threads is
minimized by exposing novel architecture performance monitoring features to the operating system
job scheduler. Our scheme seeks to aid thread scheduling by gathering run-time cache use and
miss patterns for each active hardware thread at a fine granularity. Overall, we show that the use of
fine-grained cache activity information in thread scheduling reduces inter-thread interference in the
cache by approximately 10%, improving overall cache hit rates. This works to mitigate the cache
bottleneck and clear the way for increased parallelism, as evidenced by an observed improvement
in the performance of simultaneously multithreaded systems over existing scheduling techniques by
roughly 5%.

Although this paper focuses specifically on SMT, the techniques presented could be applied to
any class of multithreading where multiple threads share cache space. These include many chip
multiprocessors (CMP), fine-grained multithreading ([16]), and coarse-grained multithreading ([17,
18]). In this paper, SMT was chosen due to the readily available, popular commercial hardware
(the Intel Pentium-4) which implements a form of SMT. This also allows monitoring interference at
higher level caches which are not shared in some other multithreading paradigms and the ability to
monitor the limitations on ILP imposed by cache interference.

The remainder of this paper is organized as follows. Section 2 provides an empirical analysis of
thread conflicts and cache contention in SMT machines and the motivation behind our proposed ap-
proach. Next, Section 3 introduces our model and Section 4 presents an overview of our experimen-
tal methodology in characterizing and minimizing cache interference in simultaneous multithreaded
architectures. The link between cache activity and interference is explored, and the observed effec-
tiveness in improving performance and exploiting cache resource efficiency in an SMT architecture
is presented in Section 5. Related work on multithreading and SMT optimization is discussed in
Section 6. Finally, conclusions and future research areas are outlined in Section 7.
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2. Motivation

2.1 Variation in Cache Activity

The demand placed on a cache level by a given program will vary both temporally and spatially.
Cache activity can vary across time as data sets are traversed or because of changes in program
phase. Additionally, activity in the cache is oftentimes much higher in certain regions than others.
This phenomenon is illustrated in Figure 1. In the figure, the vertical axis represents position in
the cache, which is broken up into 32 regions of 4 consecutive sets each, called a super set. The
horizontal axis represents time, which is broken up to a granularity of five million executed cycles.
The color of a point is determined by the number of accesses to that cache region during that sample,
with bright colors (yellow) indicating high activity and dull colors (blue) indicating low activity. The
cache model used in this experiment is a unified, 8-way associative, 512KB Level 2 cache with 128
byte blocks. Variation across the cache is illustrated by the variation in color along a vertical line.
Program phase changes are illustrated by changes in the horizontal direction. The floating point
benchmark 183.equake, for example, goes through a warm-up phase for approximately 100 samples
before entering a periodic cycle approximately seven samples long which represent iterations of its
main calculation algorithm.

In many cases, the demand of a given thread is concentrated in a very small amount of the cache,
as illustrated in Figure 2. The vertical axis is the percentage of samples exhibiting a particular
behavior. The dark-colored, bottom sections of the bars indicate the percentage of samples with
less than the global median amount of activity. These samples are relatively unimportant as they are
unlikely to stress the memory system and they may give misleading results as to the concentration
of cache accesses. If there are only a few cache accesses, having all of them occur in the same
cache region is not a significant phenomenon. The second sections indicate samples where activity
is fairly evenly spread across the cache. This is the typical case for the benchmark 181.mcf. The
interesting cases are the top regions. In these samples, 60% or more of the cache accesses occur in
one half or one eighth of the cache respectively. These regions are referred to as ‘hot’ since they
account for the majority of an application’s cache accesses.

The hot regions explain the inconsistency in SMT performance across application sets. As stated
in Section 1 some job mixes benefit considerably from SMT architectures, while others experience
performance losses. Thus, for an SMT system to achieve the potential improvements in ILP pro-
vided by this architecture the machine must be able to prevent jobs with similar hot cache regions
from interfering with each other. Since the operating system ultimately controls which jobs are
co-scheduled on an SMT machine, it is a natural extension to provide the scheduler with low level
cache information to prevent this type of interference from occurring. Thus, the challenge for the
operating system is to co-schedule jobs that predominantly use different regions of the cache during
a scheduling interval.

2.2 Periodicity and Predictability of Cache Activity

One of the inherent difficulties of scheduling to minimize interference is that decisions have to be
made before the interval occurs. The scheduling decision is made before the interference occurs, so
some level of prediction of thread behavior is required. A prediction may be as simple as assuming
that past behavior will be perfectly indicative of future performance. Unfortunately, as programs
change phase, so do their cache access patterns, which in turn affects interference [19], making
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L2−Cache Use Maps
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Figure 1: Unified Level-2 access patterns across cache region and time for nine Spec2000 bench-
marks.

this assumption unsafe. On the other hand, program phase is typically periodic, and hence easily
predictable [20]. Fine grained cache behavior is also periodic and predictable.
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Distribution of L2 Cache Uses
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Figure 2: Concentration of Level 2 accesses for nine Spec2000 benchmarks.

The periodicity of activity in certain benchmarks can be illustrated by performing a two-
dimensional, discrete Fourier transform (DFT) ([21]) on the activity data. By transforming the
data into the frequency domain, it is easier to recognize the periodic behaviors of the benchmarks.
The combination of several components of different frequencies makes it difficult to identify each
component in the time domain, but they are easily differentiated in the frequency domain. The
Fourier transform of the data in Figure 1 is presented in Figure 3. The vertical axis now represents
the frequency components of the activity across the cache, and the horizontal axis shows temporal
frequency components. Warm colors indicate a large frequency component and cool colors indicate
a weak component. In the DFT, frequency ranges from zero, the constant component, to one half,
which represents switching back and forth between two values every sample. Additionally, the
magnitude of the DFT of a real value signal is symmetric about zero. In the graphs, vertical lines
indicate strong temporal periodicities, which is precisely what is needed to make good predictions.
For example, the vertical bars at frequencies

�����
in the data for the compression benchmark 164.gzip

indicate that the activity is periodic approximately every 2.5 samples. In this case, having the history
of the last two samples and the knowledge of periodicity would allow a good prediction of the next
sample. Horizontal lines indicate periodicity in usage across the cache. The horizontal lines at
approximately

�������
in 188.ammp indicate that every third region is used approximately equally.

A strong component at frequency zero, the constant value component, indicates the offset from
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zero, or the average of the function. Hence the benchmarks with heavy overall activity have large
components around the horizontal and vertical axes. In [22], it is shown that low-order, auto-
regressive models could be used to predict behavior in upcoming samples very accurately based on
this periodicity. Using approximately five previous samples, it is possible to predict the use in a
given cache region to within 5% root-mean-squared error. In other words, the periodic behaviors
can be captured and used to make accurate predictions with a very short memory.

2.3 Inter-Thread Interference

A simple mechanism to measure the effectiveness of multithreading at creating ILP and the coin-
ciding overall interference between threads is presented in [23]. The measure is to find the ratio
between the IPC that a thread achieves in a multithreaded system and the IPC that it would achieve
when run in the absence of other threads. These ratios are then added together to get a relative
throughput of the system. The relative throughput of the threads is also a good indicator of fairness,
with balanced throughput indicating each thread is sacrificing the same percentage of performance
to inter-thread interference. The maximum relative throughput of a system is equal to the number
of threads, indicating that each thread is running as fast as it would in the absence of the others. A
relative throughput of one (or 100%) means that there is no gain from multithreading, and a relative
throughput of less than one means that interference between the threads is greater than the benefit
of multithreading. The advantage of using relative throughput is that it does not favor faster running
threads as a simple IPC measure does. The number of inter-thread kickouts (ITKO) is one effective
measure of inter-thread cache interference. An ITKO occurs when an access by one thread causes
the eviction of a block of data from another. If the second thread tries to access this data again, it
will experience a cache miss which it would not have experienced in a single-threaded environment.

In Figure 4, the relative throughput and total ITKO in the level-3 cache are shown versus time for
a pairing of 181.mcf and 183.equake. The shaded regions indicate the relative throughput of each
of the benchmarks, with the total indicating the overall relative throughput. The dark line indicates
the total number of ITKO in the level-3 cache for each sample. During the brief initial period of
approximately one million cycles, there is a large number of ITKO and very low throughput. This
is followed by a longer period of high throughput and and low ITKO. Finally, as equake enters
its main calculation iterations, periodic spikes in throughput coincide with dips in ITKO in a long
period of low throughput and high interference. The correlation between ITKO and throughput in
this data is further illustrated in Figure 5. In this graph, relative throughput is plotted as a function
of ITKO. The correlation is weakened by the fact that many other factors that affect throughput
such as interference in other levels of the cache or limited resources will also vary between samples.
However, a decrease in ITKO generally corresponds to a noticeable increase in throughput. Clearly,
methods that minimize ITKO will likely have a strong positive impact on throughput and therefore
on IPC and ILP.

As the activity of each co-scheduled thread varies with time and across the cache, the inter-
ference between the threads will also vary. Shown in Figure 6 is a color map of the interference
between static pairings of Spec2000 benchmarks. These graphs are similar to Figure 1, except in
this case the cache pictured is the level one data cache and the color is determined by the level of
interference between the threads. The vertical axis indicates position in the cache, which is broken
up into 32 contiguous regions for this experiment. The horizontal axis indicates execution time
which is broken up into intervals of five million clock cycles. The color of the graph indicates how
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L2 Cache use Frequency Maps
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Figure 3: Frequency domain representation of unified level 2 access patterns across cache region
and time for nine Spec2000 benchmarks.
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Parallelism vs. Time
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Figure 4: Relative throughput and Level-3 ITKO versus time for SMT pairing of 181.mcf and
183.equake.

many ITKO occur in that cache region during that sample. The brighter the color, the more ITKO.
The cache model is an 8KB, four-way associative cache with 64 byte block size. The benchmarks
are started together and allowed to run together for the duration of the test. The first 1.5 billion
execution cycles are shown. The first important characteristic to notice is that the interference pat-
terns vary greatly between pairings, so the choice of which threads to run together is vital in order
to minimize interference. The next important observation is that interference varies over time. As
the threads change phase, both their overall demand on the cache and where that demand is con-
centrated changes. As such, the interference between the two threads varies significantly. Figure 7
illustrates a simple experiment in dynamic scheduling. The representation is the same as in Fig-
ure 6, however, instead of allowing the threads to run together for the duration of the experiment,
one of the threads is allowed to run continuously while the other context is filled with a thread
which minimizes interference for the next sample chosen from the other three threads. This reduces
overall interference by approximately 10% over the best static pairing and demonstrates that dy-
namic scheduling can avoid execution intervals where the phases of the constituent threads have the
highest levels of interference and thereby outperform any static scheduling methodology.
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Parallelism vs. ITKO
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Figure 5: Relative throughput versus Level-3 ITKO for SMT pairing of 181.mcf and 183.equake.
An increase in ITKO corresponds to a decrease in throughput

3. Theoretical Model

In multithreaded systems, opportunities to improve system behavior via adaptation occur at three
time scales - the microarchitecture controls activities that occur in the tens to hundreds of cycles,
the runtime system controls activities on the scale of thousands of cycles, and the operating system
(OS) controls resources and activities at the largest time scales, millions of cycles. The OS impacts
the performance most significantly by making intelligent co-scheduling decisions which can be im-
proved by leveraging the cache activity information of individual threads. By accurately estimating
heavily accessed cache areas, the OS can co-schedule threads which will simultaneously use dif-
ferent cache regions, and thereby minimize interference. Only by minimizing interference between
the threads in the cache system will the efficiency of a multithreaded processor be maximized to
achieve better throughput and higher ILP.

In order to take advantage of the variance in activity across a cache level, some mechanism must
be developed to monitor the activity in different regions of the cache. The cache is first divided into
a series of regions called super-sets. A super-set is made up of a number of consecutive cache sets.
All super-sets are the same size. If the number of sets per super-set is a power of two, the super-
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Data Cache ITKO Maps for Static Pairings
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Figure 6: Level-1 d-cache inter-thread interference maps of benchmark pairings using static pair-
ing.

set index is simply the high-order bits of the cache line index, making it very simple to monitor
cache requests to determine the activity in each super-set. The number of accesses or misses in each
super-set for each context is monitored by an activity counter. Due to the noise inherent in activity
data and the cost of maintaining high precision, it is preferable to reduce these counters to a small
number of bits. These reduced activity counters are then concatenated into an activity vector. An
activity vector contains all of the data for a thread for the previous scheduling interval.

The hardware necessary to achieve this is illustrated in Figure 8. The first step is that the
cache request bus is snooped such that the high-order index bits (the super-set number) and the
thread ID bits are monitored for each cache request. Monitoring cache misses is simply a matter
of snooping the cache requests to the next lower level of the cache hierarchy. These bits are used
to index into a register file, the activity counters, which contain one register for each super-set and
for each context, so that the total number of registers is the product of the number of contexts
and the number of super-sets. The precision of the registers is dependent on the length of the
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Data Cache ITKO Maps for Dynamic Pairings
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Figure 7: Level 1 data cache Inter-thread interference maps of benchmark pairings using dynamic
scheduling.

scheduling periods, the rate of memory instructions, and the necessary precision of the decision
point (as discussed in Section 5.1). Finally, a simple incrementing and saturating adder is used
to increment the appropriate activity counter when a cache request occurs. The high order bits of
the activity counters are then concatenated to create the activity vector for each context. The only
potential overhead from this hardware is due to increased fanout on the cache request bus. However,
since the hardware executes in parallel to the cache, it can be placed anywhere along the bus where
there is extra fan-out capacity.

4. Methodology

4.1 Full System Simulation

The next step in the investigation was to implement the activity vector mechanism in a full system
simulator. The simulator used was a version IMPACT LSIM [24] modified to support SMT called
Xsim. The simulator was set up as a two-way SMT with a two level cache hierarchy as described in
Table 1. The unified level-two cache was divided into thirty-two super-sets. Because of the length
of cycle accurate simulation, the scheduling interval was reduced to one million cycles and the
simulations were run for one billion cycles in total. The disadvantage of a short scheduling interval
is that compulsory misses, brought on by context switches, take on a much larger role in the overall
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Figure 8: High-level hardware diagram of fine-grained cache activity monitoring hardware.

cache behavior. Scheduling decisions are made on a combination of level two activity vectors and
a round robin scheme to ensure fairness. At the end of each sample, the currently resident thread
which has been scheduled the most times is scheduled for removal. Each thread is given a score
based on the number of common hot regions with the resident thread and the number of periods for
which it has already been scheduled. The thread which has the lowest score (this may be the second
thread already resident in the processor) is then scheduled for the next interval.

Level Level Size Associativity Block Size
I-Cache 16KB Direct-mapped 128 Bytes
D-Cache 8KB 2-way 64 Bytes
L2-Cache 512KB 8-way 128 Bytes

Table 1: Xsim Cache Configuration

Sixteen different combinations of Spec2000 benchmarks, each consisting of four threads, were
tested. The number of available threads was limited because adding more programs increases the
number of possible combinations and reduces the reproducibility of the results. Despite the short
scheduling interval and limited number of available threads for the scheduler to choose from, the
results were quite promising. On average, the number of ITKO was reduced by 10.2% over a
round-robin scheduler with one combination showing a 54% improvement. This resulted in an
average increase in IPC of 4.4% with a top gain of 12.1%. The results and methodology of these
simulations are covered more completely in [25]. These promising results served as motivation to
investigate these techniques more completely in a full system.

12



INTER-THREAD CACHE INTERFERENCE IN SMT PROCESSORS

4.2 Linux Operating System Thread Scheduling

The Linux kernel version 2.6.0 was modified to support activity based job scheduling. The scheduler
is run on an Intel Pentium-4 Xeon processor with HyperThreading enabled ([26]). This processor
has two contexts, or virtual CPUs, that share the cache hierarchy, data registers, and functional units.
The default Linux scheduler runs a symmetric multiprocessing (SMP) scheduling algorithm on each
virtual processor to select the next job to run. This algorithm was adjusted to include activity vector
information in the job selection criteria. Rather than treat the activity vector information as a score
in the scheduling priority algorithm, the default scheduler is first used to select the best job to run.
Then, it queries the activity vector scheduler to search for a job that is expected to have the fewest
resource conflicts (common hot cache regions, measured by common activity vector bits) with the
job running on the other virtual processor. If the activity scheduler cannot identify a better job, then
the default job is allowed to run. Since the Pentium4 processor used in these experiments cannot be
modified, activity vector support is modeled in software. Because of the large amount of data which
needed to be stored and imported into the kernel space, each activity counter is reduced to a single
bit.

In order to expose cache activity information to the operating system, each benchmark appli-
cation is profiled to generate activity vector information. Thus, in order to approximate the actual
memory behavior of a given job, each benchmark application is run under the Valgrind memory
simulator. Valgrind provides a model of the actual cache hierarchy of the host machine along with
a record of runtime program information, such as the instruction count. This simulation stage is
used to record all memory requests and misses associated with a given cache super-set. The access
and miss counts for each super set are recorded in software activity counters every 50 million in-
structions. As described in Section 3, a bit is set in the activity vector if the corresponding counter
exceeds a threshold value. The resulting activity vectors for each cache level are written to a text
file. These vectors are later passed to the operating system kernel memory space, where they are ref-
erenced by the modified job scheduling algorithm. Because activity counters were recorded based
on the number of completed instructions, finding the activity vector for a program at a given time is
simply a matter of knowing the number of completed instructions for a program, which is read from
an existing performance counter on the Pentium4.

Algorithm 1 is a pseudo-code representation of the activity based scheduling module and its
interface to the kernel scheduling software. The scheduling module is a tool that provides a user
level interface to the kernel scheduler, which can be used for both collection of statistics as well
as the activation of the scheduling algorithms discussed in this paper. The module was designed
so that it can be recompiled and run without rebuilding the Linux kernel. To achieve this goal,
the module exports 2 functions to the Linux schedule() function. At runtime, the scheduler queries
these functions in order to select which job to activate at each schedule invocation. The first function,
th sample cache vector(), shown in Algorithm 2, is used to sample hardware performance counters
and record their associated data for each of the jobs running on the system. The second function,
th schedule cache vector(), shown in Algorithm 3, is used to select the next job to run based upon
analysis of the cache activity vectors.

The schedule() function of Algorithm 1 has two important code regions that were chosen as en-
try points for the activity based scheduling module. The first section is labeled need resched. Here
the available tasks either get removed from the run queue if they have completed, or their scheduling
priority gets updated. The th sample cache vector() function was inserted into this section to mon-
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Algorithm 1 Modified linux schedule() function.
Require: current active task
Ensure: next task ready

if need resched then
log task runtime()
th sample cache vector( ������� )
update context switch count()

end if
if pick next task then

if runqueues not balanced then
load balance()

end if
end if
�	��
 � ���
��� = select highest priority task()
�	��
 � ���
��� = th schedule cache vector( �	��
 � ������� ,

� ��� ��� ����� ������� , ���
��� ����������� ��� � � ��� )
recalc task prio( �	��
 � , � � �!� �"��� �#� )
if switch tasks then

unmodified linux source
...

end if

Algorithm 2 Performance monitoring function (th sample cache vector()).
Require: current running task
Ensure: Global perf counter tables updated

if � ��$%$&� �'$ �)( � � � � � �*���%+ then
sample perf counter(L2CACHE, ����� ��, )
log counter( - � � � � � � �!� )

end if
sample perf counter( ���.����� � , ���/� ��, )
store icount( ������� ��, )

itor the state of the cache system performance counter registers associated with the presently active
tasks on each of the logical CPUs. The performance counter information was stored internally in the
kernel memory space for use in both statistical reporting and as a reference point for the scheduler
optimization. The second important region in the function schedule() is named pick next task().
Here, as the name suggests, the kernel selects the next job to activate on the CPU that the scheduler
is currently running. The function th schedule cache vector() was introduced here to select the best
job to run based upon the activity vector information.

Algorithm 2 is very simple. If the level two cache performance is being monitored, the level
two cache performance counters are sampled. The second step is to read the instruction count
performance counter and update the total number of instructions executed for the thread. This is
necessary so that the performance can be aligned with the Valgrind profile. Algorithm 3 illustrates
th schedule cache vector(). Because the instruction counter is incremented after the data has been
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loaded, the activity vector represents the activity in the previous scheduling interval and the only
prediction model used is that activity would remain approximately constant between samples. For
each of the tasks on the run queue, the default weight is combined with the activity vector intersec-
tion (the number of super sets where each thread has high activity) in each level of the cache. The
task returned is simply the task which has the lowest weight. The default priority and the activity
vector data were weighted such that fairness is preserved and thread starvation avoided.

Algorithm 3 Vector scheduling algorithm (th schedule cache vector()).
Require: ready task, runq other cpu,

active task other cpu, task priority array
Ensure: next active job

initialize job weights()
get vectors( � � � , � ������� , � ��� ��� ������� , ��� ���/� � )
for all Cache Levels do

�%� � �
��� = AND( �
�"� � ��� �%� � , � , �
�"� � ��� � � � ��� )
������� � � � - � � � = count result bits( �%� � �
�"� )
update weight function( ���
��� � � � - � � � )

end for
for all tasks in run queue do

compare vectors( ������� , ������� � � � ��� ���/� )
if � ���)$ � ��� - � ��� � ��� $ � � then

- � ��� ��������� � ����� � � - � � ���*���'�
end if

end for

After completing the profiling stage for each of the benchmarks, the user level profiling tool is
used to copy the contents of the vector files into the kernel memory. This tool is a device driver
that enables a user to control when the scheduler should activate the th sample cache vector() and
th schedule cache vector() functions. When the user interface is invoked, the default Linux sched-
uler is active. The user is prompted for the file names of the activity vector files, then each is read
into kernel memory for later use in the scheduling algorithm. Once the vector files have been read
in successfully, the user selects the desired scheduling algorithm, and then starts all of the bench-
mark applications in the workload set. The total execution time for the workload set is recorded, at
which point, the user can command the kernel to return to the default scheduling mode. In addition
to enabling activity based scheduling, the user can initiate the performance monitoring routine of
Algorithm 2 to record runtime performance statistics.

The overhead of the scheduling algorithm is minimal. In the experimental system the overhead
is overstated because the activity vector information must be read from a file and this data must
be aligned to the current execution. In a system with the activity vector hardware, neither of these
steps would be necessary. The scheduling code would also be more seamlessly integrated as part of
the kernel. Additionally, because scheduling decisions are only rarely made (approximately every
one hundred milliseconds in Linux), the overhead of scheduling decisions in only a very small
percentage of overall execution. In [27], it was shown that most of the overhead of a context switch
was due to compulsory cache misses, which will occur regardless of scheduling algorithm. Because
the algorithm only chooses one of the threads to run, the overhead of the algorithm scales linearly
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with the number of tasks on the run queue (each possible thread is compared to the running thread).
Unfortunately, the algorithm grows exponentially with the number of contexts which must be filled.
This problem is mitigated by the fact that the number of contexts which share a cache will remain
low for the foreseeable future. Further, only one or a very few threads should be switched at a given
scheduling interval to minimize the number of compulsory cache misses associated with context
switches. Since activity vector hardware would be implemented in much the same way as existing
performance counters, reading an activity vector would likely have a similar amount of overhead to
reading any other performance counter. Our experiments with logging performance counter data at
scheduling intervals have shown overheads of less than .1%. This includes the overhead of file I/O
which would not be necessary for activity vector based scheduling.

5. Results

5.1 Correlating Cache Activity and Interference

Once a prediction has been made as to how much activity will occur in the next sample for each
thread, the scheduler must determine how much interference will occur. The interactions between
activity and interference are fairly complex. For example, interference in one level of the cache
will lead to increased misses and hence activity in the next lower level of the cache. The most
obvious interaction is that increased activity will lead to increased interference as the capacity of a
given cache region is exceeded. The total activity across the threads, however, will not differentiate
between cases with relatively even usage between the threads and cases where activity is greatly
unbalanced. Another possible model is to assume that the interference will be tightly correlated to
the amount of activity in the less active thread. The basis of this idea is that the more active thread
is in essence saturating the cache region and whatever activity the second thread has will lead to
interference. These two models are compared in Figure 9. In these graphs, the level two cache
activity is monitored in thirty-two super-sets at one million cycle long intervals across all possible
pairings of nine of the Spec2000 benchmarks (listed in Figure 1). On the left, the total number of
misses for both threads is correlated to the number of ITKO in a given super set for a given sample.
The correlation of the linear fit, although not ideal, is fairly high. Inspection of the data indicates
that the relationship is close to linear, and that total activity is a better indicator at higher activity
levels. This is most likely the result of the super-set being saturated in these cases. When all of the
space in the region is filled, any additional activity will likely lead to interference. On the right is
a similar graph, except in this case the x-axis shows the number of misses in the less active thread.
The correlation of the linear fit is significantly higher than that of the total activity and this model
seems to perform better at lower activity levels. It is difficult to determine based on this graph
exactly how well the model performs at higher activity levels because the data is more sparse in
those regions. The fact that the data is concentrated at low activity levels and the minimum is a
better indicator at those levels probably has a great deal to do with the higher overall correlation.
Since the two models excel for different levels of activity, the ideal model is likely a combination
of the two which uses the minimum value for low activity and uses the total value when activity is
high.

Another illustration of data can be found in Figure 10. In this graph, the axes each indicate the
number of misses in a given super-set and sample. The color is indicative of the median number
of ITKO for all samples which have that activity level. Since this is the combined data from all
pairings, it is arbitrary which thread is called A and which is B, so the data is folded over to form the
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Level−2 Cache Misses vs. Inter−Thread Kickouts
(32 Super Sets)
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Figure 9: Correlation between number of ITKO and total and minimum number of cache misses.

upper-triangular region shown. On the left is data for the total number of misses across the cache in
a given sample and on the right the cache is divided up into thirty-two super-sets. If the minimum
model perfectly fit the data, the graph would consist of evenly-spaced, vertical bars. If the total
activity model was ideal, the graph would consist of downward sloping, diagonal bars. Obviously,
neither model works perfectly. At low activity levels, the minimum model seems to fit very well
as indicated by the vertical bars toward the left side of the graph. However, at higher levels, the
graph more closely resembles the diagonal lines that indicate the sum is the best model. Another
important facet of these graphs is the relative data sparsity and lack of clear region boundaries on the
graph for the cache total. This demonstrates the large variance in possible activity levels across the
cache which make it difficult to accurately derive interference from total activity. This is a strong
argument for finer granularity in cache monitoring.

5.2 Activity Counter Precision

Another important question is how much precision is needed in the activity counters or how many
activity levels will be presented to the OS for a given super set. In previous sections, activity was
divided into a binary high or low. This section explores what additional benefit can be gained by
having finer granularity in the counters. Since the activity data is inherently noisy, having very
high precision is meaningless. Additionally, higher accuracy means that more information needs to
be stored and processed by the operating system for each scheduling decision. Conversely, more
data may reveal subtle but important variations in behavior that less precise counters may miss.
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l3cache Misses vs Interthread Kickout Frequency
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Figure 10: Median inter-thread kickouts versus cache misses in the Level 3 cache for 32 super sets
and entire cache.

However, Figure 11 illustrates that higher precision is not advantageous beyond one or two bits.
The horizontal axis is the number of possible activity levels, and the vertical axis is the average
correlation of total misses (quantized to the number levels) to ITKO for that level of the cache. The
precision ranges from a single bit up to five bits of precision. Although the data varies from cache to
cache, there is no increase in correlation, and hence no extra data nor advantage to be gained from
using more than two bits of precision. This and other questions on the details of implementation are
more fully explored in [28].

5.3 Memory Aware OS Scheduling

Workload Benchmark Configuration Makeup
WL � parser.gap.vortex.bzip2.vpr.mesa.crafty.mcf

Integer
WL � mesa.twolf.vortex.gzip.gcc.art.crafty.vpr
WL � gzip.twolf.vpr.bzip2.gcc.gap.mesa.parser
WL � twolf.bzip2.vortex.gap.parser.crafty.equake.mcf
WL � gzip.vpr.gcc.mesa.art.mcf.equake.crafty

Mixed
WL � equake.crafty.mcf.parser.art.gap.mesa.vortex

Table 2: Linux workloads.
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Figure 11: Correlation between number of ITKO and miss activity score for various levels of
counter granularity.

The results reported in this section were collected from a set of five batches of eight benchmarks
each from the Spec2000 suite. The benchmarks used in each workload are shown in Table 2. The
workloads were chosen to mix memory intensive applications with execution limited ones. Work-
loads one through four are predominantly integer benchmarks and workloads five and six have an
even mix of floating point and integer benchmarks. The benchmarks were all run to completion us-
ing the training input set. The use of the training input set was required so that the Valgrind memory
profiling stage could be completed in a reasonable amount of time and the profile files would remain
a manageable size. All the jobs were started at the same time and set to run in the background so
that the OS could manage their scheduling priorities. In addition to these jobs, the operating system
scheduler also manages the system level tasks that run in the background on any Linux system.

The activity based Linux scheduler is configured to collect runtime scheduling statistics based
upon the hardware performance counters. The cache activity information is used to evaluate how
well the job scheduler performs at minimizing potential resource conflicts. Figure 12 shows the
percentage of scheduling periods in which the default scheduler chose jobs that were classified as
either ‘good’, ‘moderate’, or ‘poor’, relative to the resulting resource contention. These classifica-
tions were derived by comparing the cache activity of each job in the pool with the activity of the
job running on the other virtual CPU. Rather than using this information to change the schedule,
it is instead used to assess the effectiveness of the default scheduler. The scheduling decisions of
the default Linux algorithm are considered ‘good’ if the activity scheduler would have selected the
same job. ‘Bad’ scheduling decisions correspond to cases where the job selected has a high level
of interference with the job running on the other CPU. Decisions are rated ‘middle’ if the job that
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Figure 12: Linux scheduler decisions.

was selected differed from the activity vector scheduler, but the level of interference was moderate.
From Figure 12, one can see that for each of the 6 workloads, the default scheduler makes a poor
scheduling decision for 30%-40% of the scheduler invocations. Therefore, there is significant room
for improvement for scheduling tuned to reduce resource contention. In addition, as the number of
jobs in the pool increases, the opportunity for the activity based scheduler to find a good match for
co-scheduling should also increase.

After analyzing the default scheduler, the activity based scheduler was enabled and the resulting
performance for the set of workloads was measured and reported in Figure 13. For each workload,
the L2 cache misses associated with the workload were recorded along with the IPC. Four out
of the six workloads show an improvement in L2 cache misses of more than 4%, with a similar
improvement in IPC. The net performance gain is dependent upon the job mix, which is expected
since some of the workloads may contain a number of jobs with similar cache activities. The results
are encouraging since this technique was implemented on real hardware with a commonly used
operating system.

These results are pessimistic for several reasons. As discussed in Section 4.2, the overhead of
the scheduler, which is included in the total runtime presented above, is overstated. The prototype
implementation must read in the pre-profiled memory data and align it with the current point in the
execution, which would not have to be done if the activity vector hardware were available, saving
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Figure 13: Performance improvement using activity vector scheduling.

the overhead of both the file I/O and alignment. A full implementation could also further optimize
and integrate the scheduler into the kernel. Additionally, the use of the training inputs, necessitated
by the use of pre-profiling, decreases the run times, and hence the scheduling opportunities available
to the OS. Since the activity vector information facilitates better scheduling decisions, the benefit
is directly related to the number of decisions made. Finally, the use of Spec2000 benchmarks
is probably more taxing than a real world system would be. Most commonly used benchmarks are
large programs designed to tax various components of the system. In a real system there are typically
only a few large programs running with a variety of smaller system tasks running in the background.
One additional point is that the system tasks which ran during the tests are not profiled, and therefore
were scheduled naively. Since the activity vector hardware is independent of the workload, these
could also be more intelligently scheduled with activity information.

6. Related Work

6.1 Multithreading

Multithreading processors are becoming the industry standard for high performance computer sys-
tems. Numerous thread models exist which emerged as solutions to specific performance issues.
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The initial implementations were designed to improve the performance of shared memory multi
processor computer systems. Researchers observed that individual nodes were spending significant
portions of their execution time idle waiting to service off-chip memory accesses. The APRIL pro-
cessor from MIT was a coarse grain multithreading (CGMT) implementation of a single processor
that could execute instructions from a different software context while the main context was servic-
ing a memory request [17]. Gupta and Weber [18] were attracted to CGMT for similar reasons; they
had identified the increasing memory latency due to remote memory accesses in a multiprocessor
system. They observed that the performance improvement due to multithreading was application
dependent, and was also limited by the interference introduced by the addition of instructions from
other hardware contexts. The first commercial implementation of a coarse grain multithreading
processor is the IBM Power PC RS64 IV [29].

The introduction of fine grained multithreaded processors preceded the widespread use of super-
scalar architectures. In [30] the fine grained thread model was motivated from the need to increase
the utilization of processors with deep pipelines. Rather than perform control speculation and out
of order execution to maintain a steady supply of independent instructions, Farrens and Pleszkun
proposed alternating each issue cycle with instructions from a different process. Interleaving the
instructions from independent contexts provided time for the processor to resolve register depen-
dencies and other hazards associated with each program. Reducing these dependencies prevented
pipeline stalls from occurring and led to an increase in processor utilization.

Simultaneous multithreading later emerged as a low cost means to improve the utilization of
superscalar processors. Wide issue superscalar processors proved effective for exploiting instruc-
tion level parallelism, however control and data dependencies limited the number of independent
instructions available in a given instruction sequence. By enabling the issue of instructions from
multiple contexts each cycle, periods of low instruction level parallelism (ILP) could be compen-
sated for by thread level parallelism (TLP) [3, 5, 1]. Simultaneous multithreading has since emerged
as a popular platform for high performance processors, and has proved very useful for computing
environments where several jobs are run in parallel.

Speculative multithreading recently emerged as a means to leverage the additional processing
resources introduced by SMT to advance the performance of single jobs. Numerous researchers
have investigated this area, and have proposed a variety of techniques for exposing additional par-
allelism in a serial job. Chappell, et al. introduced simultaneous subordinate multithreading [31] as
the starting point for speculative threading. Others have proposed entirely new architectures such
as the multiscalar architecture introduced by Sohi in [32]. From this field, two important areas
have emerged. The first is to use speculative threading for extracting additional parallelism from a
single application. Marcuello and Gonzalez [33, 34, 35] pioneered much of the work in this area.
Their approach achieves performance improvements by increasing the amount of ILP available to
the processor hardware. The other field uses speculative threads as a form of data and instruction
prefetching. Speculative precomputation, for example [36, 35], uses the compiler to identify long
latency load instructions. Then, speculative threads are used to execute the instructions that compute
the load address and the corresponding load. The speculative threads effectively initiate prefetches
for the main thread. Other techniques such as the Slipstream architecture employ a similar strategy
of using speculative threads to assist the main thread [37]. Wang, et al. demonstrated a virtual
multithreading technique where lowest level cache misses caused specially chosen code from the
same thread to execute, effectively hiding memory latency [38].
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6.2 SMT Performance Studies

There have been numerous studies focused on improving the throughput performance of simulta-
neous multithreading processors. The techniques for solving this class of problems are covered by
a range of disciplines, including operating system thread scheduling, dedicated architecture tech-
niques, and cooperative compilation techniques [39]. Although the SMT improves the throughput
of multi-job workloads, performance bottlenecks related to the shared hardware resources on these
processors have placed limitations on their efficiency. In particular, the shared cache hierarchy [40],
and the instruction fetch and issue logic [41, 42] have emerged as components that require special
attention in an SMT environment.

In response to the importance of resource contention between threads associated with the cache
hierarchy, there have been a number of operating system level solutions to solving this problem.
Lo, et al. demonstrated in [43] that database applications which suffered from inter-thread con-
flict misses could be improved significantly by using the operating system to change the way vir-
tual memory pages were mapped to their physical counterparts. This approach made it less likely
that data belonging to different thread contexts would map to the same cache sets, thus reduc-
ing the amount of inter-thread conflict misses. While the results from this study are encouraging,
the approach focuses on database applications which have fundamentally different data footprints
than workloads studied in this paper (Table 2). Symbiotic job scheduling [14] was introduced by
Snavely and Tullsen as a method to improve performance by making the operating system co-
schedule threads that were likely to ‘behave’ well with one another. While this technique exposed
the potential headroom for using the operating system to advance SMT performance, it did not re-
flect closely enough the runtime environment of a real operating system job scheduler. Chandra, et
al. presented a mathematical model for predicting the interference between threads in a CMP based
on reuse distance in [44].

Parekh, Eggers, and Levy proposed exposing microarchitecture level performance information
to the operating system job scheduler in [15]. This work showed IPC improvements on the order
of 10%, however, the experiments were conducted on a simulated operating system and processor
architecture. Suh et al. used fine grained cache monitoring to partition the cache based upon the
predicted demand from each thread in [9]. The resource demands of each thread are determined by
analyzing the frequency and time of last use for each cache line. The cache is then partitioned among
the threads, each one allocated a number of sets proportional to its expected resource demands.

Studies of the impact of compiler optimizations on SMT architectures in [45] show that per-
formance improvements can be achieved provided the optimizations are modified to account for
the SMT microarchitecture. Specifically, compiler optimizations that are used to expose ILP on a
uniprocessor often lead to increased code size, such as with loop unrolling. In an SMT processor,
thread level parallelism between processes may be sufficient to maintain high utilization, making
the ILP optimizations unnecessary. Kuhmar and Tullsen investigated compile time methods for
reducing the amount of interference between threads in the instruction cache in [46]. This work fo-
cused primarily on the i-cache and is specifically aimed at static, rather than dynamic optimization
techniques.

6.3 Working Set Analysis

Research on the working sets of programs stretches back over thirty-five years ([47, 48]), however
most studies work only on the level of operating systems and paging. Page coloring ([49]) is a
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commonly used technique to map virtual pages to different regions of the cache and distribute the
demand across the cache from a given thread. Takir and Hollingsworth ([50]) used the bus moni-
toring hardware on a multiprocessor server to migrate pages to the local memory of the processor
most closely associated with the data. Sherwood, Calder, and Emer ([51]) proposed a methodology
similar to the one presented in this paper to monitor individual regions of the cache. This informa-
tion was used in a single-threaded environment to remap pages away from hot regions and more
evenly distribute cache demand across the cache. Applying these techniques to a multithreaded
environment is an area of ongoing research.

7. Conclusions

7.1 Future Work

Exposing cache activity vector information to the operating system scheduler has proved to be effec-
tive at improving the performance of SMT workloads. However, as this work has demonstrated, the
problem of capturing inter-thread interference information at runtime remains a challenge. As such,
future work in this area will be directed at improving the techniques for detecting this interference.
Additionally, while measuring inter-thread kick outs is fairly simple to do with a simulator, it is quite
challenging to implement in real hardware. Thus we are exploring the correlations between other
event counters and ITKO in order to derive an accurate approximation of an ITKO hardware counter.
These techniques may be applicable to other multithreading paradigms and CMP. We anticipate that
with improved inter-thread interference detection schemes, the operating system scheduler should
be able to further improve the performance of SMT workloads. Further, fine-grained cache moni-
toring can be used for page remapping ([51]) to mitigate inter and intra-thread interference. With
the activity vector already available to the OS for scheduling, we are investigating page remapping
based on this information to complement the scheduling decisions.

7.2 Summary

SMT offers a promising method to circumvent the limitations on ILP imposed by such factors as
long latency operations and memory accesses and their related data and control dependencies by
exploiting TLP. However, there are serious limitations imposed by contention for limited resources
between threads. Perhaps the most important of these resources is memory hierarchy capacity. Be-
cause inter-thread kick outs produce extra cache misses, the performance of individual threads is
degraded, counteracting the overall effectiveness of SMT. By carefully monitoring and predicting
the access patterns of each thread in an SMT system and exposing this information to the operating
system scheduler, intelligent scheduling decisions can be made that minimize the amount contention
for cache space. This minimization is accomplished by choosing threads that access different re-
gions of the cache, and thus can operate in parallel, even though each thread may have high overall
demand on the cache. A modified thread scheduler, using simulated fine-grained information is able
to significantly reduce cache contention between threads and improve performance on commercially
available hardware and thus recapture much of the parallelism lost to interference between threads.
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