Journal of Instruction-Level Parallelism 7 (2005) 1-12 Submitted 01/05; published 04/05

Genesis of the O-GEHL branch predictor *

André Seznec SEZNEC@IRISA.FR
IRISA/INRIA/HIPEAC, Campus de Beaulieu
35042 Rennes Cedez, France

Abstract

We detail the genesis of the Optimized GEometric History Length (O-GEHL) branch
predictor that was presented at the First Championship Branch Prediction held at Portland
in December 2004. The OGEHL predictor efficiently exploits very long global histories in
the 100-200 bits range.

The O-GEHL predictor features several predictor tables T'(i) (8 for the version presented
at CBP) indezed through independent functions of the global branch history and branch
address. The prediction is computed through the addition of the predictions read on the
predictor tables as on perceptron predictors. GEHL stands for GEometric History Length
since the set of used global history lengths forms a geometric series, i.e., L(j) = o?~1L(1).
This allows to use the most significant part of the storage budget to capture correlation on
recent branch outcomes while still being able to capture correlation on very old branches.

The O-GEHL predictor features dynamic history length fitting and dynamic threshold
fitting. These mechanisms improve the ability of the predictor to exploit very long histories.

1 Introduction

Modern processors feature moderate issue width, but deep pipelines. Therefore, any
improvement in branch prediction accuracy directly translates in performance gain. In this
paper, we present the different steps that lead to the proposal of the O-GEHL predictor
that was presented at the 1st Championship Branch Predictor (CBP) [1].

First we recall the rules of the CBP (http://http://www.jilp.org/cbp) and analyze the
characteristics of the set of distributed traces. Then we present and comment the three
general guidelines that we respected in addition to the rules of CBP, i.e., 1) only global
branch or path history information should be used as input to the predictor. 2) the pre-
dictor should be close to a possible implementation, 3) the predictor accuracy should be as
independent as possible from its initialization state.

Then we present the general view of the (O-)GEHL predictor principles. The GEHL
predictor uses multiple predictor tables indexed with distinct history lengths (Figure 1).
Each table provides a prediction as a signed counter. As on the perceptron predictor [2, 3],
the overall prediction is computed through an adder tree. A threshold-based partial update
policy is also borrowed from the perceptron-like predictors. GEHL stands for GEometric
History Length since we are using an approximation of a geometric series for the history
lengths L(i), i.e., L(i) = o' 'L(1). A performance evaluation of a first naive 64 Kbits
predictor is then provided.

*. This work was partially supported by an Intel research grant and an Intel research equipment donation

ANDRE SEZNEC

Then we describe and evaluate one by one step that lead to the final O-GEHL predictor
proposal. 1) We show that 4-bit counters are cost-effective for the O-GEHL predictor. At
constant storage budget, using 4-bit counters allows to use twice as many entries in the
predictor tables as using 8-bit counters as on perceptron-like predictors. Using a mix of
4-bit and 5-bit counters is even more cost-effective. 2) The update threshold used for
perceptron-like predictors [2] is not adapted to the O-GEHL predictor. We describe and
evaluate a dynamic threshold fitting algorithm. 3) The O-GEHL predictor implements a
simple form of dynamic history length fitting [4] to adapt the behavior of the predictor
to each application. In practice, for demanding applications, most of the storage space in
the O-GEHL predictor is devoted to tables indexed with short history lengths. But, the
combination of geometric history length and of dynamic history lengths fitting allows the
O-GEHL predictor to exploit very long global histories (typically in the 200-bits range)
on less demanding applications. 4) We show that some accuracy benefit can be further
grabbed through using a more precise representation of the program path than only using
conditional branch history.

Section 7 briefly reviews the related works that had major influences in the O-GEHL
predictor proposal and concludes the paper.

2 Championship Branch Prediction

2.1 The CBP rule

The following unique rule was given for the contest (see http://www.jilp.org/cbp/):

”Quantitatively assessing the cost/complexity of predictors is difficult. To sim-
plify the review process, maximize transparency, and minimize the role of sub-
jectivity in selecting a champion, CBP will make no attempt to assess the
cost/complexity of predictor algorithms. Instead contestants will be given a
storage budget of (64K + 256) bits. All predictors must be implemented within
the constraints of this budget. And clear documentation must be provided to
assure that this is the case.”

The evaluation metric used for the CBP contest is misprediction/KI on a set of distributed
traces.

Since the contest is performed using traces, immediate update of the predictor is as-
sumed. On a real hardware processor, the effective update is performed later in the pipeline,
at misprediction resolution or at commit time. However, for branch predictors using a very
long global branch history as the O-GEHL predictor, the difference of accuracy between
a delayed updated predictor and an immediately updated predictor is known to be small
[5, 6].

2.2 The CBP traces

20 traces selected from 4 different classes of workloads were provided. The 4 workload
classes are: server, multi-media, specint, specfp. KEach of the branch traces is derived
from an instruction trace consisting of 30 million instructions. These traces include system
activity.

GENESIS OF THE O-GEHL BRANCH PREDICTOR

FP-1 FP-2 FpP-3 | FP-4 | FP-5 INT-1 INT-2 INT-3 INT-4 INT-5
static 444 452 810 556 243 424 1585 989 681 441
dyn. 221 179 155 90 242 419 287 377 207 376
(x10000)

MDM-1 | MM-2 | MM-3 | MM-4 | MM-5 || SERV-1 | SERV-2 | SERV-3 | SERV-4 | SERV-5
static 460 2523 1091 2256 4536 10910 10560 16604 16890 13017
dyn. 223 381 302 488 256 366 354 381 427 429
(x10000)

Table 1: Characteristics of the CBP traces

30 million instruction traces were considered short by most of the competitors. However
30 million instructions represent approximately the workload that is executed by a PC under
Linux or Windows in 10 ms, i.e., the OS time slice. Moreover, system activity was shown
to have an important impact on predictor accuracy [7]. Finally, some traces, particularly
server traces, exhibit very large number static branches that are not represented in more
conventional workloads such as specint workloads. The characteristics of the traces are
summarized in Table 1.

3 Personal guidelines for the O-GEHL predictor design

The computer architecture research community has to propose designs that are close to
possible hardware implementation. OQur O-GEHL predictor proposal for CBP is respecting
a few “best practice” rules ! that might allow its effective hardware implementation.

3.1 Using only global history or path information

Both using local history and global history have been considered to provide branch
prediction [8]. Hybrid predictors using both local and global histories have even been
implemented in Alpha EV6 [9].

However, on processors featuring deep pipelines, several branches are speculatively pre-
dicted in advance. For accurately predicting branches, one has to manage speculative his-
tory. Maintaining and using accurate speculative local history may be very difficult since
1) there may be several occurrences of a single branch inflight at the same time, 2) the
response time of predictor may be longer than a single cycle and therefore accurate local
history is not even known at the beginning of predictor computation time. On the other
hand, maintaining accurate global history or path information is easy through the use of a
circular buffer. Moreover a predictor relying only on global history or path information can
be ahead pipelined to provide branch prediction in-time [10].

One of our challenges was to show that using only global history on a branch predictor
is sufficient to deliver state-of-the-art accuracy, thus relieving the designer from the burden
of maintaining accurate speculative local history.

3.2 Implementable design

The rule of the CBP challenge did not put restrictions on the complexity of the logical
design of the predictor. Therefore the rule allowed the use of strange sized tables [11, 12, 13],

1. The O-GEHL predictor received the best practice award at CBP.

ANDRE SEZNEC

the use of very complex index computations [11] and/or the use of complex overall prediction
computation [11, 12, 13, 14]. However converting these proposals in realistic hardware
predictors might require substantial amount of extra work and/or extra storage budgets.

In our proposal, we only use power of two’s as numbers of entries in storage tables.
Maintaining the logic complexity of the final prediction computation was also one of our
goals: the computation of the prediction is performed through a tree adder, but the width
of the counters is only 4 or 5 bits, and only 8 counters have to be summed, therefore the
prediction computation time remains limited.

On predictors using very long histories, the computation of the indexing functions may
also be an issue for the access time to the predictor. Therefore, we demonstrated that
simple indexing functions can be efficient. These index functions are described in Section
4.4.

3.3 “Independency” from initialization point of the predictor

In the most branch prediction studies, a “cold” branch predictor is considered at the
beginning of the simulation. All counters are therefore initialized to zero. However, branch
predictor behaviors might be (very) sensitive to the initial state of the predictor.

The CBP framework was stating that simulations were successively run independently.
Therefore the predictors presented at CBP featured the same initial state for all the trace
simulations. For the three static predictor configurations presented at CBP [13, 15, 14],
using an initial state with essentially setting counters to zero (or weakly taken) was the
natural choice. Other initialization choices (e.g. random initialization) lead to slightly
higher misprediction rate on these predictors, but remain in the same accuracy range.

The three remaining predictors [1, 11, 12] including the O-GEHL predictor automatically
modify their configurations (indexing functions, history length, etc) depending on statistics
monitored during simulation. Therefore their behavior may be very sensitive to the initial
state of the predictor (configuration, counter values, ...).

Experiments with random initialization of the predictor configuration and storage coun-
ters for the predictors in [11, 12] may lead to poor global accuracy. For both predictors,
the algorithm for self-configuration were designed assuming a precise initialization state of
the predictor, but transition to an alternate configuration (on a context switch or on a
program phase change) was not considered.

At all steps during this study, we checked that the O-GEHL predictor behavior is not
dramatically impaired by the initialization it may inherit from a previous application (for
instance after a context switch) through the following protocol: the simulations of the 20
traces are chained without resetting the predictor counters. Compared with assuming reset-
ting all the counters before simulating a new trace, the discrepancy in prediction accuracy
was always marginal (0.03 misp/KI for the final CBP 64Kbits O-GEHL predictor).

4 General principles of GEometric History Length branch prediction

4.1 Rationale

Since the first studies on branch correlation in 1991 [16, 8], it is well known that branch
outcomes are strongly correlated with the outcomes of previous branches. The use of mul-
tiple predictor components to generate a single prediction has been proposed in 1993 by

GENESIS OF THE O-GEHL BRANCH PREDICTOR

McFarling [17]. More recently, neural inspired branch predictors were introduced [2], pro-
viding a storage effective “meta’-prediction: meta-prediction is replaced by computation.

The GEometric History Length branch prediction approach leverages this previous
knowledge, and tries to exploit the following phenomenom: most branch correlation oc-
curs with recent branches, but some correlation occurs with very old branches.

4.2 General principle

The GEometric History Length (GEHL) branch predictor is illustrated on Figure 1.
The GEHL predictor features M distinct predictor tables Ti, 0 < ¢ < M indexed with
hash functions of the branch address and the global branch history. The predictor tables
store predictions as signed counters. To compute a prediction, a single counter C(i) is read
on each predictor table Ti. The prediction is computed as the sign of the sum S of the
M counters C(i), S = % + Yo<icar C(i) 2. The prediction is taken if S is positive and
not-taken if S is negative. -

Distinct history lengths are used for computing the index of the distinct tables. Table
TO is indexed using the branch address. The history lengths used in the indexing functions
for tables Ti, 1 < i < M are of the form L(i) = o*~! x L(1), i.e., the lengths L(i) form a
geometric series.

M tables T(j)

Sign= prediction

=)
—

Figure 1: The GEHL predictor
In this article, we only focus on 8-table GEHL predictors as this is the most storage

effective choice for a 64 Kbits storage budget. As an example,a = 2 and L(1) =2 leads
to the following series {0,2,4,8,16,32,64,128}. Remark that 5 tables are indexed using 16
history bits or less while correlation on a 128-bit history might be captured.

4.3 Updating the GEHL predictor

The GEHL predictor update policy is derived from the perceptron predictor update
policy [2]. The GEHL predictor is only updated on mispredictions or when the absolute
value of the computed sum S is smaller than a threshold 6. Saturated arithmetic is used.
More formally, the GEHL predictor is updated as follows, Out being the branch outcome:

if ((p 1=Out) or (5] < 0))
for each i in parallel
if Out then C(i) = C (i) + 1 else C(i) = C(i) — 1

1

2. For p-bit signed counters, predictions vary between —2P~! and 2P~! — 1 and are centered on — 3

ANDRE SEZNEC

4.4 Cost effective index functions

The O-GEHL predictor has been defined in order to capture correlation on very long
histories in the 100-200 bits range. In Section 6, we will consider that one of the O-GEHL
predictor tables is indexed using a 200-bit history, plus a 16-bit path information plus a 32-
bit branch address. Fully hashing these 248 bits to compute a 11-bit index would normally
require using 23 bit entry functions for computing each index bit (for instance a 23-entry
exclusive-OR tree). The delay for computing such functions can be seen as prohibitive.

The index functions used for the simulations presented in this paper can be computed
using single three-entry exclusive-OR gate for computing each index bit. We choose to
ignore some of the address bits and some of the history bits as follows. For computing the
hash function to index Table Ti, 2" being the number of entries on T1i, we regularly pick 3n
bits in the vector of bits composed with the least significant bits of the branch address, the
L(i) branch history bits and the min(L(i),16) path history bits. Then we simply hash this
3n bit vector in a n-bit index through a single stage of 3-entry exclusive-OR gates.

Experiments showed very limited accuracy degradation when using these simple hash
functions instead of full hash of the branch address, the branch history and path history.
Using a single stage of 2-entry exclusive-OR gates (i.e. picking only 2n bits) would result
in 2-3 % global increase of the number of mispredictions on a 64Kbits predictor while using
no exclusive-OR (i.e., picking n bits and directly using it as an index) would result in 10-11
% average increase of the number of mispredictions.

All experiments illustrated in this paper were realized using these simple indexing func-
tions. See function INDEX in the companion code implementation of the predictor.

4.5 A first performance evaluation

The perceptron predictor study [2] was using 8-bit counters and was using threshold 6=
1441.93*N, N being the number of weights. Therefore using 8 1-Kentries 8-bit tables and
29 as threshold was a natural choice. The accuracy of this first (naive) GEHL predictor for
L(1)= 3 and L(7)= 80 is illustrated in Table 2. While it outperforms both the Path Based
Neural Predictor [18] and 2bcgskew [6] that were often previously considered as state-of-the-
art predictors, its average accuracy (3.50 misp/KI) would not have allowed it to qualify as
a finalist at CBP.

FP-1 | FP-2 | FP-3 | FP-4 | FP-5 INT-1 INT-2 INT-3 INT-4 INT-5
1.650 | 0.966 | 0.433 | 0.106 | 0.184 1.972 7.159 8.621 1.330 0.339
MM-1 | MM-2 | MM-3 | MM-4 | MM-5 || SERV-1 | SERV-2 | SERV-3 | SERV-4 | SERV-5
7.353 | 9.201 | 0.395 | 1.438 | 5.643 3.774 3.975 6.019 5.158 4.331

Table 2: Accuracy (misp/KI) of an initial (naive) 64Kbits GEHL predictor: 8-bit counters,

0 =29

GENESIS OF THE O-GEHL BRANCH PREDICTOR

5 Step by step to the O-GEHL predictor

In this section, we present the various optimizations we made to derive the O-GEHL
predictor presented at CBP from the naive GEHL predictor presented in the previous
section.

5.1 Using 4-bit counters

On the perceptron predictor family, using 8-bit counters to represent the weights was
shown to be a good tradeoff. However, such a width is a waste of resource on the GEHL
predictor. Using 4-bit counters allows to use twice as many entries per predictor table for
the same storage budget. However using the initial perceptron update threshold would lead
to very poor accuracy. We heuristically found that using the number of tables (i.e., 8) as
the update threshold is a good tradeoff.

Table 3 illustrates the accuracy benefit of using 4-bit counters (L(1)=3 and L(7)=80).
Average misprediction rate is 3.11 misp/KI. The benefit of halving the counter width, but
using twice as many counters is particularly important on the server workloads which exhibit
very large footprints.

FP-1 | FP-2 | FP-3 | FP-4 | FP-5 INT-1 INT-2 INT-3 INT-4 INT-5
1.627 | 0.909 | 0.435 | 0.104 | 0.182 1.893 6.303 9.196 1.073 0.348
MM-1 | MM-2 | MM-3 | MM-4 | MM-5 || SERV-1 | SERV-2 | SERV-3 | SERV-4 | SERV-5
7773 | 9.532 | 0.674 | 1.336 | 4.866 2.224 2.269 4.565 3.824 3.203

Table 3: Accuracy (misp/KI) of a 64Kbits GEHL predictor: 4-bit counters, 6 = 8

5.2 Dynamic threshold fitting for the GEHL predictor

Experiments showed that the optimal threshold 6 for the GEHL predictor varies for the
different applications. For some of the benchmarks and using a 8-table GEHL predictor, the
difference between using § = 5 or § = 14 as a threshold results in 0.5 misp/KI variations.
However, we remarked that for most benchmarks there is a strong correlation between the
quality of a threshold 6 and the relative ratio of the number of updates on mispredictions
NUpss and the number of updates on correct predictions NUcorrect: €xperimentally, in
most cases , for a given benchmark, when NU,,;ss and NU¢orrect are in the same range, 6
is among the best possible thresholds for the benchmark.

Therefore, we implement a simple algorithm that adjusts the update threshold while
maintaining the ratio % close to 1. This algorithm is based on a single saturated

counter TC (for threshold counter).
if ((p '=0ut) {TC= TC + 1; if (TC is saturated positive){§ = 6 + 1; TC=0;} }
if ((p == Out) & (|S| < 6)) {TC=TC-1; if (TC is saturated negative){ = 6—1;
TC=0;}}

Using a 7-bit counter for TC was found to be a good tradeoff.
Table 4 illustrates the misprediction rate when using the threshold fitting algorithm
(L(1)=3 and L(7)=80). Average misprediction rate is 3.05 misp/KI. The benefits of this

ANDRE SEZNEC

dynamic threshold fitting for smaller or larger predictors and for different counter widths
are further analyzed in [19].

FP-1 | FP-2 | FP-3 | FP-4 | FP-5 INT-1 INT-2 INT-3 INT-4 INT-5
1.599 | 0.919 | 0.435 | 0.101 | 0.304 1.445 6.250 9.328 1.032 0.348
MM-1 | MM-2 | MM-3 | MM-4 | MM-5 || SERV-1 | SERV-2 | SERV-3 | SERV-4 | SERV-5
7.691 | 9.427 | 0.649 | 1.348 | 4.840 2.041 2.029 4.532 3.661 3.058

Table 4: Accuracy (misp/KI) of a 64Kbits GEHL predictor: 4-bit counters, dynamic thresh-
old fitting

5.3 Dynamic history length fitting for the (O)-GEHL predictor

Juan et al [4] proposed to continuously adapt the branch history length during execution
for global history branch predictors. The (O)-GEHL predictor offers an opportunity to
implement such an adaptative history length fitting. We consider a predictor featuring 8
tables, but using 11 history lengths L(j) forming a geometric series. For three predictor
tables, Tables T2, T4 and T6, two possible history lengths are used: Table T2 is indexed
using either L(2) or L(8), Table T4 is indexed using either L(4) or L(9), Table T6 is indexed
using either L(6) or L(10).

The algorithm we propose to select the history length for indexing the predictor makes a
rough estimation of the aliasing ratio encountered on Table T7, i.e., the predictor component
using the longer history apart L(8), L(9) and L(10). Intuitively, if Table T7 experiences a
high degree of aliasing then short histories should be used on Tables 2, 4 and 6, if Table T7
encounters a low degree of aliasing then long histories should be used.

To compute this estimation of the aliasing ratio, we add a tag bit to some entries of
Table T7 and we use a single saturating 9-bit counter AC (for aliasing counter). On a
predictor update, the tag bit records one bit of the address of the branch and the following
computation is performed:

if ((pl=out) & (15| < 0)){

if (PC & 1) == Tag[indexT[7]]) AC++; else AC= AC - 4;
if (AC == SaturatedPositive) Use Long histories

if (AC == SatutedNegative) Use Short Histories
Tag[indexT[7]] = (PC & 1);}

When the last update of the corresponding entry in Table T7 has been been performed
using the same (branch, history) pair, AC is incremented. When the last update has
been performed by another (branch, history) pair, AC is incremented on false hits and
decremented by 4 on misses.

In average, AC will stay positive if the ratio of conflicting updates on Table T7 by
distinct branches remains below 40 %.

Using a 9-bit counter and flipping from short to long histories and vice-versa only on
saturated values guarantees that such flippings are very rare.

GENESIS OF THE O-GEHL BRANCH PREDICTOR

Remark Associating a tag bit per entry in predictor table T7 is not needed. For instance
one can associated only a tag bit to one out of N entries and ignore the other entries in the
algorithm to update the AC counter. For the CBP challenge predictor, we use only
1 K tag bits for a 2 Kentries Table T7.

Fitting in a 64 Kbits storage budget The dynamic history length fitting presented
above requires extra storage space in addition of the predictor tables. A O-GEHL predictor
featuring 8 tables would normally lead to 8 2K 4-bit counters tables and a 1K 1-bit tag table
associated with Table T'7, i.e. a total of 65 Kbits. For fitting in the 64Kbits storage budget
of CBP, Table T1 uses only 1K counters, thus reducing the storage budget to 61 Kbits.
Experiments showed that using 5-bit counters on the tables using short history is slightly
beneficial (tables T0 and T1). Therefore while respecting the storage budget constraints,
the predictor submitted to the CBP mixes 5-bit counters and 4-bit counters.

Impact of adaptative history length fitting On the CBP benchmarks, using adapta-
tive history length fitting on the O-GEHL predictor reduces by more than 5 % in average
the number of mispredictions (i.e. 2.89 misp/KI) instead of using a single history length
per predictor table as illustrated in Table 5 for L(1)=3 and L(10)=190.

FP-1 | FP-2 | FP-3 | FP-4 | FP-5 INT-1 INT-2 INT-3 INT-4 INT-5
1.411 | 0.904 | 0.356 | 0.111 | 0.071 0.678 5.854 8.968 1.007 0.336
MM-1 | MM-2 | MM-3 | MM-4 | MM-5 || SERV-1 | SERV-2 | SERV-3 | SERV-4 | SERV-5
7.495 | 9.154 | 0.140 | 1.361 | 4.637 2.088 2.065 4.542 3.632 3.033

Table 5: 4-bit counters, dynamic threshold fitting, dynamic history length fitting

5.4 Last optimization: Information for indexing a global history branch predic-
tor

For computing the indexes for global history predictors, most studies consider either
hashing conditional branch history with the branch address or hashing path history with
the branch address. These solutions cause different paths to appear as equal even before
computing the effective index in the predictor tables. The impact of this phenomenon
on predictor accuracy is important when using short history. On the GEHL predictor, it
impairs the accuracy of the predictions provided by the tables indexed with short histories.

In order to limit this phenomenon on the O-GEHL predictor, we include the non-
conditional branches in the branch history ghist (inserting a taken bit) and we also use
a path history, phist consisting of 1 address bit per branch. Since confusion on paths de-
creases when the history length increases, we use a maximum path history length of 16 on
the O-GEHL predictor submitted to CBP.

As illustrated in Table 7, this last optimization brings a 2-3 % decrease in misprediction
numbers, but this decrease is not uniform among applications.

6 Performances of the CBP O-GEHL predictor

The characteristics of the submitted O-GEHL predictor are summarized in Table 6.
Using 200 as L(10) the maximum history length and 3 as L(1) is one of the best tradeoffs

ANDRE SEZNEC

[Table [To | T | T2 | T3 | T4 [T5 | T6 | T7 |
short history || L(0)=0 | L(1)=3 | L(2)=5 | L(3)=8 | L(#)=12 | L(5)=19 | L(6)=31 | L(7)=49
long history - - L(8)=79 - L(9)=125 - L(10)=200 -
counter width) 5 5 4 4 4 4 4 4
tag bit - - - - - - - 0.5
entries 2K 1K 2K 2K 2K 2K 2K 2K
budget (bits) 10K 5K 8K 8K 8K 8K 8K 8K +1K

Table 6: Characteristics of the O-GEHL predictor submitted to the CBP: a total of 64Kbits

on the set of the benchmark traces. However using any value in the interval 125-300 for
L(10) and any value in the interval 2-6 for L(1) brings very similar simulation results, i.e.
the total number of mispredictions for these pairs of values are not exceeding the presented
results by more than 4%.

The simulation results obtained with the O-GEHL predictor are summarized in Table 7.

FP-1 | FP-2 | FP-3 | FP-4 | FP-5 INT-1 INT-2 INT-3 INT-4 INT-5
1.408 | 0.906 | 0.413 | 0.181 | 0.041 0.694 5.519 8.998 0.940 0.343
MM-1 | MM-2 | MM-3 | MM-4 | MM-5 || SERV-1 | SERV-2 | SERV-3 | SERV-4 | SERV-5
7.218 | 9.019 | 0.229 | 1.358 | 4.427 1.999 1.912 4.422 3.407 2.956

Table 7: Accuracy of the 64Kbits O-GEHL predictor (misp/KI)

7 Related works and conclusion

The use of multiple global history lengths in a single branch predictor was initially
introduced in [17], then it was refined by Evers et al. [20] and further appeared in many
proposals. By using several short history components, the O-GEHL predictor suffers from
very limited aliasing impact on short histories.

As neural inspired predictors [21, 2], the O-GEHL predictor does not use storage based
metapredictors, but computes the prediction through an adder tree. This adder tree does
not “waste” storage space for meta prediction. As the perceptron predictor, the O-GEHL
predictor also uses a specific partial update policy considering a threshold. We improved
this update policy through proposing dynamic threshold fitting.

The O-GEHL predictor implements dynamic history length fitting [4] and can adapt its
behavior to each application.

The main contribution of the O-GEHL predictor over previously proposed predictors
is its ability to efficiently exploit very long history. Due to the use of geometric history
lengths associated with dynamic history length fitting, the O-GEHL predictor is able to
achieve high accuracy on a wide range of applications. For some applications, the number
of different (branch, history) pairs explodes when the history length increases. On these
applications, the O-GEHL predictor achieves high accuracy because 5 out of 8 predictor
tables are using history lengths shorter than 12. On other applications, correlation exists

10

GENESIS OF THE O-GEHL BRANCH PREDICTOR

with very old branches. The O-GEHL predictor is able to capture this correlation since
some of its tables are indexed using history lengths in the 100-200 bits range.

This article only focuses on the design of a 64Kbits O-GEHL predictor. However the

design space of cost-effective O-GEHL predictors is very large. For instance, depending
on implementation tradeoffs, one can use from 4 to 12 tables, one can use 4-bit,5-bit and
even 3-bit counters. High level of accuracy can be obtained for a broad spectrum of maxi-
mum history lengths, for instance any length in the 125-300 range for a 64 Kbits O-GEHL
predictor. These tradeoffs are further analyzed in [19].

References

[1]

2]

[10]

[11]

A. Seznec, “The o-gehl branch predictor,” in The Ist JILP Championship Branch
Prediction Competition (CBP-1), 2004.

i

D. Jiménez and C. Lin, “Dynamic branch prediction with perceptrons,” in Proceedings
of the Seventh International Symposium on High Perform ance Computer Architecture,
2001.

D. Jiménez and C. Lin, “Neural methods for dynamic branch prediction,” ACM Trans-
actions on Computer Systems, November 2002.

T. Juan, S. Sanjeevan, and J. J. Navarro, “A third level of adaptivity for branch
prediction,” in Proceedings of the 25th Annual International Symposium on Computer
Architecture, June 30 1998.

D. Jiménez, “Reconsidering complex branch predictors,” in Proceedings of the 9th In-
ternational Symposium on High Perform ance Computer Architecture, 2003.

A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides, “Design tradeoffs for the ev8 branch
predictor,” in Proceedings of the 29th Annual International Symposium on Computer
Architecture, 2002.

N. Gloy, C. Young, J. B. Chen, and M. D. Smith, “An analysis of dynamic branch
prediction schemes on system workloads,” in ISCA ’96: Proceedings of the 23rd annual
international symposium on Computer architecture, pp. 12-21, ACM Press, 1996.

T.-Y. Yeh and Y. Patt, “Two-level adaptive branch prediction,” in Proceedings of the
24th International Symposium on Microarchitecture, Nov. 1991.

R. Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, vol. 19, no. 2, pp. 24-36,
1999.

A. Seznec and A. Fraboulet, “Effective ahead pipelining of the instruction addres gen-
erator,” in Proceedings of the 30th Annual International Symposium on Computer Ar-
chitecture, June 2003.

D. A. Jiménez, “Idealized piecewise linear branch prediction,” in The 1st JILP Cham-
pionship Branch Prediction Competition (CBP-1), 2004.

11

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

ANDRE SEZNEC

H. Gao and H. Zhou, “Adaptive information processing: An effective way to improve
perceptron predictors,” in The 1st JILP Championship Branch Prediction Competition
(CBP-1), 2004.

G. Loh, “The frankenpredictor,” in The 1st JILP Championship Branch Prediction
Competition (CBP-1), 2004.

V. Desmet, H. Vandierendonck, and K. D. Bosschere, “A 2bcgskew predictor fused
by a redundant history skewed perceptron predictor,” in The I1st JILP Championship
Branch Prediction Competition (CBP-1), 2004.

P. Michaud, “A ppm-like, tag-based predictor,” in The 1st JILP Championship Branch
Prediction Competition (CBP-1), 2004.

S. Pan, K. So, and J. Rahmeh, “Improving the accuracy of dynamic branch predic-
tion using branch correlation,” in Proceedings of the 5th International Conference on
Architectural Support for Programming Languages and Operating Systems, 1992.

S. McFarling, “Combining branch predictors,” tech. rep., DEC, 1993.

D. Jiménez, “Fast path-based neural branch prediction,” in Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture, dec 2003.

A. Seznec, “Analysis of the o-gehl branch predictor,” in Proceedings of the 32nd Annual
International Symposium on Computer Architecture, june 2005.

M. Evers, P. Chang, and Y. Patt, “Using hybrid branch predictors to improve branch
prediction accuracy in the presence of context switches,” in 23"¢ Annual International
Symposium on Computer Architecture, pp. 3—11, 1996.

L. N. Vintan and M. Iridon, “Towards a high performance neural branch predictor,”
in IJCNN’99. International Joint Conference on Neural Networks. Proceedings., 1999.

12

