Journal of Instruction-Level Parallelism 9 (2007) 1-11 Submitted 4/07; published 5/07

The Idealistic GTL Predictor

André Seznec SEZNEC@IRISA.FR
IRISA/INRIA/HIPEAC
Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract

Over the few last years, substantial progress has been made on the accuracy of storage
limited conditional branch predictors. In the past years, we proposed the geometric history
length predictors, GEHL [10] and TAGE [13]. These predictors rely on several predictor
tables indexed through independent functions of the global branch/path history and branch
address. The set of used global history lengths forms a geometric series, i.e., L(j) =
ad~IL(1).

GEHL and TAGE differ through their final prediction computation functions. GEHL
uses a tree adder as prediction computation function. TAGE uses (partial) tag match. For
realistic storage budgets (e.g., 64Kbits or 256Kbits), TAGE was shown to be more accurate
than GEHL.

In this study, we first look for the accuracy limits of the GEHL and TAGE predictors
on the set of distributed traces for the 2nd Championship Branch Prediction (CBP-2).
We point out that, for quasi-infinite storage budget, the TAGE predictor achieves a mis-
prediction rate only 9% lower than a 256 Kbits TAGE predictor (3.049 misp/KI vs 3.352
misp/KI). On the other hand, a quasi-infinite storage budget instead of 256 Kbits allows
to reduce the misprediction by about 23% (from 3.663 misp/KI to 2.842 misp/KI) on
the GEHL predictor. For quasi-infinite storage budgets and very large number of predic-
tor components, the GEHL predictor is more accurate than the TAGE predictor on most
benchmarks.

However there exists branches for which the TAGE predictor is more accurate than the
GEHL predictor. Moreover our study also indicates that on a few branchs, a loop predictor
can capture part of the mispredictions that are not captured by GEHL or TAGE.

Therefore we propose the GTL predictor as an idealistic predictor at CBP-2. The GTL
predictor combines a GEHL predictor, a TAGE predictor and a loop predictor. The GTL
predictor won the idealistic track at CBP-2.

1. Introduction

Over the few last years, substantial progress has been made on the accuracy of storage
limited conditional branch predictors [12, 3, 4, 10, 13].

In the two past years, we proposed the geometric history length predictors, GEHL [10]
and TAGE [13]. To the best of our knowledge, these two predictors were the most stor-
age effective branch predictors proposed before the 2nd Championship Branch Prediction.
GEHL and TAGE differ through their final prediction computation functions. GEHL uses
a tree adder as prediction computation function. TAGE uses (partial) tag match. These
two predictors are among the most storage effective conditional branch predictors, TAGE
being more efficient than GEHL for limited storage budgets. Both predictors rely on several
predictor tables indexed through independent functions of the global branch/path history
and branch address. The set of used global history lengths forms a geometric series, i.e.,

SEZNEC

L(j) = o/ 7'L(1). This allows to efficiently capture correlation on recent branch outcomes
as well as on very old branches.

GEHL and TAGE are therefore natural candidates to serve as basis for the design of an
idealistic branch predictor.

The first objective of this study was to explore the limits of accuracy that can be achieved
by the GEHL predictor and the TAGE predictor if one uses a quasi-infinite storage budget.
On the set of distibuted traces for CBP-2, the accuracy limit of the TAGE predictor is found
to be quite disappointing: only a 9 % reduction in misprediction numbers was achieved
compared with a 256 Kbits TAGE predictor. On the other hand, using a huge number of
tables on the GEHL predictor is more effective since it allows to reduce the misprediction
rate of 256 Kbits GEHL predictor by approximately 23 %.

The second objective of the study was to provide an idealistic limit branch predictor
based on “conventional” branch predictors such as GEHL and TAGE. Through combining
GEHL and TAGE, we were able to propose an idealistic predictor outperforming both of
them. Adding a loop predictor was found to allow to slightly reduce the misprediction rate.
Therefore GTL predictor is an hybrid predictor using a very large GEHL predictor as its
main component. GEHL is combined with a TAGE predictor and a loop predictor.

The remainder of the paper is organized as follows. Section 3 briefly recalls the prin-
ciples of the geometric history length predictors GEHL and TAGE. Section 4 presents the
respective accuracy limits we found for quasi-unlimited storage budgets GEHL and TAGE
predictors. Section 5 presents the structure of the GTL predictor and the configurations
used at CBP-2. Section 6 presents the accuracy limits we found for the GTL predictor and
its components. Section 7 concludes this study.

2. Experimental Framework
2.1. Set of Traces

The simulation results presented in this paper were obtained on the set of distributed traces
for CBP-2. This set of traces was collected on the SPEC suite. In the table of simulation
results, we refer to each trace by its SPEC number.

2.2. Information for Indexing the Branch Ppredictor
2.2.1. Path and Branch History

In order to avoid misprediction due to path aliasing, on the presented limit predictors, the
predictor components are indexed using a hash function of the program counter, the global
history combining branch direction and path (7 address bits). Non-conditional branches
are included in these histories.

2.2.2. Discriminating Kernel and User Branches

Kernel and user codes appear in the traces. In practice in the traces, we were able to
discrimate user code from kernal through the address range. In order to avoid history
pollution by kernel code, on jumps in kernel code, we save the global branch history and
path histories and restore them when jumping back in user code. Such use of two different

THE IDEALISTIC GTL PREDICTOR

histories for kernel and user branches was also independently proposed in [7]. In practice,
using two global histories resulted in a reduction of 2-3 % of the overall misprediction
number.

3. The Geometric History Length Predictors
3.1. Common Features on TAGE and GEHL

The GEHL predictor [10] and the TAGE predictor [13] rely on several predictor tables
indexed through independent functions of the global branch/path history and branch ad-
dress. On both predictors, the set of used global history lengths forms a geometric series,
i.e, L(i) = (int)(a'~! * L(1) + 0.5); table TO is indexed with the PC.

The use of a geometric series allows to use very long branch histories in the hundred
of bits range for realistic size predictors (e.g., 64Kbits or 256Kbits). As pointed out in
[10, 13], the exact shape of the series is not important. The important factor is to be able
to catch correlation with very old branchs while still using most of the storage budget on
short histories.

The TAGE predictor and the GEHL predictor essentially differ through their final pre-
diction computation function.

3.2. The GEHL Branch Predictor [10]

M tables T (i)

Sign= prediction

P —

/

Figure 1: The GEHL predictor.

3.2.1. General Principle

The GEometric History Length (GEHL) branch predictor is illustrated on Figure 1. It
features M distinct predictor tables Ti, 0 < 4 < M indexed with hash functions of the
branch address and the global branch history. The predictor tables store predictions as

SEZNEC

signed counters. To compute a prediction, a single counter C(i) is read on each predictor
table Ti. The prediction is computed as the sign of the sum S of the M counters C(i),
S =244 o<i<m C(9) !, The prediction is taken if S is positive and not-taken if S is
negative.

Distinct history lengths are used for computing the index of the distinct tables. Table
TO is indexed using the branch address. The history lengths used in the indexing functions
for tables Ti, 1 <4 < M form a geometric series.

3.2.2. Updating the GEHL Predictor

The GEHL predictor update policy is derived from the perceptron predictor update policy
[5]. The GEHL predictor is only updated on mispredictions or when the absolute value of
the computed sum S is smaller than a threshold 6. Saturated arithmetic is used. More
formally, the GEHL predictor is updated as follows, Qut being the branch outcome:

if ((p !=Out) or (IS] < 0))
for each i in parallel
if Out then C(i) = C (i) + 1 else C(i) = C(i) — 1

3.2.3. Dynamic Threshold Fitting for the GEHL Predictor

Experiments showed that the optimal threshold 6§ for the GEHL predictor varies for the
different applications. In [10], dynamic threshold fitting was introduced to accomodate
this difficulty. For most benchmarks there is a strong correlation between the quality of a
threshold @ and the relative ratio of the number of updates on mispredictions NU,,;ss and
the number of updates on correct predictions NU,pprect: €xperimentally, in most cases , for
a given benchmark, when NU,,;ss and NU_yrect are in the same range, 6 is among the best
possible thresholds for the benchmark. This property was verified for the CBP-2 traces as
well as for the CBP-1 traces.

A simple algorithm allows to adjust the update threshold while maintaining the ratio
% close to 1. This algorithm is based on a single saturated counter TC (for threshold
counter).

if ((p '=0ut) {TC= TC + 1; if (@ is saturated positive){0 = 6 + 1; TC=0;} }
if ((p == Out) & (|S]| < 0)) {TC=TC - 1; if (0 is saturated negative){d = 0 —1,
TC=0;}}

Using a 7-bit counter for TC was found to be a good tradeoff.

3.3. Counter Width

For storage limited GEHL predictors, one must trade the counter width with the number
of entries. For a quasi-infinite storage budget GEHL predictor, we found that using 7 to 9
bits counters results in the same accuracy level. 8-bit counters are used in this paper.

1

1. For p-bit signed counters, predictions vary between —2°~* and 2P~ — 1 and are centered on — 3

THE IDEALISTIC GTL PREDICTOR

3.4. The TAGE Predictor [13]

The TAGE predictor [13] is derived from Michaud’s PPM-like tag-based branch predictor
[8]. The TAGE predictor is illustrated on Figure 2. The TAGE predictor features a base
predictor T0 in charge of providing a basic prediction and a set of (partially) tagged predictor
components Ti. These tagged predictor components Ti, 1 < ¢ < M are indexed using
different history lengths that form a geometric series.

pc h[O:L(1)] pc | h[O:L(2)] pc h[O:L(3)] pc h[O:L(4)]

Gah (e () (&) (Eh wH @Ey (e

pc
TO T1 T2 T3 T4
o o o o o
-gé predi tag iu predi tag iu predi tag iu predi tag iu
: RN IS IR
ED— E— ED— ED—

prediction

Figure 2: A 5-component TAGE predictor.

When the TAGE predictor is used as stand-alone the base predictor TO is typically a
bimodal PC indexed predictor [13].

An entry in a tagged component consists in a signed counter ctr which sign provides
the prediction, a (partial) tag and an unsigned useful counter u. In this paper, u is a 2-bit
counter and ctr is a 3-bit counter when TAGE is used as a standalone predictor and a 5-bit
counter when TAGE is used as part of the GTL predictor.

3.4.1. Prediction Computation on TAGE

At prediction time, the base predictor and the tagged components are accessed simultane-
ously. The base predictor provides a default prediction. The tagged components provide a
prediction only on a tag match.

In the general case, the overall prediction is provided by the hitting tagged predictor
component that uses the longest history, or in case of no matching tagged predictor com-
ponent, the default prediction is used.

SEZNEC

However,on several applications, newly allocated entries provide poor prediction accu-
racy. We remarked that on several applications it is more efficient to use the alternate
prediction rather than using the prediction of a newly allocated entry. This property was
found to be essentially global to the application and can be dynamically monitored through
a single 4-bit counter (USE_ALT_-ON_NA in the simulator).

Moreover, no special memorization is needed for recording the “newly allocated entry”:
we consider that an entry is newly allocated if its prediction counter is weak (i.e. equal to 0
or -1). This approximation was found to provide results equivalent to effectively recording
the “newly allocated entry” information.

Therefore the prediction computation algorithm is as follows:

1. Find the longest matching component

2. if (the prediction counter is not weak or USE_ALT_ON_NA is negative) then the
prediction counter sign provides the prediction else the prediction is the alternate
prediction.

3.4.2. Updating the TAGE Predictor

We present here the various scenarios of the update policy that we implement on the TAGE
predictor.

Updating the Useful Counter v The useful counter u of the provider component is
updated when the alternate prediction altpred is different from the final prediction pred.

Updating the Prediction Counters The prediction counter of the provider component
is updated. For large predictors also updating the alternate prediction when the useful
counter of the provider component is null results in a small accuracy benefit.

Allocating Tagged Entries on Mispredictions For a 64 Kbits 8-component predictor
[13] or 256 Kbits TAGE predictors [11], allocating a single entry is the best tradeoff. For
the very large predictor considered here, allocating all the available entries was found to be
more effective 2: this reduces the cold start mispredictions.

The allocation process of a new entry on a misprediction is described below.

The M-i u; counters are read from predictor components Tj, i < j < M. Then we apply
the following rules.

(A) Avoiding ping-pong phenomenon: in the presented predictor, the search for free entries
begins on table Tb, with b=i+1 with probability 1/2, b=i+2, with probability 1/4
and b=i+3 with probability 1/4.

(B) For all components Tk, k > b, if uy = 0 then the entry is allocated.

(C) Initializing the allocated entry: An allocated entry is initialized with the prediction
counter set to weak correct. Counter w is initialized to 0 (i.e., strong not useful).

2. An entry is considered as free if its useful counter » is null.

THE IDEALISTIC GTL PREDICTOR

4. Accuracy Limits of the Geometric History Length Predictors

In this section, we present the accuracies of the GEHL and TAGE predictors using quasi-
infinite storage budgets. These accuracy results are compared with the respective accuracies
of 256 Kbits TAGE and GEHL predictors.

The 13-components 256 Kbits TAGE configuration is described in [11] The 256 Kbits
GEHL configuration features 12 4Kentries tables. Counters of tables TO to T3 are 6-bit
wide. Counters of tables T4 to T11 are 5-bit wide. Maximum history length is 500.

For TAGE, we illustrate an idealistic predictor with a total of 18 components and max-
imum history length of 2000. For GEHL, we illustrate an idealistic predictor with a total
of 97 components and maximum history length of 2000.

Simulation results are displayed per application in Table 1. The idealistic TAGE pre-
dictor achieves 3.049 misp/KI against 3.352 misp/KI for a 256Kbits TAGE predictor. The
idealistic GEHL predictor achieves 2.842 misp/KI against 3.663 misp/KI on a 256Kbits
GEHL predictor.

The simulation results shows that the TAGE predictor is very storage effective: a 256K
bits TAGE predictor is within 10 % of the misprediction rate of a quasi-infinite TAGE pre-
dictor. Through this analysis, we also discovered that increasing the number of components
in TAGE over 15-20 leads to a decrease of accuracy.

A contrario, the idealistic GEHL predictor achieves better accuracy than the idealistic
TAGE predictor while the 256Kbits GEHL predictor is only achieving accuracy in the
range of the one of a 64K TAGE predictor. This is achieved through a very high number
of components®.

One can also note that on a few benchmarks the idealistic TAGE slightly outperforms
the idealistic GEHL predictor. This indicates that there exists some correlations that are
captured by the TAGE predictor that are not captured by the GEHL predictor.

164 175 176 181 186 197 201 202 205 209
ideal GEHL | 10.166 | 7.919 | 2.490 | 7.663 | 1.630 | 3.969 | 5.480 | 0.321 | 0.241 | 2.234
256K GEHL || 10.298 | 9.250 | 4.503 | 10.405 | 2.595 | 6.046 | 6.200 | 0.467 | 0.525 | 2.362
ideal TAGE | 10.749 | 8.467 | 2.630 | 7.846 | 2.056 | 4.342 | 5.787 | 0.321 | 0.254 | 2.372
256K TAGE || 10.781 | 8.990 | 3.224 | 9.006 | 2.415 | 5.141 | 5.853 | 0.368 | 0.349 | 2.345

213 222 227 228 252 253 254 255 256 300
ideal GEHL 1.043 | 1.035 | 0.291 | 0.485 | 0.179 | 0.183 | 1.257 | 0.108 | 0.044 | 10.113
256K GEHL || 1.172 | 1.157 | 0.588 | 0.721 | 0.223 | 0.378 | 1.767 | 0.178 | 0.043 | 14.386
ideal TAGE 1.052 | 1.052 | 0.284 | 0.456 | 0.202 | 0.163 | 1.418 | 0.088 | 0.040 | 11.414
256K TAGE || 1.119 | 1.114 | 0.397 | 0.590 | 0.218 | 0.325 | 1.547 | 0.141 | 0.041 | 13.269

Table 1: Per benchmark accuracy in misp/KI.

3. Using 257 components resulted in a marginal better accuracy, but simulation time was close to 5 hours.

SEZNEC

5. The GTL Predictor

In this section, we present the idealistic predictor GTL predictor. The GTL predictor
is illustrated on Figure 3. The GTL predictor features a GEHL predictor [10], a TAGE
predictor [13] and a loop predictor as components.

Q
o
g
o GEHL
3
Q
E
E 3
= H £ x
= TAGE £
% prediction
> L
+
8 Meta
= | egskew
PC — Loop
pred.
high confidence ?

Figure 3: The GTL predictor.

The GEHL predictor is the main predictor, since it is the most accurate component
as was shown in the previous section. The GEHL predictor is used as the base predictor
component in TAGE, i.e. when there is no partial hit on any of the TAGE components, the
TAGE prediction is the GEHL prediction. Moreover, the GEHL prediction is used as part of
the indices for the tagged components of the TAGE predictor as well as for the components
of the metapredictor. Using a (partial) prediction as part of the index of another table was
already used on the YAGS predictor [1] and the bimode predictor [6].

GTL uses a metapredictor to discriminate between the TAGE and the GEHL predic-
tions. We use a metapredictor derived from the skewed predictor [9].

Finally, the prediction features a loop predictor. The loop predictor provides the predic-
tion when a loop has been successively executed with 8 times the same number of iterations
as in [2].

5.1. The Loop Predictor

The loop predictor simply tries to identify regular loops with constant number of iterations.

As in [2], the loop predictor provides the global prediction when the loop has succesively
been executed 8 times with the same number of iterations. The loop predictor used in the
submission features 512K entries.

5.2. GEHL Configuration in the GTL Predictor

We leveraged the different degrees of freedom in the design of the GEHL predictor to get the
best predictor that we could simulate with a memory footprint in the range of 768 Mbytes.

THE IDEALISTIC GTL PREDICTOR

Experiments showed that, for a GEHL simulator with a memory footprint in the range
of 768 Mbytes, using 97 tables provides a high level of accuracy * Experiments showed that
using 8-bit counters leads to good prediction accuracy.

We also slightly improve the update policy by incrementing/decrementing twice the
counters when they are between -8 and 7. This results in a gain of 0.009 misp/KI on the
overall GTL predictor.

5.3. TAGE Configuration in the GTL Predictor

We leveraged the different degrees of freedom in the design of the TAGE predictor to get
the best predictor that we could simulate while maintaining the total memory footprint of
the simulator smaller than 1 gigabyte.

The TAGE component in the submitted predictor feature a total of 19 tagged compo-
nents, the GEHL predictor is used as the base predictor. Each table feature 1M entries.
The tag width is 16 bits on the tagged tables.

5.4. Selecting between TAGE and GEHL Predictions

As a meta-predictor to discriminate between TAGE and GEHL predictors, we found that
a skewed predictor [9] works slightly better than a bimodal table (by 0.004 misp/KI). The
respective history lengths of the three tables are 0, 4 and 22. As for the TAGE predictor
component, the output of the GEHL predictor is used to index the meta-predictor.

For one benchmark, the GEHL+TAGE predictor exhibited a slightly higher mispredic-
tion rate than the GEHL predictor alone. Therefore to avoid this situation, we use a single
safety counter that monitors that GEHL+TAGE against GEHL alone.

5.4.1. Indexing the TAGE Predictor Component and the Metapredictor

The TAGE predictor is used to try to correct predictions of the GEHL predictor. Therefore
the output of the GEHL predictor is used as part of the indices of the TAGE predictor
components and the metapredictor.

5.4.2. History Lengths

Geometric length allows to use very long history lengths. Experiments illustrated in the
previous section showed that using 2,000 as the maximum history length for both TAGE and
GEHL predictors is a good choice, but that using respectively 400 for GEHL and 100,000
for TAGE is marginally better (by 0.014 misp/KI)S.

For the GEHL predictor, we force the use of distinct history lengths by enforcing the
property L(i) > L(i + 1) + 1.

5.5. Static Prediction

On the first occurence of a branch, a static prediction associated with the branch opcode
is used: this allows to reduce the overall misprediction rate by 0.005 misp/KI.

4. 257 would have been a marginally better choice but the simulation time was too long for CBP2 execution
time constraints.
5. 100,000 is 0.002 misp/KI better than 10,000

SEZNEC

6. Simulation Results

The average predictor accuracy of GTL is 2.717 misp/KI on the distributed set of traces.
Removing the loop predictor and the static prediction, i.e., GEHL+TAGE, one will still
obtain 2.774 misp/KI, the accuracy of the GEHL predictor component alone being 2.891
misp/KI. As already mentioned, a GEHL predictor alone using a 2,000 branch history length
achieves 2.842 misp/KI.

Results for the GTL and GEHL+TAGE (row G+T) are displayed per application in
Table 2. Results for GEHL predictor using a 2,000 branch history length are also displayed
as a reference. One can note that the benefit of loop prediction is marginal apart on 164.gzip
and to a less extent on 201.compress.

164 175 176 181 186 197 201 202 205 209

GTL 9.393 | 7.783 | 2.434 | 7.312 | 1.591 | 3.891 | 5.260 | 0.293 | 0.234 | 2.168
G+T 9.992 | 7.785 | 2.472 | 7.350 | 1.602 | 3.901 | 5.397 | 0.302 | 0.247 | 2.175
GEHL | 10.166 | 7.919 | 2.490 | 7.663 | 1.630 | 3.969 | 5.480 | 0.321 | 0.241 | 2.234
213 222 227 228 252 253 254 255 256 300

GTL 0.946 | 0.943 | 0.271 | 0.425 | 0.177 | 0.128 | 1.129 | 0.087 | 0.033 | 9.858
G+T 0.991 | 0.990 | 0.287 | 0.442 | 0.180 | 0.137 | 1.211 | 0.093 | 0.041 | 9.890
GEHL || 1.043 | 1.035 | 0.291 | 0.485 | 0.179 | 0.183 | 1.257 | 0.108 | 0.044 | 10.113

Table 2: Per benchmark accuracy in misp/KI.

7. Conclusion

The geometric history length predictors TAGE and GEHL represent the current state-of-
the-art of hardware implementable predictors.

In this study, we found that, at a a very large storage budget and for very large number
of components, the GEHL predictor outperforms the TAGE predictor. The accuracy of
TAGE reaches a plateau with medium number of components (in the range of 15-20) and
medium storage budget (around 64 Mbytes): a 256 Kbits 13-component TAGE predictor
exhibits only approximatelly 9% more mispredictions than the best no-storage limit TAGE
predictor we found. The GEHL predictor accuracy improves with the number of components
and using around 100 components for a limit GEHL predictor is effective.

We found that combining the GEHL predictor and the TAGE predictor allows to grab
(part of) the last pieces of predictability contained in global branch/path history. A loop
predictor can improve a little bit the prediction accuracy of the GEHL+TAGE predictor.
It can be remarked that, on the set of benchmarks for CBP2, the loop predictor has only
small return apart on 164.gzip. On the set of benchmarks for CBP-1, this return was found
to be even smaller. Apart the loop predictor, and despites our best efforts, we have not
found any way to integrate a local history predictor component bringing any benefit to the
GTL predictor.

We hope that the GTL predictor will serve as a predictor reference to a new generation
of researches to test and validate new branch prediction algorithms.

10

THE IDEALISTIC GTL PREDICTOR

Acknowledgements

This work was partially supported by an Intel research grant, an Intel research equipment
donation and by the European Commission in the context of the SARC integrated project
#27648 (FP6).

References

[1]

2]

[10]

[11]

[12]

[13]

A. N. Eden and T.N. Mudge. The YAGS branch predictor. In Proceedings of the 81st
Annual International Symposium on Microarchitecture, Dec 1998.

H. Gao and H. Zhou. Adaptive information processing: An effective way to improve per-
ceptron predictors. Journal of Instruction Level Parallelism (hitp://www.jilp.org/vol7),
April 2005.

D. Jiménez. Fast path-based neural branch prediction. In Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture, dec 2003.

D. Jiménez. Piecewise linear branch prediction. In Proceedings of the 82nd Annual
International Symposium on Computer Architecture, june 2005.

D. Jiménez and C. Lin. Dynamic branch prediction with perceptrons. In Proceedings
of the Seventh International Symposium on High Perform ance Computer Architecture,
2001.

C-C. Lee, I-C.K. Chen, and T.N. Mudge. The bi-mode branch predictor. In Proceedings
of the 30th Annual International Symposium on Microarchitecture, Dec 1997.

T. Li, L.K. John, A. Sivasubramaniam, N. Vijaykrishnan, and J. Rubio. Os-aware
branch prediction: Improving microprocessor control flow prediction for operating sys-
tems. IEEE Trans. Computers, 56(1):2-17, 2007.

P. Michaud. A ppm-like, tag-based predictor. Journal of Instruction Level Parallelism
(http://www.jilp.org/vol7), April 2005.

P. Michaud, A. Seznec, and R. Uhlig. Trading conflict and capacity aliasing in condi-
tional branch predictors. In Proceedings of the 24th Annual International Symposium
on Computer Architecture (ISCA-97), June 1997.

A. Seznec. Analysis of the o-gehl branch predictor. In Proceedings of the 32nd Annual
International Symposium on Computer Architecture, june 2005.

A. Seznec. The cbp-2 l-tage branch predictor. Journal of Instruction-Level Parallelism,
vol. 9, May 2007.

A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design tradeoffs for the ev8 branch
predictor. In Proceedings of the 29th Annual International Symposium on Computer
Architecture, 2002.

A. Seznec and P. Michaud. A case for (partially)-tagged geometric history length
predictors. Journal of Instruction Level Parallelism (http://www.jilp.org/vol7), April
2006.

11

