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Abstract

We explore the framework of permutation-bagedalues for assessing the performance of classi-
fiers. In this paper we study two simple permutation test® firkt test assess whether the classifier
has found a real class structure in the data; the correspgmdil distribution is estimated by per-
muting the labels in the data. This test has been used exédnén classification problems in
computational biology. The second test studies whethecltssifier is exploiting the dependency
between the features in classification; the corresponditigdistribution is estimated by permut-
ing the features within classes, inspired by restrictedoamization techniques traditionally used
in statistics. This new test can serve to identify desaripfeatures which can be valuable infor-
mation in improving the classifier performance. We studygtaperties of these tests and present
an extensive empirical evaluation on real and synthetia.datir analysis shows that studying the
classifier performance via permutation tests is effectiveparticular, the restricted permutation
test clearly reveals whether the classifier exploits therdgpendency between the features in the
data.

Keywords: classification, labeled data, permutation tests, resttichkndomization, significance
testing

1. Introduction

Building effective classification systems is a central task in data mining andimeakdarning.
Usually, a classification algorithm builds a model from a given set of datads in which the labels
are known, and later, the learned model is used to assign labels to nevoddta ppplications of
such classification setting abound in many fields, for instance, in text cetatjon, fraud detection,
optical character recognition, or medical diagnosis, to cite some.

For all these applications, a desired property of a good classifier is tiner md generalization
to new, unknown instances. The detection and characterization of stdlfistigaificant predictive
patterns is crucial for obtaining a good classification accuracy thatrajeres beyond the training
data. Unfortunately, it is very often the case that the number of availatdepdints with labels is
not sufficient. Data from medical or biological applications, for examplecharacterized by high
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Figure 1: Examples of two 16 8 nominal data set®; andD, each having two classes. The last
column in both data sets denotes the class labels) (f the samples in the rows.

dimensionality (thousands of features) and small number of data point®{tevss). An important
guestion is whether we should believe in the classification accuracy obtajrsedtb classifiers.

The most traditional approach to this problem is to estimate the error of théielalsg means
of cross-validation or leave-one-out cross-validation, among otfdis. estimate, together with a
variance-based bound, provides an interval for the expectedofitiar classifier. The error estimate
itself is the best statistics when different classifiers are compared agaktsiother (Hsing et al.,
2003). However, it has been argued that evaluating a single classifieamerror measurement
is ineffective for small amount of data samples (Braga-Neto and Dotygl#804; Golland et al.,
2005; Isaksson et al., 2008). Also classical generalization bourdwadirectly appropriate when
the dimensionality of the data is too high; for these reasons, some receoaelpes using filtering
and regularization alleviate this problem (Rossi and Villa, 2006; Berlinet.e2@08). Indeed,
for many other general cases, it is useful to have other statistics assbtiathe error in order
to understand better the behavior of the classifier. For example, evetai$sification algorithm
produces a classifier with low error, the data itself may have no structbres the question is, how
can we trust that the classifier has learned a significant predictive paiténe data and that the
chosen classifier is appropriate for the specific classification task?

For instance, consider the small toy example in Figure 1. There are two Hatataamatrices
D; andD; of sizes 16x 8. Each row (data point) has two different values preseatdo. Both
data sets have a clear separation into the two given clasaesl—. However, it seems at first sight
that the structure within the classes for datal¥eis much simpler than for data sep. If we train
a 1-Nearest Neighbor classifier on the data sets of Figure 1, we havin¢helassification error
(leave-one-out cross-validation) iS00 on bothD; andD»,. However, is it true that the classifier is
using a real dependency in the data? Or are the dependen&e®iD, just a random artifact of
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some simple structure? It turns out that the good classification redDlt is explained purely by
the different value distributions inside the classes where&s ithe interdependency between the
features is important in classification. This example will be analyzed in detaibate Section 3.3.

In recent years, a number of papers have suggested to use permbtetamp-values for as-
sessing the competence of a classifier (Golland and Fischl, 2003; Gotlahd2905; Hsing et al.,
2003; Jensen, 1992; Molinaro et al., 2005). Essentially, the permutatbpricedure measures
how likely the observed accuracy would be obtained by chancp-vAlue represents the fraction
of random data sets under a certain null hypothesis where the classliigrdd as well as or better
than in the original data.

Traditional permutation tests suggested in the recent literature study theypolthlesis that
the features and the labels are independent, that is, that there is nerdifdretween the classes.
The null distribution under this null hypothesis is estimated by permuting the labtlle data set.
This corresponds also to the most traditional statistical methods (Good), 20@re the results on
a control group are compared against the results on a treatment grbigsiffiple test has been
proven effective already for selecting relevant genes in small datdsalipaglietta et al., 2007) or
for attribute selection in decision trees (Frank, 2000; Frank and Witt&&)1®owever, the related
literature has not performed extensive experimental studies for this trait@st in more general
cases.

The goal of this paper is to study permutation tests for assessing thetms@erd performance
of the classifiers. We first study the traditional permutation test for testirghehthe classifier has
found a real class structure, that is, a real connection between tharththe class labels. Our
experimental studies suggest that this traditional null hypothesis leadsytdove p-values, thus
rendering the classifier significant most of the time even if the class strustweak.

We then propose a test for studying whether the classifier is exploitinghdepey between
some features for improving the classification accuracy. This seconis fespired by restricted
randomization techniques traditionally used in statistics (Good, 2000). Wg gtucklation to
the traditional method both analytically and empirically. This new test can seraengethod for
obtaining descriptive properties for classifiers, namely whether theifeéass using the feature
dependency in the classification or not. For example, many existing classifiedgorithms are
like black boxes whose functionality is hard to interpret directly. In sudesaindirect methods
are needed to get descriptive information for the obtained class structine data.

If the studied data set is known to contain useful feature dependeneieimthease the class
separation, this new test can be used to evaluate the classifier againabthisdge. For example,
often the data is gathered by a domain expert having deeper knowledhe ioiner structure of
the data. If the classifier is not using a known useful dependencyldbsifier performance could
be improved. For example, with medical data, if we are predicting the bloabyre of a person
based on the height and the weight of the individual, the dependencedretivese two features is
important in the classification as large body mass index is known to be codmneitiehigh blood
pressure. However, both weight and height convey information aheublood pressure but the
dependency between them is the most important factor in describing thegolesslire. Of course,
in this case we could introduce a new feature, the body mass index, buténadjethis may not be
practical; for example, introducing too many new features can make thdickassn ineffective or
too time consuming.

If nothing is known previously from the structure of the data, Test 2 cangpme descriptive in-
formation for the obtained class structure. This information can be usefwlah for understanding
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the properties of the classifier, or it can guide the search towards an oplissifier. For example,
if the classifier is not exploiting the feature dependency, there might beason to use the chosen
classifier as either more complex classifiers (if the data contains usefutdedependencies) or
simpler classifiers (if the data does not contain useful feature deperdieoould perform better.
Note, however, that not all feature dependencies are useful iicfingpthe class labels. Therefore,
in the same way that traditional permutation tests have already been praafeih fos selecting
relevant features in some contexts as mentioned above (Maglietta et al, /280K, 2000; Frank
and Witten, 1998), the new test can serve for selecting combinations vantheatures to boost
the classifier performance for specific applications.

The idea is to provide users with practigavalues for the analysis of the classifier. The per-
mutation tests provide useful statistics about the underlying reasons fobthi@ed classification
result. Indeed, no test is better than the other, but all provide us witiiattion about the classifier
performance. Eacp-value is a statistic about the classifier performance; gagdlue depends on
the original data (whether it contains some real structure or not) and gsfida(whether it is able
to use certain structure in the data or not).

The remaining of the paper is organized as follows. In Section 2, we gaveabkground to
classifiers and permutation-tgstvalues, and discuss connections with previous related work. In
Section 3, we describe two simple permutation methods and study their behavtor small toy
example in Figure 1. In Section 4, we analyze in detail the properties of tleeatif permutations
and the effect of the tests for synthetic data on four different classifiar Section 5, we give
experimental results on various real data sets. Finally, Section 6 costhglpapet.

2. Background

Let X be ann x mdata matrix. For example, in gene expression analysis the values of the Katrix
are numerical expression measurements, each row is a tissue samplelandlemn represents a
gene. We denote thieth row vector ofX by X; and thej-th column vector oKX by X/. Rows are also
called observations or data points, while columns are also called attributestords. Observe that
we do not restrict the data domainXfand therefore the scale of its attributes can be categorical or
numerical.

Associated to the data poin¥s we have a class labgl. We assume a finite set of known class
labels?y’, soy; € 9. LetD be the set of labeled dafa= {(X;,yi)}{ ;. For the gene expression
example above, the class labels associated to each tissue sample coutdekaniple, “sick” or
“healthy”.

In a traditional classification task the aim is to predict the label of new datasployntraining
a classifier fromD. The function learned by the classification algorithm is denoted by —

. A test statistic is typically computed to evaluate the classifier performance:ahibeeither
the training error, cross-validation error or jackknife estimate, amongthi¢ere we give as an
example the leave-one-out cross-validation error,

o(1.0) = = 3 1(fo10,06) £ ) @

1. A shorter version of this paper appears in the proceedings of tHieliE&rnational Conference on Data Mining (Ojala
and Garriga, 2009). This is an improved version based on valuablmeata by reviewers which includes: detailed
discussions and examples, extended theoretical analysis of the testirigdtatistical power in special case scenar-
ios, related work comparisons and a thorough experimental evaluatiotevge data sets.
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wherefp, p, is the function learned by the classification algorithm by removing-theobservation
from the data and(l) is the indicator function.

It has been recently argued that evaluating the classifier with an erreunesaent is ineffective
for small amount of data samples (Braga-Neto and Dougherty, 2004;dadiaal., 2005; Hsing
et al., 2003; Isaksson et al., 2008). Also classical generalizatiordlsane inappropriate when the
dimensionality of the data is too high. Indeed, for many other general,gtisasseful to have other
statistics associated to the eregf D) in order to understand better the behavior of the classifier.
For example, even if a consistent algorithm produces a classifier with ko gre data itself may
have no structure.

Recently, a number of papers have suggested to use permutationgheslees for assessing
the competence of a classifier. Essentially, the permutation test procedsedlito obtain @-value
statistic from a null distribution of data samples, as described in Definition3edtion 3.1 we will
introduce two different null hypotheses for the data.

Definition 1 (Permutation-basedp-value) LetD be a set of k randomized versionsddthe orig-
inal data D sampled from a given null distribution. The empirical p-value fer ¢tassifier f is
calculated as follows (Good, 2009),

_ |{D’'eD:e(f,D) <e(f,D)}|+1
P= k+1 '

The empiricalp-value of Definition 1 represents the fraction of randomized samples winere
classifier behaved better in the random data than in the original data. lelyiflvmeasures how
likely the observed accuracy would be obtained by chance, only betaeslassifier identified in
the training phase a pattern that happened to be random. Thereforepit#hae is small enough—
usually under a certain threshold, for examples 0.05—we can say that the value of the error in
the original data is indeed significantly small and in consequence, that $sfigais significant
under the given null hypothesis, that is, the null hypothesis is rejected.

Ideally the entire set of randomizations bf should be used to calculate the corresponding
permutation-baseg@-value. This is known as thexact randomization testinfortunately, this is
computationally infeasible in data that goes beyond toy examples. Insteadll wample from the
set of all permutations to approximate tipivalue. It is known that the Monte Carlo approximation

of the p-value has a standard deviation\(ﬁ@, see, for example, Efron and Tibshirani (1993)
and Good (2000), wherp is the underlying trugx-value andk is the number of samples used.
Sincep is unknown in practice, the upper bou = is typically used to determine the number of
samples required to achieve the desired precision of the test, or the vaheesthndard deviation
in the critical point ofp = a whereaq is the significance level. Alternatively, a sequential probability
ratio test can be used (Besag and Clifford, 1991; Wald, 1945; Faly, 087), where we sample
randomizations ob until it is possible to accept or reject the null hypothesis. With these tests, of
already 30 samples are enough for statistical inference with significarelexle- 0.05.

2. Notice the addition of 1 in both the denominator and the numerator of thatiefi This adjustment is an standard
procedure to compute empiricatvalues and it is justified by the fact that the original datab2asis as well a
randomized version of itself.
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We will specify with more details in the next section how the randomized versibthe origi-
nal dataD are obtained. Indeed, this is an important question as each randomizatiadrasthils
a certain null distribution, that is, which properties of the original data eesquved in the random-
ization test, directly affecting the distribution of the eregf,D’). In the following, we will assume
that the number of sampléds determined by any of the standard procedures just described here.

2.1 Related Work

As mentioned in the introduction, using permutation tests for assessing tha@cofia classifier
is not new, see, for example, Golland and Fischl (2003), Golland e2@05{, Hsing et al. (2003)
and Molinaro et al. (2005). The null distribution in those works is estimategddognuting labels
from the data. This corresponds also to the most traditional statistical metdodd,(2000), where
the results on a control group are compared against the results on a tregtog. This traditional
null hypothesis is typically used to evaluate one single classifier at a time (tbatisingle model)
and we will call it as Test 1 in the next section where the permutation testsegened.

This simple traditional test has already been proven effective for sajetlavant genes in
small data samples (Maglietta et al., 2007) or for attribute selection in decisem(ffeank, 2000;
Frank and Witten, 1998). Particularly, the contributions by Frank and W(t888) show that
permuting the labels is useful for testing the significance of attributes at thesled the decision
trees, since samples tend to be small. Actually, when discriminating attributeslémisaon tree,
this test is preferable to a test that assumes the chi-squared distribution.

In the context of building effective induction systems based on rulesjytation tests have been
extensively used by Jensen (1992). The idea is to construct a claésifiee form of a decision
tree or a rule system) by searching in the space of several models tgehiaran iterative fashion.
The current model is tested against other competitors that are obtaineddbygh@anges (such as
adding or removing conditions in the current rules). This allows to find Gfessifiers with less
over-fitting problems. The evaluation of the different models in this locatbestrategy is done via
permutation tests, using the framework of multiple hypothesis testing (BenjamidnHachberg,
1995; Holm, 1979). The first test used corresponds to permuting laliedg-is, Test 1—while
the second test is a conditional randomization test. Conditionally randomizasisrpermute the
labels in the data while preserving the overall classification ability of the uctassifier. When
tested on data with a conditionally randomized labelling, the current model wih\aekhe same
score as it does with the actual labelling, although it will misclassify diffeodaservations. This
conditionally randomization test is effective when searching for modelsatkeatnore adaptable to
noise.

The different tests that we will contribute in this paper could be as well imstids process of
building an effective induction system. However, in general our testsardirectly comparable to
the conditional randomization tests of Jensen (1992) in the context of thés.pé/e evaluate the
classifier performance on the different randomized samples, anddrerefeating data set samples
that preserve such performance would only produce alywayaues close to one.

The restricted randomization test that we will study in detail later, can be fesedudying
the importance of dependent features for the classification performarekted to this, group
variable selection is a method for finding similarities between the features éBarti Reich,
2008). In that approach, similar features are grouped together éoeatng the dimensionality
and improving the classification accuracy. Such methods are good feerahgsthe features while
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doing classification. However, our aim is to test whether the dependeataeen the features is
essential in the classification and not to reduce the dimensionality and similahtissdiffering
from the objective of group variable selection.

As part of the related work we should mention that there is a large amouatistisal literature
about hypothesis testing (Casella and Berger, 2001). Our contributonse the framework of hy-
pothesis testing for assessing the classifier performance by meansadiiam permutation-based
p-values. How the different randomizations affect thpsealues is the central question we would
like to study. Also sub-sampling methods such as bootstrapping (Efro8) 8@ randomizations
to study the properties of the underlying distribution, but this is not usetk$ing the data against
some null model as we intend here.

3. Permutation Tests for Labeled Data

In this section we describe in detail two very simple permutation methods to estimatelthe n
distribution of the error under two different null hypotheses. The tes for which the two
statistical tests supply answers can be summarized as follows:

Test 1: Has the classifier found a significant class structure, that is, a reaécbon between the
data and the class labels?

Test 2: Is the classifier exploiting a significant dependency between the fedtuiasrease the
accuracy of the classification?

Note, that these tests study whether the classifier is using the descrilpetti®and not whether
the plain data contain such properties. For studying the characteristiqgsopiudation represented
by the data, standard statistical test could be used (Casella and B&@gy, 2

Let tbe a permutation of elements. We denote with(y); thei-th value of the vector label
y induced by the permutatior. For the general case of a column vecxor, we user(X!) to
represent the permutation of the vectorinduced byt Finally, we denote the concatenation of
column vectors into a matrix by = [X%, X2,...,X™M).

3.1 Two Simple Permutation Methods

The first permutation method is the standard permutation test used in statistar$ @860). The
null hypothesis assumes that the détand the labelg are independent, that ip(X,y) = p(X)p(y).
The distribution under this null hypothesis is estimated by permuting the labBls in

Test 1 (Permute labels)Let D= {(X;,y;)}{., be the original data set and let be a permutation
of n elements. One randomized versidnobD is obtained by applying the permutatioron the
labels, D = {(X,1(y)i)}];. Compute the p-value as in Definition 1.

A significant classifier for Test 1, that is, obtaining a snmallalue, rejects the null hypothesis
that the features and the labels are independent, meaning that there iferendé between the
classes. Let us now study this by considering the following case analifsibe original data
contains a real (i.e., not a random effect) dependency between data and labels, then: (1) a
significant classifieff will use such information to achieve a good classification accuracy and this
will result in a smallp-value (because the randomized samples do not contain such dependenc
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by construction); (2) if the classifielr is not significant in the sense of Test 1 (thatfisyas not
able to use the existing dependency between data and labels in the orig&)atiuen thep-value
would tend to be high because the error in the randomized data will be similareéordrebtained
in the original data. Finally, if the original data did not contain any real ddpacy between data
points and labels, that is, such dependency was similar to randomized gathee all classifiers
tend to have a higip-value. However, as a nature of statistical tests, abonitthe results will be
incorrectly regarded as significant.

Applying randomizations on the original data is therefore a powerful wayntierstand how
the different classifiers use the structure implicit in the data, if such steueixists. However,
notice that a classifier might be using additionally some dependency structheedata that is not
checked by Test 1. Indeed, it is very often the case thapihalues obtained from Test 1 are very
small on real data because a classifier is easily regarded as signifiearif the class structure is
weak. We will provide more evidence about this fact in the experiments.

An important point is in fact, that a good classifier can be using other typespendency if
this exists in the data, for example the dependency between the featuoes.tHis perspective,
Test 1 does not generate the appropriate randomized data sets to telygotheses. Therefore,
we propose a new test whose aim is to check for the dependency betveeatiributes and how
classifiers use such information.

The second null hypothesis assumes that the columisare mutually independent inside a
class, thup(X(c)) = p(X(c)})--- p(X(c)™), whereX(c) represents the submatrixXfthat contains
all the rows having the class labek 9. This can be stated also using conditional probabilities,
that is, p(X | y) = p(X! | y)---p(X™ | y). Test 2 is inspired by the restricted randomizations from
statistics (see, e.g., Good, 2000).

Test 2 (Permute data columns per class)et D= {(X,yi) }{.; be the data. A randomized version
D’ of D is obtained by applying independent permutations to the columns of X wibh class.
That is:

For each class label € 9 do,

e Let X(c) be the submatrix of X in class label c, that igcX= {X | yi = ¢} of size } x m.
e Letmy,..., Ty, be mindependent permutations g€lements.

e Let X(c) be a randomized version of(X) where each; is applied independently to the
column Xc)!. Thatis, Xc)’ = [ru(X(c)?),...,Tm(X(c)™)].

Finally, let X' = {X(c)’ | c € Y} and obtain one randomized versior & {(X/,yi)}l_,. Next,
compute the p-value as in Definition 1.

Thus, a classification result can be regarded as nonsignificant witl2 Tiégither the features
are independent of each other inside the classes or if the classifienodlo@gploit the interdepen-
dency between the features. Notice that we are not testing the data bladsifier against the null
hypothesis corresponding to Test 2. The classification result is sigrtifigéh Test 2 only if the
classifier exploits the interdependency between the features, if suctieptrdency exists. If the
dependency is not used, there might be no reason to use a complicasgfiec)ess simpler and
faster methods, such as Naive Bayes, could provide similar accumalysréor the same data. On
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Figure 2: Scatter plots of original Iris data set and randomized versioriglf permutation of the
data and for Tests 1 and 2 (one sample for each test). The data pointg toetloree different classes
denoted by different markers, and they are scattered against pethl saxd width in centimeters.

the other hand, this observation can lead us to find a classifier that cimit &x@ possibly existing
dependency and thus improve the classification accuracy further,cassisl in the introduction.

There are three important properties of the permutation-bpsedues and the two tests pro-
posed here. The first one is that the number of missing values, that isirtfisen of entries i that
are empty because they do not have measured values, will be distributty egross columns in
the original data sdD and the randomized data sé&l5 this is necessary for a fap-value compu-
tation. The second property is that the proposed permutations are ableyant regardless of the
data domain, that is, values are permuted always within the same column, valeismadt change
the domain of the randomized data sets. Finally, we have that unbalancettfathat is, data sets
where the distribution of class labels is not uniform, remain equally unbalandee randomized
samples.

In all, with permutation tests we obtain useful statistics about the classificasaht.rélo test
is better than the other, but all provide us with information about the classEiach p-value is
a statistic about the classifier performance; epstalue depends on the original data (whether it
contains some real structure or not) and the classifier (whether it is ab$e toettain structure in
the data or not).

In Figure 2, we give as an example one randomization for each test onalh&newn Iris
data set. We show here the projection of two features, before and afigomizations according
to each one of the tests. For comparison, we include a test correspdadingpermutation of
the data where each column is permuted separately, breaking the contetti@en the features
and mixing the values between different classes. Note how well Test prhasrved the class
structure compared to other tests. To provide more intuitions, in this casg airggle classifier,
which predicts the class by means of one single of these two features wdfide $n reaching a
very good accuracy. In other words, the dependency between thie&twoes is not significant as
such, so that a more complex classifier making use of such dependeultyenol up having a high
p-value with Test 2. We will discuss the Iris data more in the experiments.

3.2 Handling Instability of the Error

Arelated issue for all the above presented tests concerns the variabiligy@fror estimate returned
by a classifier. Indeed, applying the same classifier several times overigieal data seD can
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return different error estimatex f,D) if, for example, 10-fold cross-validation is used. So the
guestion is, how can we ensure that thealues given by the tests are stable to such variance?

The empiricalp-value depends heavily on the correct estimation of the original classificatio
accuracy, whereas the good estimation of the classification errors @frtlemized data sets is not
so important. However, exactly the same classification procedure hassedhéou both the original
and randomized data for thevalue to be valid. Therefore, we propose the following solution to
alleviate the problem of having instable test statistic: We train the classifier aritheal datar
times, thus obtaining different error estimates = {e;(f,D),...,&(f,D)} onD. Next, we obtain
k randomized samples & according to the desired null hypothesis and computepthialue for
each one of those original erraes E. We obtain therefore different p-values by using the same
k randomized data sets for each computation. We finally output the averdbesefr different
p-values as the final empiricgtvalue.

Note that in total we will compute the error of the classifigrk times:r times on the original
data and one time for each of thk@andomized data sets. Of course, the largeikthad the larger
ther, the more stable the final averagpdalue would be. A larger decreases the variance in the
final p-value due to the estimation of the classification error of the original datalseas a larger
k decreases the variance in the fipatalue due to the random sampling from the null distribution.
In practice, we have observed that a value ef 10 andk = 100 produce sufficiently stable results.

This solution is closely related to calculating the statigtior calculating the test statisti¢
of the Wilcoxon-Mann-Whitney two-sample rank-sum test (Good, 20B@wever, it is not valid
to apply these approaches in our context asrtblassification errors of the original data are not
independent of each other. Nevertheless, the proposed solutiorehsemtie good properties as the
p andU statistics as well as it generalizes the concept of empigeallue to instable results.

A different solution would be to use a more accurate error estimate. Fonpeawe could use
leave-one-out cross-validation or cross-validation with 100 folds idsié&0-fold cross-validation.
This will decrease the variability but increase the computation time dramaticallyeaseed to
perform the same slow classification procedure tkkaindomized samples as well. However, it
turns out that the stability issue is not vital for the final result; our solutiatpces sufficiently
stablep-values in practice.

3.3 Example

We illustrate the concept of the tests by studying the small artificial examplergeskin the intro-
duction in Figure 1. Consider the two data setsandD- given in Figure 1. The first data sB
was generated as follows: in the first eight rows corresponding to €]&sch element is indepen-
dently sampled to bewith probability 80% ana otherwise; in the last eight rows the probabilities
are the other way around. Note that in the dateDgethe features are independent given the class
since, for example, knowing tha¢'* = x inside class+ does not increase the probability X2
beingx. The data seb, was generated as follows: the first four rows contgithe second four
rows contairo, the third four rows contair in the first four columns andin the last four columns,
and the last four rows contaiin the first four columns angin the last four columns; finally, 10%
of noise was added to the data set, that is, eaghs flipped ta with probability of 10%, and vice
versa.

Observe that botb; andD, have a clear separation into the two given classesyd—. How-
ever, the structure inside the data Bgtis much simpler than in the data 98%. For illustration
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1-Nearest Neighbor

Orig. Test 1 Test 2
Data Set Err.  Err. (Std) p-val. Err. (Std) p-val.
D; 0.00 0.53(0.14) 0.001 0.06 (0.06)0.358
D, 0.00 0.53(0.14) 0.001 0.62(0.14) 0.001

Table 1: Average error anglvalue for Test 1 and Test 2 when using the 1-Nearest Neighboi-class
fier to data sets of Figure 1.

purposes, we analyze this with the 1-Nearest Neighbor classifier usenigalie-one-out cross-
validation given in Equation (1). Results for Test 1 and Test 2 are sumedanizTable 1. The

classification error obtained in the original data i8®for bothD; andD-, which is expected since
the data sets were generated to contain clear class structure.

First, we use the standard permutation test (i.e., permuting labels, Test 1fi¢cstand the
behavior under the null hypothesis where data points and labels aresimabsg. We produce 1000
random permutations of the class labels for both the dataDyetsnd Do, and perform the same
leave-one-out cross-validation procedure to obtain a classificationferreach randomized data
set. On the randomized samples of datal¥getve obtain an average classification error &3)

a standard deviation.D4 and a minimum classification error ofi3@. For the randomized data
from D, the corresponding values areb8, 014 and 019, respectively. These values result in
two empirical p-values of both 01 on both the data sels andD,. Thus, we can say that the
classifiers are significant under the null hypothesis that data and labétglapendent. That is, the
connection between the data and the class labels is real in both data sets hiEdrest Neighbor
classifier is able to find that connection in both data sets, resulting into a tgessification accuracy.

However, it is easy to argue that the results of Test 1 do not provide mémmation about
the classifier performance. Actually the main problem of Test 1 isghatlues tend to be always
very low as the null hypothesis is typically easy to reject. To get more informafithe properties
of the classifiers, we study next the performance of the classifiers mgtako account the inner
structure of data sef3; andD, by applying Test 2. Again, we produce 1000 random samples of the
data set®; andD, by permuting each column separately inside each class. The same leavatone
cross-validation procedure is performed for the randomized sampliesnioly for the data sdd;
the average classification error a8, standard deviation of @6 and a minimum value of.00.
For the data sdD, the corresponding values aré@, 014 and 019, respectively. Therefore, under
Test 2 the empiricap-values are (B58 for the data sdd; and Q001 for the data sdd,.

We can say that, for Test 2, the 1-Nearest Neighbor classifier is sigmiifior data seD, but
not for data seD;. Indeed, the data s&; was generated so that the features are independent
inside the classes, and hence, the good classification accuracy ofdhiéhatgonD; is simply due
to different value distributions across the classes. Note, howevemadnat of the features in the
data seD; is sufficient alone to correctly classify all the samples due to the noise in thesda
Thus using a combination of multiple features for classification is necessaobfaining a good
accuracy, even though the features are independent of each ethelata seD, we have that the
dependency between the columns inside the classes is essential for thelagsification result,
and in this case, the 1-Nearest Neighbor classifier has been able td hqilinformation.
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4. Analysis

In this section we analyze the properties of the tests and demonstrate thbehthe differentp-
values on simulated data. First, we state the relationships between the difetiseof permutations.

4.1 Connection between Test 1 and Test 2

Remember that the random samples from Test 1 are obtained by permutingsthiabkels and the

samples from Test 2 by permuting the features inside each class. To éstatdisnection between
these randomizations, we study the randomization where each data colummigqbseparately,

regardless of the class label. This corresponds to the full permutatiseresl in Figure 2 in

Section 3.1 for Iris data set. It breaks the connection between the feadnkfurthermore, between
the data and the class labels. The following result states the relationshigebefest 1, Test 2 and
the full permutation method.

Proposition 2 LetM;(D), M¢(D), M¢c(D) be the sets of all possible randomized data sets obtained
from D via permuting labels (Test 1), permuting data columns (full permugtio permuting data
columns inside class (Test 2), respectively. The following holds,

(1) M(D) CMe(D)
(2) Mee(D) C Me(D)
(3) M(D) # Mee(D)

Note thatM, (D), M¢(D) andM¢(D) refer to sets of data matrices. Therefore, we have that
permuting the data columns is the randomization method producing the most diaegkes, while
permuting labels (Test 1) and permuting data within class (Test 2) prodffieeedt randomized
samples.

Actually, the relationship stated by Proposition 2 implies the following property:pthalue
obtained by permuting the data columns is typically smaller than botp-thedues obtained from
Test 1 and Test 2. The reason is that all the randomized data sets oliigiiedt 1 and Test 2
can also be obtained by permuting data columns and the additional randorataeskts obtained
by permuting the columns are, in general, even more random. Theoretialigupng the data
columns is a combination of Test 1 and Test 2, and thus, it is not a usefulrtgsactice, we have
observed that th@-value returned by permuting the data columns is very close t@{aue of
Test 1, which tends to be much smaller than phealue of Test 2.

Considering Proposition 2, it makes only sense to restrict the randomizatitastes by using
Test 2, whenever Test 1 has produced a spatilue. That is, it is only reasonable to study whether
the classifier uses feature dependency in separating the classes fotihds real class structure.

4.2 Behavior of the Tests

To understand better the behavior of the tests, we study generated dat aoinrelation is used
as the dependency between the features. Consider the following simuédagedrns$pired by the
data used by Golland et al. (2005): 100 data points are generated freminvensional normal
distribution with mean vector (1,0), unit variances and covarigneg—1,1]. Another 100 data
points are generated from similar normal distribution with méaf, 0), unit variances and same
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Figure 3: Average values of stratified 10-fold cross-validation enx{s) for varying values of
correlation between the features per clasaxis). The solid line shows the error on the original
data, and symbolg ande represent the average of the error on 1000 randomized samples dbtaine
from Test 1 and from Test 2, respectively. Each average of tloe enrthe randomized samples
ande is depicted together with th&%, 99%-deviation bar. If the solid line falls below the bars the
null hypothesis associated to the test is rejected; if the solid line crosses arsatbove the bars the
null hypothesis cannot be rejected with significance leve! 0.01.

covariancep. The first 100 samples are assigned with class Igbel+-1 with probability 1—t
andy = —1 with probabilityt. For the other 100 samples the probabilities are the opposite. The
probabilityt € [0,0.5] represents the noise level. Whea- 0.5, there is no class structure at all.
Note that the correlation between the features improves the class sepdfdtiercorrelationp = 1
and the nois¢ = 0, we have that the clags= x; — x2 wherexy, x, are the values of the first and
second features, respectively.

For these data sets (with varying parameters of noise and correlatiorseves an error estimate
the stratified 10-fold cross-validation error. We study the behavior wf ftassifiers: 1-Nearest
Neighbor, Decision Tree, Naive Bayes and Support Vector Machifeeuse Weka 3.6 data mining
software (Witten and Frank, 2005) with the default parameters of the imptatiers of those
classification algorithms. The Decision Tree classifier is similar to C4.5 algorithdithee default
kernel used with Support Vector Machine is linear. Tuning the parametténese algorithms is not
in the scope of this paper; our objective is to show the behavior of thesdisdp-values for some
selected classifiers.

Figure 3 shows the behavior of the classifiers on data sets without ciasstre0, and with the
correlationp between features inside classes varying frefin(negative correlation) to 1 (positive
correlation). The solid line correspondsdidf, D), that is, the error of the classifier in the original
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Figure 4. Average values of stratified 10-fold cross-validation eg@x(s) for the Decision Tree
classifier when noise varies on the original data setxis) with four fixed correlation values be-
tween the features inside the classes. The solid line shows the error anginalaata, and sym-
bols x ande show the average error on 1000 randomized samples from Test 1 and, Tespec-
tively. Each average of the error on the randomized samplarde is depicted together with the
[1%,99%-deviation bar below which the associated null hypothesis is rejected witHisagte
levela = 0.01.

data. The symbolsX” and “e” represent the average error obtained by the classifier on 1000
randomized samples from Test 1 and Test 2, respectively. When theliselidf e(f,D) falls
below the[1%, 99%3-deviation bars, the corresponding associated null hypothesis is cejeitte
significance levebr = 0.01. Actually, the correspondence between the confidence intervals and
hypotheses testing is only approximately true since the definition of empjricalue contains the
addition of 1 in both the numerator and denominator. However, the pracifieabtice is negligible.

First, note that the Decision Tree, 1-Nearest Neighbor and Suppotbi&achine classifiers
have been able to exploit the dependency between the features, thatisstification error goes to
zero when there is either a high positive or negative correlation betwedeatures. However, with
Naive Bayes classifier the classification error seems to be indeperfdéet correlation between
the features.

For all classifiers we observe that the null hypothesis associated td {iest, labels and data
are independent) is always rejected. Thus the data contains a cleastol@sgre as expected since
there exists no class noise in the data. All classifiers are therefore sagificder Test 1.

Another expected observation is that the null hypothesis for Test 2 @agures are independent
within class) tends to be rejected as the magnitude of the correlation betvagarefeincreases.
That is, the correlation is useful in classifying the data. When the magnituithe correlation is
larger than approximately.®d, the Decision Tree, Nearest Neighbor and Support Vector Machine
classifiers reject the null hypothesis. Thus these classifiers prodpiificant results under Test 2
when the features are highly correlated.

Finally, observe the behavior of Naive Bayes classifier for Test 2ntitiehypothesis can never
be rejected. This is because Naive Bayes classifier explicitly assumesfduyitdhat the features
are independent, thus it always performs similarly on the original data andidomized data sets,
which results in a very higlp-value. Naive Bayes classifier is an example of such classifiers which
are not able to use the dependency between the features at all. Thris@ppst 2 for Naive Bayes
classifier will practically always produce a highvalue irrespective of the data.
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Finally, Figure 4 shows the behavior of the Decision Tree classifier wieendiset < [0,0.5] is
increased on the-axis. We also vary the correlatignbetween the features per class and show the
results on four cases: zero correlation, 0.5, 0.8 and total correlatienobaerve that as the noise
increases th@-values tend to be larger. Therefore, it is more difficult to reject the nydbthesis
on very noisy data sets, that is, when the class structure is weak. Thig ifotrboth Test 1 and
Test 2. However, Test 1 rejects the null hypothesis even if there is 30fdige. This supports the
fact already observed in related literature (Golland et al., 2005), tiest @weak class structure is
easily regarded as significant with Test 1. Compared to this, Test 2miwesconservative results.

4.3 Power Analysis of Test 2

Thepowerof a statistical test is the probability that the test will reject the null hypothdséwhe
alternative hypothesis is true. The power of the test depends on howanidw clearly the null
hypothesis is false. For example, in our case with Test 2, a classifier iyagotely on a strong
dependency structure between some specific features in the classificatiomay use a weak
feature dependency to slightly improve the classification accuracy. Rgjéogmull hypothesis of
Test 2 is much easier in the former than in the latter case. Note, howevea,gtrahg dependency
between the features is not always useful in separating the classesera@ Figure 2 with Iris
data set. So, the question with Test 2 is whether the classifier is exploiting $dheedependency
structure between the features in the data and how important such feaperdeéncy is for the
classification of the data.

In general, the power of the test can only be analyzed in special c&fmgertheless, such
analysis can give some general idea of the power the test. Next, wapadsemal power analysis
in the particular case where we vary the correlation between the featates tiseful in separating
the classes from each other. Note, however, that there exist alsotyplesrof dependency than
correlation. The amount of correlation is just easy to measure, thus hetagle for formal power
analysis.

We present the power analysis on similar data as studied in Section 4.2. Siles ia the
previous subsection can be seen as informal power analysis. In summeaopserved that when
the magnitude of the correlation in the data studied in Section 4.2 was largerlitban(5 and
the classifier was exploiting the feature dependency, that is, a clas#fieendt from Naive Bayes,
Test 2 was able to reject the null hypothesis. However, based on thi¢ idatiear that even smaller
correlations increased the class separation and were helpful in claggifye data but Test 2 could
not regard such improvement as significant. The following analysis stgjb@se observations.

Let the data seX consist ofn points with two features belonging to two classed, and—1.
Let a pointx € X be in clasy = +1 with probability 05 and in clasy = —1 with probability 05.
Let the pointx € X be sampled from two-dimensional normal distribution with méay®), unit
variances and covariange wherep € [0,1] is a given parameter. Thus, in the first clags; +1,
the correlation between the two features is positive and in the secondyctass], it is negative.
Compared to the data sets in Section 4.2, now the covariance changesrbétevelasses, not the
mean vector. An optimal classifier assigns a pait X to classy = +1 if xgx2 > 0 and to class
y=—1if x3x2 < 0, where; is thei-th feature of the vector.

The null hypothesis of Test 2 is that the classifier is not exploiting the digrey between
the features in classification. To alleviate the power analysis, we assuntadl@assifier is able
to find the optimal classification, that is, it assigns the paitd class sgxix2) where sg() is
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the signum function. If the classifier is not optimal, it will just decrease theepwf the test.
The nonoptimality of the classifier could be taken into account by introducimglaability t for
reporting a nonoptimal class label; this approach is used in the next siobsec power analysis
of Test 1 but is left out here for simplicity in the analysis. Under this optimalignacio, the
probability of correctly classifying a sample is

1 1
Pr(sgnxixz) =y) = > Prixixo >0|y=+1)+ > Prixixo <0|y=—-1)

=Pr(xixg >0|y=+1) = 2/ / Pr(xa, X2) dxpdx
0 Jo

X2 — 2pXaXe + X5
/ / ony/1-p? p[— 2(1—p?) dx,dxo

i + = arcswp, (2)
where Pfxi,X2) is just the standardized bivariate normal distribution. The null hypothesis
sponds to the case where the correlation parameter is getd), that is, no feature dependency
exists. In that case, the probability of correctly classifying a samplgds 1

In our randomization approach, we are using classification error asshsté¢istic. Since we
assume that the optimal classifier is given, we use allntip@ints of the data seX for testing
the classifier and calculating the classification error. Under the null hgpistHy and under the
alternative hypothesid; of Test 2, the classification erroesf | Hp) ande(f | H1) are distributed
as follows:

n-e(f | Ho) ~ Bin (ni) ~H(57)

. 1 1 : n n ..n n .
n-e(f |Hy) ~Bin (n,z - narcswp) ~ N (f — p;aresimp, ; — ?arcsﬁp) ,

2

where% — %arcsirp is the probability of incorrectly classifying a sample by Equation (2). The nor
mal approximatiom\(np,np(1— p)) of a binomial distribution Bifin, p) holds with good accuracy
whennp> 5 andn(1— p) > 5. In our case, the approximation is valim(f% — %arcsirp) > 5. This
holds, for example, i > 20 andp < 0.7.

Now the power of Test 2 for this generated data is the probability of rejetttangull hypothesis
Ho of p = 0 with significance levett when the alternative hypothedit is that the correlation
p > 0. Note that we are implicitly assuming that the classifier is optimal, that is, we ahedaxy
the classifier quality from the power analysis. Thus, the power is the pildpahat e(f | Hy) is
smaller than X a of the errorse(f | Hp) under the alternative hypothesis:

Power= Pr(e(f [ H1) < Fe?fllHo)(a))

1 1 ) 1 1 . 1
NPr<2—narc3|rp+\/4n—nnzarc5|r?p-z<2+2\[<D ( ))

o (ZﬁarcsierrT[tDl(a)) ’ 3)

\/T® — 4arcsirtp
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Figure 5: Contour plots of the statistical power of Test 2 as a function afuh&ber of rows in the
generated data set and the correlation paranpetBach solid line corresponds to a constant value
of the power that is given on top of the contour. The power values dcalated by Equation (3)
for two different values of significance level

whereFgf)1,) is the cumulative distribution function @ f | Ho), Z is a random variable following
standard normal distribution arl is the cumulative distribution function of the standard normal
distribution. Note that we are using exaetalue instead of empiricgl-value, effectively leaving

out the influence of variance by usikgandomized samples; see Fay et al. (2007) for analysis of
resampling risk of using samples. However, this has little effect to the power of the test. When the
correlationp = 0, the power i, that is, when the null hypothesis is true, it is rejected incorrectly
abouta of the times. Thereforay is really the significance level of the tests.

In Figure 5 we present contour plots of the statistical power in Equaticio(8)ifferent values

of the two varying parameters. As expected, the higher the correlateord the number of rows

n are, the higher the statistical power of Test 2 is. For example, if the datasitins about 1000
rows, we can infer with 90% probability that the classifier is exploiting the fealependency of
approximately a correlation of.® in the data. The results are also in line with the results from
Section 4.2 although the studied data sets are slightly different. When thecsigoéilevel used is

o = 0.01 we can infer that the classifier is exploiting the feature dependenayriaiation larger
than 04 approximately 90% of the times when the data set has 200 rows.

Notice that if we had not considered an “optimal” classifier, that is, if we intdduced a
probabilityt of assigning each observation to the incorrect label, then Equation (8ywlepend
on three parameters. In that case, the highéne smaller is the power of the test; however, for
a fixedt we still would observe the same behaviour as in the contourplots aboveigther the
correlationp and the larger tha, the higher is the statistical power of Test 2. The error paraneter
is taken into account in the next section, where the power analysis ofl Tests not depend gm
between the features.

1849



OJALA AND GARRIGA

4.4 Power Analysis of Test 1

Let the data seX consist ofn observations belonging to two different classes with equal probability.
We assume that we have a classifievhose error rate isc [0, 1], that is, the classifier assigns each
observation to the correct class with probability . Another way to see this is that the classifier
f is optimal but the original class label of each point is erroneous with pitityat. We perform
power analysis of Test 1 for this general form of data.

Note that the results in Section 4.2 can be seen as informal power analyigistdf on similar
setting as studied here. The results in Figure 4 can be summarized as folhes. the error rate
was smaller thah< 0.4, Test 1 was able to reject the null hypotheses. Note, however, thatrtre
ratet used in this section is not directly comparable to the error rate used in Se@ion 4

The power analysis of Test 1 proceeds similarly as in the previous gidiséar Test 2. Under
the null hypothesi$dy and under the alternative hypothebis of Test 1, the classification errors
e(f | Ho) ande(f | Hy) are distributed as follows:

n-e(f | Ho) ~ Bin (né) z?\[(%,%),
n-e(f | Hy) ~Bin(n,t) = AL (nt,nt(1—t)).

The null hypothesi$ly assumes that there is no connection between the data and the class labels
thus the probability of incorrect classification ig2las the classes are equally probable. Note that
the null hypothesis corresponds to the case where the error rate dhsisdierf ist =1/2.

Now the power of Test 1 is the probability of rejecting the null hypothElgisvith significance
level a when the alternative hypothedis is true, that is,

Power= Pr(e(f |H1) < Fezfl‘Ho)(a))

t(i-_ 1 1 _,

o A-2)vA+o i)
B 2,/t(1—1) ’

where the same notation as in the previous subsection is used. First, notad¢nahe null hypoth-
esis is true, that ig,= 1/2, the power of Test 1 calculated by Equation (4) equals the significance
levela as it should.

In Figure 6 we present contour plots of the statistical power of Test lileddrl by Equation (4)
for different values of parameters. As expected, when the numbdaseireations increases or the
error ratet decreases, the power increases. Furthermore, the larger the sigrgflesela is, the
larger the power of Test 1 is. When the parameter valuesiared.01, n = 200 andt = 0.4, the
power of Test 1 is about.® that is comparable to the results in Section 4.2.

In this section, we analyzed the behaviour and the power of the tests. Ido#dttiough we used
correlation as the only type of dependency between features in this sabioa exist also other
forms of dependency that the classifier can exploit. As conclusions thherpower analysis, the
more rows the data set has, the easier we can infer that the classifieigishesfeature dependency
or some other properties in the data.

(4)
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Figure 6: Contour plots of the statistical power of Test 1 as a function ofidingber of rows in
the generated data set and the probability of misclassificati@ach solid line corresponds to a
constant value of the power that is given on top of the contour. Thepealees are calculated by
Equation (4) for two different values of significance lewel

5. Empirical Results

In this section, we give extensive empirical results on 33 various reéalsdds from UCI machine
learning repository (Asuncion and Newman, 2007). Basic charactsristithe data sets are de-
scribed in Table 2. The data sets are divided into three categories badedrsize: small, medium
and large. Some data sets contain only nominal or numeric features wheneaslata sets contain
both kind of features (mixed). About one-third of the data sets contaimailssing values. Notice
that in most data sets the features are measured in different scalesjsmet gensible to swap the
values between different features. This justifies why it is only readertialzonsider column-wise
permutations, and why some recent data mining randomization methods (Giahj2807; Ojala
et al., 2009; Chen et al., 2005) are not generally applicable in assetassification results.

In the experiments we use Weka 3.6 data mining software (Witten and Frad#), tP@t contains
open source Java implementations of many classification algorithms. We ugtifferent types
of classification algorithms with the default parameters: Decision Tree,eNgdwes, 1-Nearest
Neighbor and Support Vector Machine classifier. The Decision Tressifiler is similar to C4.5
algorithm. The default kernel used with Support Vector Machine is lind@sing values and the
combination of nominal and numerical values are given as such as thefanphé classifiers; the
default approaches in Weka of the classifiers are used to handle teese &lotice that tuning the
parameters of these algorithms is not in the scope of this paper; our ojisativshow the behavior
of the discusseg-values for some selected classifiers on various data sets.

We use different classification procedures and the number of randdrdata sets for each
of the different size categories of the data sets (small, medium and large)snfall data sets,
we use stratified 10-fold cross-validation error as the statistic and 10@@mazed data sets for

calculating the empiricgb-values. For medium-sized data sets, we use the same stratified 10-fold

cross-validation error and 100 randomized data sets. Finally, for latgesets, we divide the data
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Data Set Rows Features Classes Missing Domain
Audiology 226 70

N
N

2.0% nominal

Autos 205 25 6 1.2% mixed
Breast 286 9 2 0.3% nominal
Glass 214 9 6 No numeric
Hepatitis 155 19 2 5.7% mixed
lonosphere 351 34 2 No numeric
= Iris 150 4 3 No numeric
UE) Lymph 148 18 4 No mixed
Promoters 106 57 2 No nominal
Segment 210 19 7 No numeric
Sonar 208 60 2 No numeric
Spect 267 22 2 No nominal
Tumor 339 17 21 3.9% nominal
\otes 435 16 2 5.6% nominal
Z00 101 17 7 No mixed
Abalone 4177 8 28 No mixed
Anneal 898 38 5 65.0% mixed
Balance 625 4 3 No numeric
Car 1728 6 4 No nominal
German 1000 20 2 No mixed
% Mushroom 8124 22 2 1.4% nominal
S Musk 6598 166 2 No numeric
= Pima 768 8 2 No numeric
Satellite 6435 36 6 No numeric
Spam 4601 57 2 No numeric
Splice 3190 60 3 No nominal
Tic-tac-toe 958 9 2 No nominal
Yeast 1484 8 10 No numeric
Adult 48842 15 2 0.9% mixed
o Chess 28056 6 18 No mixed
§ Connect-4 67557 42 3 No nominal
Letter 20000 16 26 No numeric
Shuttle 58000 9 7 No numeric

Table 2: Summary of 33 selected data sets from UCI machine learning regdqgiguncion and
Newman, 2007). The data sets are divided into three categories batwezr®gize: small, medium
and large.
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set into training set with 10 000 random rows and to test set with the rest obirs. We use 100
randomized data sets for calculating the empirga&hlues with large data sets. The reason for the
smaller number of randomized samples for medium and large data sets is mainlytabamptime.
However, 100 samples is usually enough for statistical inference. Fomtine, as seen in Section 4
the power of the tests is greater when the data sets have more rows, thtt layge data sets it is
easier to reject the null-hypotheses, supporting the need of fewasmaneld samples in hypothesis
testing.

Since the original classification error is not a stable result due to the mameks in training
the classifier and dividing the data set into test and train data, we perfersathe classification
procedure ten times for the original data sets and calculate an empinedlie for each of the ten
results. This was described in Section 3.2. We give the average valueseféimpiricap-values as
well as the average value and the standard deviation of the original dassifierrors.

As we are testing multiple hypotheses simultaneously, we need to correct fgulencompar-
isons. We apply the approach by Benjamini and Hochberg (1995) tootdimérfalse discovery rate
(FDR), that is, the expected proportion of results incorrectly regaagesignificant. In the exper-
iments, we restrict the false discovery rate betow 0.05 separately for Test 1 and Test 2. In the
Benjamini-Hochberg approach,pf, . .., pm are the original empiricgb-values in increasing order,
the resultsy, ..., p are regarded as significant whéris the largest value such thgt < r'T—]a.

The significance testing results for the Decision Tree classifier are giveable 3, for Naive
Bayes in Table 4, for 1-Nearest Neighbor classifier in Table 5 and fif@ll$fupport Vector Ma-
chine classifier in Table 6. The mean and the standard deviation of the I8abigtassification
errors are given as well as the mean and standard deviation of the errdne 1000 or 100 ran-
domized samples with Test 1 and Test 2. The empineahlues corresponding to nonsignificant
results, when the false discovery rate is restricted bel®w,@re in boldface in the tables. With all
classifiers, the largest significant empiripavalue was 1. The smallest non-significaptvalues
were 003 with Decision Tree and 1-Nearest Neighbor classifie@8 Qith Naive Bayes classifier
and 019 with Support Vector Machine classifier.

The results for the traditional permutation method Test 1 show that the clagsifierrors with
most data sets are regarded as significant. These results show thaktketdaontain clear class
structure. However, they do not give any additional insight for ustdading the class structure in
the data sets.

There are two reasons why the simple permutation test, Test 1, regardaghesttucture of
the data sets as significant. Firstly, most of the data sets that are publiclybsvada all the
data sets used in this paper, have already passed some quality cheldks stiraeone has already
found some interesting structure in them. Secondly, and as a more impogsony¢he traditional
permutation tests easily regard the results as significant even if there is slidfteclass structure
present because in the corresponding permuted data sets there isratrcletsire, especially if the
original data set is large.

Furthermore, the few results which were regarded as nonsignificanilesthl are with such
classifiers that have not performed well on the data. That is, the otlesifedas have produced
smaller classification errors on the same data sets, and, in contrast, thelé® aee regarded as
significant.

Next, we consider the results for permuting the features inside each ttiasss, Test 2. The
results show that there are actually now almost equal amount of nonsagmiied significant results
with respect to Test 2. This means that in many data sets the original strungigie the classes is
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Decision Tree

Original Test1 Test 2

Data Set Err. (Std)  Err. (Std) p-val. Err. (Std) p-val.
Audiology 0.22(0.01) 0.82(0.03) 0.001 0.23(0.02).482
Autos 0.19(0.01) 0.76(0.04) 0.001 0.38(0.04) 0.001
Breast 0.26 (0.01) 0.30(0.00) 0.001 0.29(0.02).116
Glass 0.33(0.02) 0.72(0.03) 0.001 0.34(0.03).457
Hepatitis 0.22 (0.02) 0.23(0.02)0.319 0.15(0.03) 0.955
lonosphere 0.10(0.01) 0.38(0.02) 0.001 0.07 (0.00)964

= s 0.05(0.01) 0.67(0.03) 0.001 0.05(0.01p.765

(% Lymph 0.22 (0.02) 0.51(0.05) 0.001 0.23(0.049.437
Promoters 0.21 (0.04) 0.50(0.06) 0.002 0.22(0.09)377
Segment 0.13(0.02) 0.86(0.03) 0.001 0.17 (0.02§)132
Sonar 0.27 (0.02) 0.49(0.03) 0.001 0.27 (0.03).507
Spect 0.19 (0.01) 0.22(0.01) 0.004 0.15(0.02).966
Tumor 0.58 (0.01) 0.82(0.02) 0.001 0.60(0.029.138
\Votes 0.03(0.00) 0.42(0.02) 0.001 0.03(0.019.791
Zoo 0.07 (0.01) 0.64(0.03) 0.001 0.07 (0.019.593
Abalone 0.79(0.01) 0.89(0.00) 0.01 0.67(0.011.00
Anneal 0.07 (0.01) 0.24(0.00) 0.01 0.13(0.01) o0.01
Balance 0.22 (0.01) 0.55(0.02) 0.01 0.29(0.02) o0.01
Car 0.08 (0.00) 0.30(0.00) 0.01 0.26(0.01) o0.01
German 0.29 (0.01) 0.32(0.01) 0.01 0.28(0.01p.66

g Mushroom 0.00 (0.00) 0.50(0.01) 0.01 0.01(0.00) 0.01

§ Musk 0.03(0.00) 0.16(0.00) 0.01 0.09(0.00) 0.01

= Pima 0.25(0.01) 0.35(0.01) 0.01 0.24(0.010.67
Satellite 0.14 (0.00) 0.81(0.00) 0.01 0.07(0.001.00
Spam 0.07 (0.00) 0.40(0.00) 0.01 0.06(0.00}.00
Splice 0.06 (0.00) 0.60(0.01) 0.01 0.07(0.01) o0.01
Tic-tac-toe 0.15(0.01) 0.36(0.01) 0.01 0.30(0.01) o0.01
Yeast 0.44 (0.01) 0.76(0.01) 0.01 0.47(0.01p.03
Adult 0.00 (0.00) 0.24 (0.00) 0.01 0.00(0.00)1.00

o Chess 0.46 (0.00) 0.89(0.00) 0.01 0.77(0.00) o0.01

< Connect-4 0.25(0.00) 0.34(0.00) 0.01 0.33(0.00) 0.01

' Letter 0.16 (0.01) 0.96 (0.00) 0.01 0.38(0.01) o0.01
Shuttle 0.00(0.00) 0.21(0.00) 0.01 0.01(0.00) o0.01

Table 3: Classification errors and empirigalvalues obtained with Decision Tree classifier for
Test 1 and Test 2. The empiricglvalues are calculated over 1000 randomized samples for small
data sets and over 100 randomized samples for medium and large datalaessfic@tion on the
original data is repeated ten times. In the table, the average values andrdtdadiations of the
classification errors are given. Bofsvalues correspond to nonsignificant results when the false
discovery rate is restricted below 0.05 with Benjamini and Hochberg (1&8&pach.
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Naive Bayes
Original Test1 Test 2
Data Set Err. (Std)  Err. (Std) p-val. Err. (Std) p-val.
Audiology 0.27 (0.00) 0.79(0.03) 0.001 0.26(0.019.869
Autos 0.43(0.01) 0.79(0.04) 0.001 0.22(0.02).000
Breast 0.27 (0.01) 0.33(0.02) 0.001 0.24(0.02).959
Glass 0.52 (0.02) 0.81(0.05) 0.001 0.45(0.02).994
Hepatitis 0.16 (0.01) 0.30(0.05) 0.001 0.09 (0.020.000
lonosphere 0.17 (0.00) 0.46 (0.03) 0.001 0.01(0.01)000
= s 0.05(0.01) 0.67(0.05) 0.001 0.01(0.01p.999
(% Lymph 0.16 (0.01) 0.53(0.05) 0.001 0.11 (0.029.995
Promoters 0.08 (0.01) 0.50(0.06) 0.001 0.07 (0.0B)746
Segment 0.21(0.01) 0.86(0.03) 0.001 0.13(0.01)000
Sonar 0.32(0.01) 0.50(0.04) 0.001 0.13(0.02).000
Spect 0.21 (0.01) 0.25(0.03)0.077 0.07 (0.01) 1.000
Tumor 0.50 (0.01) 0.81(0.02) 0.001 0.49(0.029.751
\Votes 0.10 (0.00) 0.44 (0.02) 0.001 0.00 (0.003.000
Zoo 0.03 (0.00) 0.81(0.05) 0.001 0.03(0.01p.541
Abalone 0.76 (0.00) 0.88(0.01) 0.01 0.56(0.011.00
Anneal 0.35(0.01) 0.36 (0.04) 0.65 0.31(0.01) 1.00
Balance 0.09 (0.00) 0.54(0.02) 0.01 0.24(0.01) o0.01
Car 0.14 (0.00) 0.30(0.00) 0.01 0.24(0.01) o0.01
German 0.25(0.00) 0.33(0.01) 0.01 0.23(0.01).00
g Mushroom 0.04 (0.00) 0.50(0.01) 0.01 0.00 (0.00}1.00
§ Musk 0.16 (0.00) 0.34(0.06) 0.01 0.02(0.00)1.00
= Pima 0.24 (0.00) 0.37(0.01) 0.01 0.22(0.010.99
Satellite 0.20 (0.00) 0.80(0.02) 0.01 0.00 (0.001.00
Spam 0.20 (0.00) 0.49(0.05) 0.01 0.10(0.00}.00
Splice 0.05(0.00) 0.53(0.01) 0.01 0.03(0.001.00
Tic-tac-toe 0.30(0.00) 0.35(0.01) 0.01 0.28(0.01}.00
Yeast 0.42 (0.00) 0.71(0.01) 0.01 0.42(0.01p.36
Adult 0.02 (0.00) 0.24(0.01) 0.01 0.01(0.00)0.96
o Chess 0.66 (0.00) 0.84 (0.00) 0.01 0.70(0.00) 0.01
< Connect-4 0.28(0.00) 0.34(0.00) 0.01 0.29(0.009.19
—  Letter 0.36 (0.00) 0.96 (0.00) 0.01 0.26(0.00)1.00
Shuttle 0.10(0.01) 0.47(0.24) 0.01 0.04(0.011.00

Table 4: Classification errors and empirigavalues obtained with Naive Bayes classifier for Test 1
and Test 2. The empiricgtvalues are calculated over 1000 randomized samples for small data sets
and over 100 randomized samples for medium and large data sets. Classgificethe original data

is repeated ten times. In the table, the average values and standard ds\oatiom classification
errors are given. Bolg-values correspond to nonsignificant results when the false discrateris
restricted below 0.05 with Benjamini and Hochberg (1995) approach.

1855



OJALA AND GARRIGA

1-Nearest Neighbor

Original Test1 Test 2
Data Set Err. (Std)  Err. (Std) p-val. Err. (Std) p-val.
Audiology 0.26 (0.01) 0.86(0.03) 0.001 0.32(0.03).030
Autos 0.26 (0.01) 0.77(0.03) 0.001 0.45(0.03) 0.001
Breast 0.31(0.02) 0.41(0.03) 0.007 0.32(0.03).324
Glass 0.30(0.01) 0.74(0.04) 0.001 0.42(0.03) 0.001
Hepatitis 0.19(0.01) 0.33(0.04) 0.002 0.14(0.03).970
lonosphere 0.13(0.00) 0.46 (0.03) 0.001 0.26 (0.01) 0.001
= s 0.05 (0.00) 0.66 (0.05) 0.001 0.02(0.01p.962
(% Lymph 0.18 (0.02) 0.53(0.04) 0.001 0.20 (0.03p.307
Promoters  0.19 (0.02) 0.50 (0.06) 0.001 0.26 (0.09)083
Segment 0.14 (0.01) 0.86(0.03) 0.001 0.15(0.0R)266
Sonar 0.13(0.01) 0.50(0.04) 0.001 0.27(0.03) 0.001
Spect 0.24 (0.02) 0.32(0.04) 0.011 0.18(0.01.970
Tumor 0.66 (0.02) 0.88(0.02) 0.001 0.62(0.02).860
\Votes 0.08 (0.01) 0.47(0.03) 0.001 0.01(0.003.000
Z0oo 0.03(0.01) 0.75(0.05) 0.001 0.04 (0.029.333
Abalone 0.80 (0.00) 0.90(0.00) 0.01 0.68(0.011.00
Anneal 0.05(0.00) 0.40(0.02) 0.01 0.08(0.01) 0.01
Balance 0.20(0.01) 0.57(0.02) 0.01 0.35(0.02) o0.01
Car 0.22(0.01) 0.41(0.05) 0.01 0.29(0.01) o0.01
German 0.28(0.01) 0.42(0.02) 0.01 0.33(0.02) o0.01
g Mushroom 0.00 (0.00) 0.50(0.01) 0.01 0.01(0.00) 0.01
§ Musk 0.04 (0.00) 0.26 (0.00) 0.01 0.53(0.01) o0.01
= Pima 0.29 (0.00) 0.45(0.02) 0.01 0.27(0.020.88
Satellite 0.10(0.00) 0.81(0.01) 0.01 0.01(0.001.00
Spam 0.09 (0.00) 0.48(0.01) 0.01 0.09 (0.00p.31
Splice 0.24 (0.01) 0.61(0.01) 0.01 0.30(0.01) 0.01
Tic-tac-toe 0.21(0.02) 0.44(0.07) 0.01 0.38(0.02) 0.01
Yeast 0.47 (0.01) 0.78(0.01) 0.01 0.52(0.01) 0.01
Adult 0.02 (0.00) 0.36(0.00) 0.01 0.01(0.00)1.00
o Chess 0.48 (0.00) 0.90(0.00) 0.01 0.80(0.00) 0.01
< Connect-4 0.34(0.00) 0.50(0.00) 0.01 0.43(0.00)0 0.01
—  Letter 0.06 (0.00) 0.96 (0.00) 0.01 0.46(0.00) 0.01
Shuttle 0.00 (0.00) 0.36(0.00) 0.01 0.02(0.00) o0.01
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Table 5: Classification errors and empirigalzalues obtained with 1-Nearest Neighbor classifier
for Test 1 and Test 2. The empiricplvalues are calculated over 1000 randomized samples for
small data sets and over 100 randomized samples for medium and largetda@iassification on

the original data is repeated ten times. In the table, the average values raardtdeviations of
the classification errors are given. Bglevalues correspond to nonsignificant results when the false
discovery rate is restricted below 0.05 with Benjamini and Hochberg (1&8&pach.
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Support Vector Machine

Original Test1 Test 2

Data Set Err. (Std)  Err. (Std) p-val. Err. (Std) p-val.
Audiology 0.20(0.01) 0.83(0.03) 0.001 0.20(0.02p.443
Autos 0.30(0.02) 0.73(0.04) 0.001 0.26(0.03).873
Breast 0.30 (0.01) 0.31(0.01)0.191 0.25(0.02) 0.970
Glass 0.42 (0.01) 0.65(0.03) 0.001 0.43(0.02).363
Hepatitis 0.14 (0.01) 0.21(0.00) 0.001 0.08 (0.02).999
lonosphere 0.12 (0.01) 0.37(0.01) 0.001 0.08 (0.00)995

= s 0.04 (0.01) 0.67(0.05) 0.001 0.02(0.01p.990

(% Lymph 0.14 (0.01) 0.51(0.05) 0.001 0.12(0.03p.686
Promoters 0.09 (0.01) 0.50(0.06) 0.001 0.10(0.08)455
Segment 0.12(0.01) 0.86(0.03) 0.001 0.12(0.0D)529
Sonar 0.23(0.02) 0.49(0.04) 0.001 0.10(0.02).999
Spect 0.17 (0.01) 0.21(0.00) 0.001 0.08 (0.02).000
Tumor 0.53(0.01) 0.77(0.01) 0.001 0.53(0.020.406
\Votes 0.04 (0.00) 0.39(0.01) 0.001 0.01(0.003.000
Z00 0.04 (0.00) 0.66 (0.04) 0.001 0.04 (0.01p.666
Abalone 0.75(0.00) 0.84(0.00) 0.01 0.57(0.011.00
Anneal 0.15(0.00) 0.24 (0.00) 0.01 0.14(0.010.78
Balance 0.12(0.01) 0.54(0.03) 0.01 0.25(0.01) o0.01
Car 0.06 (0.00) 0.30(0.00) 0.01 0.25(0.01) o0.01
German 0.25(0.00) 0.30(0.00) 0.01 0.22(0.01).00

g Mushroom 0.00 (0.00) 0.50(0.01) 0.01 0.00(0.00) 0.01

% Musk 0.05(0.00) 0.15(0.00) 0.01 0.01(0.00)1.00

= Pima 0.23(0.00) 0.35(0.00) 0.01 0.21(0.01n.00
Satellite 0.13(0.00) 0.77(0.00) 0.01 0.00 (0.001.00
Spam 0.10 (0.00) 0.39(0.00) 0.01 0.04 (0.00}.00
Splice 0.07 (0.00) 0.48(0.00) 0.01 0.06(0.010.99
Tic-tac-toe 0.02 (0.00) 0.37(0.01) 0.01 0.30(0.01) o0.01
Yeast 0.43(0.00) 0.69(0.01) 0.01 0.42(0.01p.72
Adult 0.00 (0.00) 0.24 (0.00) 0.01 0.00(0.00)1.00

o Chess 0.66 (0.01) 0.85(0.00) 0.01 0.72(0.00) o0.01

< Connect-4 0.24(0.00) 0.45(0.07) 0.01 0.29(0.00) 0.01

' Letter 0.19(0.01) 0.96(0.00) 0.01 0.32(0.00) o0.01
Shuttle 0.04 (0.01) 0.21(0.00) 0.01 0.04 (0.00p.45

Table 6: Classification errors and empirigavalues for the Support Vector Machine classifier for
Test 1 and Test 2. The empiricglvalues are calculated over 1000 randomized samples for small
data sets and over 100 randomized samples for medium and large datalaessfic@tion on the
original data is repeated ten times. In the table, the average values andrdtdadiations of the
classification errors are given. Bofsvalues correspond to nonsignificant results when the false
discovery rate is restricted below 0.05 with Benjamini and Hochberg (1&8&pach.
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pretty simple, or it is not used by the classification algorithm. That is, the dalfer from each
other, from the point of view of the classifiers, mainly due to their differehtie distributions of
the features and not due to some dependency between the featurgesinThany data sets the class
structure is explained by considering the features independently obéaeh

The results with Naive Bayes classifier are in line with the analysis in SectionThat is,
practically all of the results are nonsignificant with Naive Bayes with Test i2 explicitly assumes
independence of the features. However, there are three data sets tivdeesults are regarded
as significant with Test 2: Balance, Car and Chess. These three tltesm to contain a good
balance between the features that makes the Naive Bayes classifigotongestter on the original
data than on the randomized data sets. That is, each instance contaifysatdeast one feature
which makes the classification easy whereas in the randomized data setwr¢éhiestances that do
not have separating values in any of the features. Thus, applyin@ Tedtlaive Bayes classifier
does not tell whether the classifier uses the interdependency betwefeatines but whether the
data are such that usually at least one feature in each instance hassepbrating value.

Compared to the other three classifiers, Naive Bayes is having both bedtevaase perfor-
mance with all kind of data sets. Surprisingly, however, Naive Bayesrfenpging better also in a
few such cases where the other classifiers are exploiting the featwerdy. For example, with
data sets Splice and Yeast the Naive Bayes classifier has the bestcgcaltihough the Decision
Tree and 1-Nearest Neighbor classifiers are significant with Testh2is T a classifier is using
the feature dependency in the classification, it does not directly imply tina¢ sther classifier
could not do better without using the dependency. In such case, koweis likely that neither
of the classifiers are optimal and we could obtain even better performgrmnibining the good
properties of both the classifiers.

In the rest of this section, we will consider only the three other classifiaragly Decision Tree,
1-Nearest Neighbor and Support Vector Machine classifiers. Tserelear difference between the
small and large data sets with these classifiers. The results with Test 2 fbdatassets are almost
all nonsignificant whereas the results for large data sets are almostréficsigt. Only the Adult
data set from large data sets seems to contain simple class structure. Atttedllgcision Tree and
Support Vector Machine classifiers are able to classify correctly all gieséenples on the original
Adult data set as well as on the randomized versions of the Adult dathBettd®. The results with
the studied small UCI data sets are understandable, as many of them e tkncontain fairly
simple structure.

The results with the three classifiers are close to each other with all tegsisBgly, however,
1-Nearest Neighbor classifier has been able to use the interdepgruotneen the features the
most, that is, it contains the most of small, significantalues with Test 2. However, other more
complex classifiers could be able to find more data sets where the depghdémneen the features
is useful in classification.

Let us now study the results with Test 2 in more detail. Consider the well-kihgsvdata set
that contains measurements of three different species of iris flowersférar features: the length
and the width of sepal and petal. It turns out that the classes are alma@styliseparable given
the length of petal or given the width of petal. Although there is a high poditiear correlation
between the length and width of petal, it is not important for the classificatguitias both features
can explain the classes by themselves.

Actually, observe that for the Iris data set with Test 2, the classificatimr en the random-
ized samples is even smaller than in the original data set. This phenomenonaisiexy the
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positive linear correlation between the length and the width of petal, whiclppisas after the
randomizations, as seen in Figure 2 in Section 3.1. Randomizations eliminate fntlostrows
containing extreme values for both of the features inside the classes.tli@esassifiers do not use
the dependency between these two features, as their correlation ddwedmion classifying the Iris
data. When this positive correlation is eliminated per classes, the separatioeeb the classes
increases, and therefore, the classification accuracy is improved.

For most of the data sets where the empirigafalues are very high for the null hypothesis of
Test 2, there are either outliers inside the classes or positive correlatiwrdn some features that
is not used in the classification as it does not help in separating the clessexample, the data set
\otes contains congressional “yes” and “no” voting records fropubéicans and democrats. There
are few voting cases where the opinion of the voter clearly reveals the pblitevs. However,
there are some outliers, that is, people who have behaved more like désraltinaugh they are
republicans, or vice versa, that vanish after randomization. Nevesthelleese reasons do not
remove the fact that the features independently classify the voting secord

Finally, we discuss the results for the Balance data set. With all classifierdabsification
results of the Balance data set are significant under the null hypotHeRsta2, that is, the clas-
sifiers have exploited the dependency between the features. The igrottihe data supports
this: The data contains four features of a balance scale: left-weightligtftace, right-weight and
right-distance. The scale is in balance if left-weight times left-distance eqgalsweight times
right-distance. There are three classes: the scale tips to the left, to theorightn balance. Itis
clear that the dependency between the features is necessary &t atassification result.

Note however, that understanding the structure inside the data sets tivhelassification re-
sults are regarded as significant under the null hypothesis of Tesjureés more study, that is,
we just know that the features do not explain the class structure indepéyidAnalyzing the de-
pendency structure of the features is then a further task. But asteeemjll hypothesis of Test 2
explains about half of the good classification results in the 33 data sets.

We conclude the experiments with a summary about the running times of the mettfmdsed
MATLAB for producing the randomized data sets and Weka for perforrthiegclassification on a
2.2 GHz Opteron with 4 GB of main memory. The running times of producing amgoraization
of each data set and the running times of calculating the classification enrthe original data sets
and on the randomized data sets are given in Table 7. The running timesdoicprg the random-
ized data sets are negligible compared to the running times of calculating thiécdtiss errors
of the data sets, that is, training and testing the classifiers. There is, éipwesmall difference
between the running times of obtaining the classification errors on the oragidahe randomized
data sets. Usually, the classification is a little bit faster on the original datassebththe random-
ized data sets. Furthermore, the classification on randomized data setst @figausually faster
than on randomized data sets of Test 1. The reason is that it is hardechoatedassifier on a
randomized data set which has usually a weaker class structure thargihalatata set. Among
the two randomization tests, Test 2 generally preserves the original tlastsige the most because
it preserves some connection between the data and the class labels.

6. Conclusions

We have considered the problem of assessing the classifier perf@miéthcpermutation tests in
the statistical framework of hypothesis testing. We have described twoattitfieull hypotheses and
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Rand. Decision Tree Naive Bayes 1-Near. Neighbor Supp.. Wath.
Data Set TL T2 Or. T1 T2 Or. T1 T2 Or. T1 T2 Or. T1 T2
Audiology 00 00 19 20 15 18 18 18 18 15 18 39 36 36

Autos 00 00 05 05 05 05 04 04 05 04 04 32 22 23
Breast 00 00 05 04 04 04 04 04 05 05 04 12 09 07
Glass 00 00 04 04 03 03 03 02 03 02 02 24 23 23

Hepatits 0.0 00 04 03 03 03 03 02 03 03 03 05 04 04
lonosphere 0.0 00 12 10 09 08 07 07 09 08 09 12 130 1.
Iris 00 00 02 02 01 02 01 01 02 01 01 05 06 04

g Lymph 00 00 04 03 03 03 03 03 03 03 03 12 12 11
“ promoters 0.0 0.0 0.8 06 07 06 06 06 06 06 06 1.0 09 08
Segment 00 00 05 06 04 04 03 03 04 03 04 36 24 23
Sonar 00 00 12 09 11 09 07 07 09 09 09 11 11 0.9
Spect 00 00 07 06 06 06 08 06 08 06 06 08 08 07
Tumor 00 00 09 08 08 08 07 06 08 08 08 30 21 26
\otes 00 00 10 08 07 09 09 07 10 09 08 12 11 11
Z00 00 00 02 02 02 02 02 02 02 02 02 31 31 26
Abalone 00 00 70 89 67 31 30 30 76 7.8 7.8 54 78 60
Anneal 00 00 29 29 29 23 23 23 31 31 32 47 93 46
Balance 00 00 05 05 05 04 03 04 05 05 04 09 10 o038
Car 00 00 14 15 14 14 14 13 18 18 17 51 80 7.7
German 00 00 18 15 15 16 12 15 20 21 21 94 63 938
% Mushroom 0.0 0.0 21 24 21 20 21 20 68 70 70 60 1197 26
g Musk 0.0 0.2 130 110 176 55 63 80 230 309 318 502 5816 86
= Pima 00 00 08 07 09 07 07 05 08 07 08 09 08 09
Satellite 00 00 26 128 21 13 14 14 59 62 81 19 157 15
Spam 00 01 32 16 23 14 14 14 39 56 56 21 38 17
Splice 00 00 17 17 16 15 16 15 36 28 28 87 1922 95
Tic-tac-toe 00 00 10 10 10 10 10 10 11 11 12 31 356 6
Yeast 0.0 00 17 22 16 13 10 13 14 14 1.7 5.2 5.3 4.9
Adult 00 04 55 60 58 56 62 67 315 325 304 77 134 63
o Chess 00 01 71 57 54 45 54 59 131 105 111 93 89 102
s Connect-4 0.0 0.9 379 380 292 387 391 291 1161 1297 1285 975 XBIEH
— Letter 0.0 01 37 45 42 32 45 34 95 103 99 43 50 45

Shuttle 0.0 0.2 176 139 142 141 143 138 339 419 319 149 170 140

Table 7: Average running times in seconds for obtaining one randomizatision®f each data set
for Test 1 (T1) and Test 2 (T2), as well as running times for obtainireggatessification error for the

four studied classifiers on each original data set (Or.) and on eadbrmmared version of each data
set (T1, T2). The running times are the average values over all the saprptiuced. Note that the
classification procedures for small, medium and large data sets differsfacmother.
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shown how samples can be produced from the corresponding null mogdsimple permutation
methods. Each test provides an empiripatalue for the classifier performance; eapivalue
depends on the original data (whether it contains the type of structurel)tesid the classifier
(whether it is able to use the structure). The two null hypotheses camiraaiized as follows: (1)
the data and the class labels are independent; and (2) the features ardyrimdapendent given
the class label.

Each test evaluates whether a certain structure (label—-class depgnddependency between
features inside a class) is present in the data, and whether the clasmifiese such structure
for obtaining good results. If the original data really contains the strudianeg tested, then a
significant classifier should use such information and thus obtain glealue. If the classifier is
not significant then it will not notice the structure from the original datathod, get a higlp-value.
On the other hand, if the original data does not contain any structure titeadlall p-values should
be very high.

We have performed extensive experiments both on synthetic and reaEdatriments showed
that the traditional permutation test (i.e., data and class labels are indefjeisdeot useful in
studying real data sets as it produces a sipalalue even if there is only a weak class structure
present. Compared to this, the new test proposed, that is, permuting tilne$siaside a class, was
able to evaluate the underlying reasons for the classifier performartbe ogal data sets. Surpris-
ingly, however, in about half of the studied real data sets the class s&uotks fairly simple; the
dependency between the features is not used in classifying the data witluthested classifiers.
In such cases, there might be no reason to use the chosen classHids, Either the same or even
better performance could be obtained by using some simpler methods, ordbificddion perfor-
mance could be improved further by taking some useful unused featpeadency into account by
changing the classification algorithm.

Interpreting the descriptive information provided by Test 2 needs Hatee classifier is signif-
icant with Test 2, then the data really contains a feature dependencydt@adsifier is exploiting.
However, if the classifier is not significant with Test 2, that is, we obtaiigh p-value, there are
three different possibilities: (1) there are no dependencies betweéssatiaees in the data; (2) there
are some dependencies between the features in the data but they doessértbe class separation;
or (3) there are useful dependencies between the features in the aatactkase the class sepa-
ration but the chosen classifier is not able to exploit them. In the third casejowld like to find
such a classifier that could use the feature dependency to improve thicdion performance.
However, in general, when a highvalue is obtained with Test 2, we cannot know which of these
applies to the data and to the chosen classifier. Thus the best we can doririaethe search for a
better classifier by assuming that any of them could be true. That is, we teyaomplex classifiers
that could use the possible existing feature dependency, as well as sitagkifiers that could per-
form better if no feature dependency exists. Nevertheless, the apswwided by Test 2 is definite,
that is, it tells whether the chosen classifier uses feature dependencyravénpe classification
performance.

Future work should explore the use of Test 2 for selecting the besirdisant features for
classifiers, in similar fashion as Test 1 has been used for decision tréegher biological appli-
cations (Frank, 2000; Frank and Witten, 1998; Maglietta et al., 2007, Atlsvould be useful to
extend the setting to unsupervised learning, such as clustering. In additiwa study is needed
for exploiting the descriptive information provided by Test 2. Specificalbyy should we proceed
to improve and study the classification performance when apigilue is obtained with Test 2?
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