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Abstract
We explore the framework of permutation-basedp-values for assessing the performance of classi-
fiers. In this paper we study two simple permutation tests. The first test assess whether the classifier
has found a real class structure in the data; the corresponding null distribution is estimated by per-
muting the labels in the data. This test has been used extensively in classification problems in
computational biology. The second test studies whether theclassifier is exploiting the dependency
between the features in classification; the corresponding null distribution is estimated by permut-
ing the features within classes, inspired by restricted randomization techniques traditionally used
in statistics. This new test can serve to identify descriptive features which can be valuable infor-
mation in improving the classifier performance. We study theproperties of these tests and present
an extensive empirical evaluation on real and synthetic data. Our analysis shows that studying the
classifier performance via permutation tests is effective.In particular, the restricted permutation
test clearly reveals whether the classifier exploits the interdependency between the features in the
data.

Keywords: classification, labeled data, permutation tests, restricted randomization, significance
testing

1. Introduction

Building effective classification systems is a central task in data mining and machine learning.
Usually, a classification algorithm builds a model from a given set of data records in which the labels
are known, and later, the learned model is used to assign labels to new data points. Applications of
such classification setting abound in many fields, for instance, in text categorization, fraud detection,
optical character recognition, or medical diagnosis, to cite some.

For all these applications, a desired property of a good classifier is the power of generalization
to new, unknown instances. The detection and characterization of statistically significant predictive
patterns is crucial for obtaining a good classification accuracy that generalizes beyond the training
data. Unfortunately, it is very often the case that the number of available data points with labels is
not sufficient. Data from medical or biological applications, for example, are characterized by high
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Figure 1: Examples of two 16×8 nominal data setsD1 andD2 each having two classes. The last
column in both data sets denotes the class labels (+, –) of the samples in the rows.

dimensionality (thousands of features) and small number of data points (tensof rows). An important
question is whether we should believe in the classification accuracy obtained by such classifiers.

The most traditional approach to this problem is to estimate the error of the classifier by means
of cross-validation or leave-one-out cross-validation, among others.This estimate, together with a
variance-based bound, provides an interval for the expected errorof the classifier. The error estimate
itself is the best statistics when different classifiers are compared againsteach other (Hsing et al.,
2003). However, it has been argued that evaluating a single classifier with an error measurement
is ineffective for small amount of data samples (Braga-Neto and Dougherty, 2004; Golland et al.,
2005; Isaksson et al., 2008). Also classical generalization bounds are not directly appropriate when
the dimensionality of the data is too high; for these reasons, some recent approaches using filtering
and regularization alleviate this problem (Rossi and Villa, 2006; Berlinet et al., 2008). Indeed,
for many other general cases, it is useful to have other statistics associated to the error in order
to understand better the behavior of the classifier. For example, even if a classification algorithm
produces a classifier with low error, the data itself may have no structure. Thus the question is, how
can we trust that the classifier has learned a significant predictive pattern in the data and that the
chosen classifier is appropriate for the specific classification task?

For instance, consider the small toy example in Figure 1. There are two nominal data matrices
D1 andD2 of sizes 16×8. Each row (data point) has two different values present,x ando. Both
data sets have a clear separation into the two given classes,+ and–. However, it seems at first sight
that the structure within the classes for data setD1 is much simpler than for data setD2. If we train
a 1-Nearest Neighbor classifier on the data sets of Figure 1, we have that the classification error
(leave-one-out cross-validation) is 0.00 on bothD1 andD2. However, is it true that the classifier is
using a real dependency in the data? Or are the dependencies inD1 or D2 just a random artifact of
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some simple structure? It turns out that the good classification result inD1 is explained purely by
the different value distributions inside the classes whereas inD2 the interdependency between the
features is important in classification. This example will be analyzed in detail later on in Section 3.3.

In recent years, a number of papers have suggested to use permutation-basedp-values for as-
sessing the competence of a classifier (Golland and Fischl, 2003; Golland et al., 2005; Hsing et al.,
2003; Jensen, 1992; Molinaro et al., 2005). Essentially, the permutation test procedure measures
how likely the observed accuracy would be obtained by chance. Ap-value represents the fraction
of random data sets under a certain null hypothesis where the classifier behaved as well as or better
than in the original data.

Traditional permutation tests suggested in the recent literature study the null hypothesis that
the features and the labels are independent, that is, that there is no difference between the classes.
The null distribution under this null hypothesis is estimated by permuting the labelsof the data set.
This corresponds also to the most traditional statistical methods (Good, 2000), where the results on
a control group are compared against the results on a treatment group. This simple test has been
proven effective already for selecting relevant genes in small data samples (Maglietta et al., 2007) or
for attribute selection in decision trees (Frank, 2000; Frank and Witten, 1998). However, the related
literature has not performed extensive experimental studies for this traditional test in more general
cases.

The goal of this paper is to study permutation tests for assessing the properties and performance
of the classifiers. We first study the traditional permutation test for testing whether the classifier has
found a real class structure, that is, a real connection between the dataand the class labels. Our
experimental studies suggest that this traditional null hypothesis leads to very low p-values, thus
rendering the classifier significant most of the time even if the class structureis weak.

We then propose a test for studying whether the classifier is exploiting dependency between
some features for improving the classification accuracy. This second testis inspired by restricted
randomization techniques traditionally used in statistics (Good, 2000). We study its relation to
the traditional method both analytically and empirically. This new test can serve as a method for
obtaining descriptive properties for classifiers, namely whether the classifier is using the feature
dependency in the classification or not. For example, many existing classification algorithms are
like black boxes whose functionality is hard to interpret directly. In such cases, indirect methods
are needed to get descriptive information for the obtained class structurein the data.

If the studied data set is known to contain useful feature dependencies that increase the class
separation, this new test can be used to evaluate the classifier against this knowledge. For example,
often the data is gathered by a domain expert having deeper knowledge ofthe inner structure of
the data. If the classifier is not using a known useful dependency, the classifier performance could
be improved. For example, with medical data, if we are predicting the blood pressure of a person
based on the height and the weight of the individual, the dependency between these two features is
important in the classification as large body mass index is known to be connected with high blood
pressure. However, both weight and height convey information aboutthe blood pressure but the
dependency between them is the most important factor in describing the bloodpressure. Of course,
in this case we could introduce a new feature, the body mass index, but in general, this may not be
practical; for example, introducing too many new features can make the classification ineffective or
too time consuming.

If nothing is known previously from the structure of the data, Test 2 can give some descriptive in-
formation for the obtained class structure. This information can be useful as such for understanding
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the properties of the classifier, or it can guide the search towards an optimal classifier. For example,
if the classifier is not exploiting the feature dependency, there might be no reason to use the chosen
classifier as either more complex classifiers (if the data contains useful feature dependencies) or
simpler classifiers (if the data does not contain useful feature dependencies) could perform better.
Note, however, that not all feature dependencies are useful in predicting the class labels. Therefore,
in the same way that traditional permutation tests have already been proven useful for selecting
relevant features in some contexts as mentioned above (Maglietta et al., 2007; Frank, 2000; Frank
and Witten, 1998), the new test can serve for selecting combinations of relevant features to boost
the classifier performance for specific applications.

The idea is to provide users with practicalp-values for the analysis of the classifier. The per-
mutation tests provide useful statistics about the underlying reasons for theobtained classification
result. Indeed, no test is better than the other, but all provide us with information about the classifier
performance. Eachp-value is a statistic about the classifier performance; eachp-value depends on
the original data (whether it contains some real structure or not) and the classifier (whether it is able
to use certain structure in the data or not).

The remaining of the paper is organized as follows. In Section 2, we give the background to
classifiers and permutation-testp-values, and discuss connections with previous related work. In
Section 3, we describe two simple permutation methods and study their behavior on the small toy
example in Figure 1. In Section 4, we analyze in detail the properties of the different permutations
and the effect of the tests for synthetic data on four different classifiers. In Section 5, we give
experimental results on various real data sets. Finally, Section 6 concludes the paper.1

2. Background

Let X be ann×m data matrix. For example, in gene expression analysis the values of the matrixX
are numerical expression measurements, each row is a tissue sample and each column represents a
gene. We denote thei-th row vector ofX by Xi and thej-th column vector ofX by X j . Rows are also
called observations or data points, while columns are also called attributes or features. Observe that
we do not restrict the data domain ofX and therefore the scale of its attributes can be categorical or
numerical.

Associated to the data pointsXi we have a class labelyi . We assume a finite set of known class
labelsY , soyi ∈ Y . Let D be the set of labeled dataD = {(Xi ,yi)}n

i=1. For the gene expression
example above, the class labels associated to each tissue sample could be, for example, “sick” or
“healthy”.

In a traditional classification task the aim is to predict the label of new data points by training
a classifier fromD. The function learned by the classification algorithm is denoted byf : X →
Y . A test statistic is typically computed to evaluate the classifier performance: this can be either
the training error, cross-validation error or jackknife estimate, among others. Here we give as an
example the leave-one-out cross-validation error,

e( f ,D) =
1
n

n

∑
i=1

I( fD\Di
(Xi) 6= yi) (1)

1. A shorter version of this paper appears in the proceedings of the IEEE International Conference on Data Mining (Ojala
and Garriga, 2009). This is an improved version based on valuable comments by reviewers which includes: detailed
discussions and examples, extended theoretical analysis of the tests including statistical power in special case scenar-
ios, related work comparisons and a thorough experimental evaluation with large data sets.
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where fD\Di
is the function learned by the classification algorithm by removing thei-th observation

from the data and I(·) is the indicator function.
It has been recently argued that evaluating the classifier with an error measurement is ineffective

for small amount of data samples (Braga-Neto and Dougherty, 2004; Golland et al., 2005; Hsing
et al., 2003; Isaksson et al., 2008). Also classical generalization bounds are inappropriate when the
dimensionality of the data is too high. Indeed, for many other general cases, it is useful to have other
statistics associated to the errore( f ,D) in order to understand better the behavior of the classifier.
For example, even if a consistent algorithm produces a classifier with low error, the data itself may
have no structure.

Recently, a number of papers have suggested to use permutation-basedp-values for assessing
the competence of a classifier. Essentially, the permutation test procedure isused to obtain ap-value
statistic from a null distribution of data samples, as described in Definition 1. InSection 3.1 we will
introduce two different null hypotheses for the data.

Definition 1 (Permutation-basedp-value) Let D̂ be a set of k randomized versions D′ of the orig-
inal data D sampled from a given null distribution. The empirical p-value for the classifier f is
calculated as follows (Good, 2000),2

p=
|{D′ ∈ D̂ : e( f ,D′)≤ e( f ,D)}|+1

k+1
.

The empiricalp-value of Definition 1 represents the fraction of randomized samples wherethe
classifier behaved better in the random data than in the original data. Intuitively, it measures how
likely the observed accuracy would be obtained by chance, only because the classifier identified in
the training phase a pattern that happened to be random. Therefore, if thep-value is small enough—
usually under a certain threshold, for example,α = 0.05—we can say that the value of the error in
the original data is indeed significantly small and in consequence, that the classifier is significant
under the given null hypothesis, that is, the null hypothesis is rejected.

Ideally the entire set of randomizations ofD should be used to calculate the corresponding
permutation-basedp-value. This is known as theexact randomization test; unfortunately, this is
computationally infeasible in data that goes beyond toy examples. Instead, wewill sample from the
set of all permutations to approximate thisp-value. It is known that the Monte Carlo approximation

of the p-value has a standard deviation of
√

p(1−p)
k , see, for example, Efron and Tibshirani (1993)

and Good (2000), wherep is the underlying truep-value andk is the number of samples used.
Sincep is unknown in practice, the upper bound1

2
√

k
is typically used to determine the number of

samples required to achieve the desired precision of the test, or the value ofthe standard deviation
in the critical point ofp= α whereα is the significance level. Alternatively, a sequential probability
ratio test can be used (Besag and Clifford, 1991; Wald, 1945; Fay et al., 2007), where we sample
randomizations ofD until it is possible to accept or reject the null hypothesis. With these tests, often
already 30 samples are enough for statistical inference with significance level α = 0.05.

2. Notice the addition of 1 in both the denominator and the numerator of the definition. This adjustment is an standard
procedure to compute empiricalp-values and it is justified by the fact that the original databaseD is as well a
randomized version of itself.
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We will specify with more details in the next section how the randomized versionsof the origi-
nal dataD are obtained. Indeed, this is an important question as each randomization method entails
a certain null distribution, that is, which properties of the original data are preserved in the random-
ization test, directly affecting the distribution of the errore( f ,D′). In the following, we will assume
that the number of samplesk is determined by any of the standard procedures just described here.

2.1 Related Work

As mentioned in the introduction, using permutation tests for assessing the accuracy of a classifier
is not new, see, for example, Golland and Fischl (2003), Golland et al. (2005), Hsing et al. (2003)
and Molinaro et al. (2005). The null distribution in those works is estimated bypermuting labels
from the data. This corresponds also to the most traditional statistical methods (Good, 2000), where
the results on a control group are compared against the results on a treatment group. This traditional
null hypothesis is typically used to evaluate one single classifier at a time (that is, one single model)
and we will call it as Test 1 in the next section where the permutation tests are presented.

This simple traditional test has already been proven effective for selecting relevant genes in
small data samples (Maglietta et al., 2007) or for attribute selection in decision trees (Frank, 2000;
Frank and Witten, 1998). Particularly, the contributions by Frank and Witten(1998) show that
permuting the labels is useful for testing the significance of attributes at the leaves of the decision
trees, since samples tend to be small. Actually, when discriminating attributes for adecision tree,
this test is preferable to a test that assumes the chi-squared distribution.

In the context of building effective induction systems based on rules, permutation tests have been
extensively used by Jensen (1992). The idea is to construct a classifier (in the form of a decision
tree or a rule system) by searching in the space of several models generated in an iterative fashion.
The current model is tested against other competitors that are obtained by local changes (such as
adding or removing conditions in the current rules). This allows to find finalclassifiers with less
over-fitting problems. The evaluation of the different models in this local search strategy is done via
permutation tests, using the framework of multiple hypothesis testing (Benjamini and Hochberg,
1995; Holm, 1979). The first test used corresponds to permuting labels—that is, Test 1—while
the second test is a conditional randomization test. Conditionally randomization tests permute the
labels in the data while preserving the overall classification ability of the current classifier. When
tested on data with a conditionally randomized labelling, the current model will achieve the same
score as it does with the actual labelling, although it will misclassify differentobservations. This
conditionally randomization test is effective when searching for models thatare more adaptable to
noise.

The different tests that we will contribute in this paper could be as well usedin this process of
building an effective induction system. However, in general our tests arenot directly comparable to
the conditional randomization tests of Jensen (1992) in the context of this paper. We evaluate the
classifier performance on the different randomized samples, and therefore, creating data set samples
that preserve such performance would only produce alwaysp-values close to one.

The restricted randomization test that we will study in detail later, can be usedfor studying
the importance of dependent features for the classification performance. Related to this, group
variable selection is a method for finding similarities between the features (Bondell and Reich,
2008). In that approach, similar features are grouped together for decreasing the dimensionality
and improving the classification accuracy. Such methods are good for clustering the features while
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doing classification. However, our aim is to test whether the dependency between the features is
essential in the classification and not to reduce the dimensionality and similarities,thus differing
from the objective of group variable selection.

As part of the related work we should mention that there is a large amount of statistical literature
about hypothesis testing (Casella and Berger, 2001). Our contribution isto use the framework of hy-
pothesis testing for assessing the classifier performance by means of generating permutation-based
p-values. How the different randomizations affect thesep-values is the central question we would
like to study. Also sub-sampling methods such as bootstrapping (Efron, 1979) use randomizations
to study the properties of the underlying distribution, but this is not used fortesting the data against
some null model as we intend here.

3. Permutation Tests for Labeled Data

In this section we describe in detail two very simple permutation methods to estimate the null
distribution of the error under two different null hypotheses. The questions for which the two
statistical tests supply answers can be summarized as follows:

Test 1: Has the classifier found a significant class structure, that is, a real connection between the
data and the class labels?

Test 2: Is the classifier exploiting a significant dependency between the featuresto increase the
accuracy of the classification?

Note, that these tests study whether the classifier is using the described properties and not whether
the plain data contain such properties. For studying the characteristics of apopulation represented
by the data, standard statistical test could be used (Casella and Berger, 2001).

Let π be a permutation ofn elements. We denote withπ(y)i the i-th value of the vector label
y induced by the permutationπ. For the general case of a column vectorX j , we useπ(X j) to
represent the permutation of the vectorX j induced byπ. Finally, we denote the concatenation of
column vectors into a matrix byX = [X1,X2, . . . ,Xm].

3.1 Two Simple Permutation Methods

The first permutation method is the standard permutation test used in statistics (Good, 2000). The
null hypothesis assumes that the dataX and the labelsy are independent, that is,p(X,y)= p(X)p(y).
The distribution under this null hypothesis is estimated by permuting the labels inD.

Test 1 (Permute labels)Let D= {(Xi ,yi)}n
i=1 be the original data set and letπ be a permutation

of n elements. One randomized version D′ of D is obtained by applying the permutationπ on the
labels, D′ = {(Xi ,π(y)i)}n

i=1. Compute the p-value as in Definition 1.

A significant classifier for Test 1, that is, obtaining a smallp-value, rejects the null hypothesis
that the features and the labels are independent, meaning that there is no difference between the
classes. Let us now study this by considering the following case analysis.If the original data
contains a real (i.e., not a random effect) dependency between data points and labels, then: (1) a
significant classifierf will use such information to achieve a good classification accuracy and this
will result in a smallp-value (because the randomized samples do not contain such dependency
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by construction); (2) if the classifierf is not significant in the sense of Test 1 (that is,f was not
able to use the existing dependency between data and labels in the original data), then thep-value
would tend to be high because the error in the randomized data will be similar to theerror obtained
in the original data. Finally, if the original data did not contain any real dependency between data
points and labels, that is, such dependency was similar to randomized data sets, then all classifiers
tend to have a highp-value. However, as a nature of statistical tests, aboutα of the results will be
incorrectly regarded as significant.

Applying randomizations on the original data is therefore a powerful way to understand how
the different classifiers use the structure implicit in the data, if such structure exists. However,
notice that a classifier might be using additionally some dependency structurein the data that is not
checked by Test 1. Indeed, it is very often the case that thep-values obtained from Test 1 are very
small on real data because a classifier is easily regarded as significant even if the class structure is
weak. We will provide more evidence about this fact in the experiments.

An important point is in fact, that a good classifier can be using other types of dependency if
this exists in the data, for example the dependency between the features. From this perspective,
Test 1 does not generate the appropriate randomized data sets to test such hypotheses. Therefore,
we propose a new test whose aim is to check for the dependency betweenthe attributes and how
classifiers use such information.

The second null hypothesis assumes that the columns inX are mutually independent inside a
class, thusp(X(c)) = p(X(c)1) · · · p(X(c)m), whereX(c) represents the submatrix ofX that contains
all the rows having the class labelc ∈ Y . This can be stated also using conditional probabilities,
that is,p(X | y) = p(X1 | y) · · · p(Xm | y). Test 2 is inspired by the restricted randomizations from
statistics (see, e.g., Good, 2000).

Test 2 (Permute data columns per class)Let D= {(Xi ,yi)}n
i=1 be the data. A randomized version

D′ of D is obtained by applying independent permutations to the columns of X within each class.
That is:

For each class label c∈ Y do,

• Let X(c) be the submatrix of X in class label c, that is, X(c) = {Xi | yi = c} of size lc×m.

• Let π1, . . . ,πm be m independent permutations of lc elements.

• Let X(c)′ be a randomized version of X(c) where eachπ j is applied independently to the
column X(c) j . That is, X(c)′ = [π1(X(c)1), . . . ,πm(X(c)m)].

Finally, let X′ = {X(c)′ | c ∈ Y} and obtain one randomized version D′ = {(X′
i ,yi)}n

i=1. Next,
compute the p-value as in Definition 1.

Thus, a classification result can be regarded as nonsignificant with Test 2, if either the features
are independent of each other inside the classes or if the classifier doesnot exploit the interdepen-
dency between the features. Notice that we are not testing the data but the classifier against the null
hypothesis corresponding to Test 2. The classification result is significant with Test 2 only if the
classifier exploits the interdependency between the features, if such interdependency exists. If the
dependency is not used, there might be no reason to use a complicated classifier, as simpler and
faster methods, such as Naive Bayes, could provide similar accuracy results for the same data. On
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Figure 2: Scatter plots of original Iris data set and randomized versions for full permutation of the
data and for Tests 1 and 2 (one sample for each test). The data points belong to three different classes
denoted by different markers, and they are scattered against petal length and width in centimeters.

the other hand, this observation can lead us to find a classifier that can exploit the possibly existing
dependency and thus improve the classification accuracy further, as discussed in the introduction.

There are three important properties of the permutation-basedp-values and the two tests pro-
posed here. The first one is that the number of missing values, that is, the number of entries inD that
are empty because they do not have measured values, will be distributed equally across columns in
the original data setD and the randomized data setsD′; this is necessary for a fairp-value compu-
tation. The second property is that the proposed permutations are alwaysrelevant regardless of the
data domain, that is, values are permuted always within the same column, which does not change
the domain of the randomized data sets. Finally, we have that unbalanced datasets, that is, data sets
where the distribution of class labels is not uniform, remain equally unbalanced in the randomized
samples.

In all, with permutation tests we obtain useful statistics about the classification result. No test
is better than the other, but all provide us with information about the classifier. Eachp-value is
a statistic about the classifier performance; eachp-value depends on the original data (whether it
contains some real structure or not) and the classifier (whether it is able to use certain structure in
the data or not).

In Figure 2, we give as an example one randomization for each test on the well-known Iris
data set. We show here the projection of two features, before and after randomizations according
to each one of the tests. For comparison, we include a test correspondingto full permutation of
the data where each column is permuted separately, breaking the connectionbetween the features
and mixing the values between different classes. Note how well Test 2 haspreserved the class
structure compared to other tests. To provide more intuitions, in this case a very simple classifier,
which predicts the class by means of one single of these two features would suffice in reaching a
very good accuracy. In other words, the dependency between the twofeatures is not significant as
such, so that a more complex classifier making use of such dependency would end up having a high
p-value with Test 2. We will discuss the Iris data more in the experiments.

3.2 Handling Instability of the Error

A related issue for all the above presented tests concerns the variability ofthe error estimate returned
by a classifier. Indeed, applying the same classifier several times over theoriginal data setD can
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return different error estimatese( f ,D) if, for example, 10-fold cross-validation is used. So the
question is, how can we ensure that thep-values given by the tests are stable to such variance?

The empiricalp-value depends heavily on the correct estimation of the original classification
accuracy, whereas the good estimation of the classification errors of the randomized data sets is not
so important. However, exactly the same classification procedure has to be used for both the original
and randomized data for thep-value to be valid. Therefore, we propose the following solution to
alleviate the problem of having instable test statistic: We train the classifier on theoriginal datar
times, thus obtainingr different error estimatesE = {e1( f ,D), . . . ,er( f ,D)} onD. Next, we obtain
k randomized samples ofD according to the desired null hypothesis and compute thep-value for
each one of those original errorse∈ E. We obtain thereforer different p-values by using the same
k randomized data sets for each computation. We finally output the average ofthoser different
p-values as the final empiricalp-value.

Note that in total we will compute the error of the classifierr +k times: r times on the original
data and one time for each of thek randomized data sets. Of course, the larger thek and the larger
the r, the more stable the final averagedp-value would be. A largerr decreases the variance in the
final p-value due to the estimation of the classification error of the original data set whereas a larger
k decreases the variance in the finalp-value due to the random sampling from the null distribution.
In practice, we have observed that a value ofr = 10 andk= 100 produce sufficiently stable results.

This solution is closely related to calculating the statisticρ, or calculating the test statisticU
of the Wilcoxon-Mann-Whitney two-sample rank-sum test (Good, 2000).However, it is not valid
to apply these approaches in our context as ther classification errors of the original data are not
independent of each other. Nevertheless, the proposed solution has the same good properties as the
ρ andU statistics as well as it generalizes the concept of empiricalp-value to instable results.

A different solution would be to use a more accurate error estimate. For example, we could use
leave-one-out cross-validation or cross-validation with 100 folds instead of 10-fold cross-validation.
This will decrease the variability but increase the computation time dramatically as we need to
perform the same slow classification procedure to allk randomized samples as well. However, it
turns out that the stability issue is not vital for the final result; our solution produces sufficiently
stablep-values in practice.

3.3 Example

We illustrate the concept of the tests by studying the small artificial example presented in the intro-
duction in Figure 1. Consider the two data setsD1 andD2 given in Figure 1. The first data setD1

was generated as follows: in the first eight rows corresponding to class+, each element is indepen-
dently sampled to bex with probability 80% ando otherwise; in the last eight rows the probabilities
are the other way around. Note that in the data setD1 the features are independent given the class
since, for example, knowing thatX j1

i = x inside class+ does not increase the probability ofX j2
i

beingx. The data setD2 was generated as follows: the first four rows containx, the second four
rows containo, the third four rows containx in the first four columns ando in the last four columns,
and the last four rows containo in the first four columns andx in the last four columns; finally, 10%
of noise was added to the data set, that is, eachx was flipped too with probability of 10%, and vice
versa.

Observe that bothD1 andD2 have a clear separation into the two given classes,+ and–. How-
ever, the structure inside the data setD1 is much simpler than in the data setD2. For illustration
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1-Nearest Neighbor

Orig. Test 1 Test 2

Data Set Err. Err. (Std) p-val. Err. (Std) p-val.

D1 0.00 0.53 (0.14) 0.001 0.06 (0.06)0.358
D2 0.00 0.53 (0.14) 0.001 0.62 (0.14) 0.001

Table 1: Average error andp-value for Test 1 and Test 2 when using the 1-Nearest Neighbor classi-
fier to data sets of Figure 1.

purposes, we analyze this with the 1-Nearest Neighbor classifier using the leave-one-out cross-
validation given in Equation (1). Results for Test 1 and Test 2 are summarized in Table 1. The
classification error obtained in the original data is 0.00 for bothD1 andD2, which is expected since
the data sets were generated to contain clear class structure.

First, we use the standard permutation test (i.e., permuting labels, Test 1) to understand the
behavior under the null hypothesis where data points and labels are independent. We produce 1000
random permutations of the class labels for both the data setsD1 andD2, and perform the same
leave-one-out cross-validation procedure to obtain a classification error for each randomized data
set. On the randomized samples of data setD1 we obtain an average classification error of 0.53,
a standard deviation 0.14 and a minimum classification error of 0.13. For the randomized data
from D2 the corresponding values are 0.53, 0.14 and 0.19, respectively. These values result in
two empiricalp-values of both 0.001 on both the data setsD1 andD2. Thus, we can say that the
classifiers are significant under the null hypothesis that data and labels are independent. That is, the
connection between the data and the class labels is real in both data sets and the 1-Nearest Neighbor
classifier is able to find that connection in both data sets, resulting into a good classification accuracy.

However, it is easy to argue that the results of Test 1 do not provide muchinformation about
the classifier performance. Actually the main problem of Test 1 is thatp-values tend to be always
very low as the null hypothesis is typically easy to reject. To get more information of the properties
of the classifiers, we study next the performance of the classifiers by taking into account the inner
structure of data setsD1 andD2 by applying Test 2. Again, we produce 1000 random samples of the
data setsD1 andD2 by permuting each column separately inside each class. The same leave-one-out
cross-validation procedure is performed for the randomized samples, obtaining for the data setD1

the average classification error of 0.06, standard deviation of 0.06 and a minimum value of 0.00.
For the data setD2 the corresponding values are 0.62, 0.14 and 0.19, respectively. Therefore, under
Test 2 the empiricalp-values are 0.358 for the data setD1 and 0.001 for the data setD2.

We can say that, for Test 2, the 1-Nearest Neighbor classifier is significant for data setD2 but
not for data setD1. Indeed, the data setD1 was generated so that the features are independent
inside the classes, and hence, the good classification accuracy of the algorithm onD1 is simply due
to different value distributions across the classes. Note, however, thatnone of the features in the
data setD1 is sufficient alone to correctly classify all the samples due to the noise in the data set.
Thus using a combination of multiple features for classification is necessary for obtaining a good
accuracy, even though the features are independent of each other.For data setD2 we have that the
dependency between the columns inside the classes is essential for the good classification result,
and in this case, the 1-Nearest Neighbor classifier has been able to exploit that information.
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4. Analysis

In this section we analyze the properties of the tests and demonstrate the behavior of the differentp-
values on simulated data. First, we state the relationships between the different sets of permutations.

4.1 Connection between Test 1 and Test 2

Remember that the random samples from Test 1 are obtained by permuting the class labels and the
samples from Test 2 by permuting the features inside each class. To establish a connection between
these randomizations, we study the randomization where each data column is permuted separately,
regardless of the class label. This corresponds to the full permutation presented in Figure 2 in
Section 3.1 for Iris data set. It breaks the connection between the features, and furthermore, between
the data and the class labels. The following result states the relationship between Test 1, Test 2 and
the full permutation method.

Proposition 2 Let Πl (D), Πc(D), Πcc(D) be the sets of all possible randomized data sets obtained
from D via permuting labels (Test 1), permuting data columns (full permutation), or permuting data
columns inside class (Test 2), respectively. The following holds,

(1) Πl (D)⊂ Πc(D)

(2) Πcc(D)⊂ Πc(D)

(3) Πl (D) 6= Πcc(D)

Note thatΠl (D), Πc(D) and Πcc(D) refer to sets of data matrices. Therefore, we have that
permuting the data columns is the randomization method producing the most diversesamples, while
permuting labels (Test 1) and permuting data within class (Test 2) produce different randomized
samples.

Actually, the relationship stated by Proposition 2 implies the following property: the p-value
obtained by permuting the data columns is typically smaller than both thep-values obtained from
Test 1 and Test 2. The reason is that all the randomized data sets obtainedby Test 1 and Test 2
can also be obtained by permuting data columns and the additional randomized data sets obtained
by permuting the columns are, in general, even more random. Theoretically, permuting the data
columns is a combination of Test 1 and Test 2, and thus, it is not a useful test. In practice, we have
observed that thep-value returned by permuting the data columns is very close to thep-value of
Test 1, which tends to be much smaller than thep-value of Test 2.

Considering Proposition 2, it makes only sense to restrict the randomization toclasses by using
Test 2, whenever Test 1 has produced a smallp-value. That is, it is only reasonable to study whether
the classifier uses feature dependency in separating the classes if it hasfound a real class structure.

4.2 Behavior of the Tests

To understand better the behavior of the tests, we study generated data where correlation is used
as the dependency between the features. Consider the following simulated data, inspired by the
data used by Golland et al. (2005): 100 data points are generated from two-dimensional normal
distribution with mean vector (1,0), unit variances and covarianceρ ∈ [−1,1]. Another 100 data
points are generated from similar normal distribution with mean(−1,0), unit variances and same
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Figure 3: Average values of stratified 10-fold cross-validation error (y-axis) for varying values of
correlation between the features per class (x-axis). The solid line shows the error on the original
data, and symbols× and• represent the average of the error on 1000 randomized samples obtained
from Test 1 and from Test 2, respectively. Each average of the error on the randomized samples×
and• is depicted together with the[1%,99%]-deviation bar. If the solid line falls below the bars the
null hypothesis associated to the test is rejected; if the solid line crosses inside or above the bars the
null hypothesis cannot be rejected with significance levelα = 0.01.

covarianceρ. The first 100 samples are assigned with class labely = +1 with probability 1− t
andy = −1 with probabilityt. For the other 100 samples the probabilities are the opposite. The
probability t ∈ [0,0.5] represents the noise level. Whent = 0.5, there is no class structure at all.
Note that the correlation between the features improves the class separation: if the correlationρ = 1
and the noiset = 0, we have that the classy = x1− x2 wherex1, x2 are the values of the first and
second features, respectively.

For these data sets (with varying parameters of noise and correlation) we use as an error estimate
the stratified 10-fold cross-validation error. We study the behavior of four classifiers: 1-Nearest
Neighbor, Decision Tree, Naive Bayes and Support Vector Machine.We use Weka 3.6 data mining
software (Witten and Frank, 2005) with the default parameters of the implementations of those
classification algorithms. The Decision Tree classifier is similar to C4.5 algorithm, and the default
kernel used with Support Vector Machine is linear. Tuning the parametersof these algorithms is not
in the scope of this paper; our objective is to show the behavior of the discussedp-values for some
selected classifiers.

Figure 3 shows the behavior of the classifiers on data sets without class noise,t = 0, and with the
correlationρ between features inside classes varying from−1 (negative correlation) to 1 (positive
correlation). The solid line corresponds toe( f ,D), that is, the error of the classifier in the original
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Figure 4: Average values of stratified 10-fold cross-validation error (y-axis) for the Decision Tree
classifier when noise varies on the original data set (x-axis) with four fixed correlation values be-
tween the features inside the classes. The solid line shows the error on the original data, and sym-
bols× and• show the average error on 1000 randomized samples from Test 1 and Test 2, respec-
tively. Each average of the error on the randomized samples× and• is depicted together with the
[1%,99%]-deviation bar below which the associated null hypothesis is rejected with significance
level α = 0.01.

data. The symbols “×” and “•” represent the average error obtained by the classifier on 1000
randomized samples from Test 1 and Test 2, respectively. When the solidline of e( f ,D) falls
below the[1%,99%]-deviation bars, the corresponding associated null hypothesis is rejected with
significance levelα = 0.01. Actually, the correspondence between the confidence intervals and
hypotheses testing is only approximately true since the definition of empiricalp-value contains the
addition of 1 in both the numerator and denominator. However, the practical difference is negligible.

First, note that the Decision Tree, 1-Nearest Neighbor and Support Vector Machine classifiers
have been able to exploit the dependency between the features, that is, the classification error goes to
zero when there is either a high positive or negative correlation between the features. However, with
Naive Bayes classifier the classification error seems to be independent of the correlation between
the features.

For all classifiers we observe that the null hypothesis associated to Test1 (i.e., labels and data
are independent) is always rejected. Thus the data contains a clear classstructure as expected since
there exists no class noise in the data. All classifiers are therefore significant under Test 1.

Another expected observation is that the null hypothesis for Test 2 (i.e., features are independent
within class) tends to be rejected as the magnitude of the correlation between features increases.
That is, the correlation is useful in classifying the data. When the magnitude of the correlation is
larger than approximately 0.4, the Decision Tree, Nearest Neighbor and Support Vector Machine
classifiers reject the null hypothesis. Thus these classifiers produce significant results under Test 2
when the features are highly correlated.

Finally, observe the behavior of Naive Bayes classifier for Test 2: thenull hypothesis can never
be rejected. This is because Naive Bayes classifier explicitly assumes by default that the features
are independent, thus it always performs similarly on the original data and the randomized data sets,
which results in a very highp-value. Naive Bayes classifier is an example of such classifiers which
are not able to use the dependency between the features at all. Thus applying Test 2 for Naive Bayes
classifier will practically always produce a highp-value irrespective of the data.
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Finally, Figure 4 shows the behavior of the Decision Tree classifier when the noiset ∈ [0,0.5] is
increased on thex-axis. We also vary the correlationρ between the features per class and show the
results on four cases: zero correlation, 0.5, 0.8 and total correlation. We observe that as the noise
increases thep-values tend to be larger. Therefore, it is more difficult to reject the null hypothesis
on very noisy data sets, that is, when the class structure is weak. This is true for both Test 1 and
Test 2. However, Test 1 rejects the null hypothesis even if there is 30% of noise. This supports the
fact already observed in related literature (Golland et al., 2005), that even a weak class structure is
easily regarded as significant with Test 1. Compared to this, Test 2 givesmore conservative results.

4.3 Power Analysis of Test 2

Thepowerof a statistical test is the probability that the test will reject the null hypothesis when the
alternative hypothesis is true. The power of the test depends on how muchor how clearly the null
hypothesis is false. For example, in our case with Test 2, a classifier may rely solely on a strong
dependency structure between some specific features in the classification,or it may use a weak
feature dependency to slightly improve the classification accuracy. Rejecting the null hypothesis of
Test 2 is much easier in the former than in the latter case. Note, however, thata strong dependency
between the features is not always useful in separating the classes, asseen in Figure 2 with Iris
data set. So, the question with Test 2 is whether the classifier is exploiting some of the dependency
structure between the features in the data and how important such feature dependency is for the
classification of the data.

In general, the power of the test can only be analyzed in special cases.Nevertheless, such
analysis can give some general idea of the power the test. Next, we present a formal power analysis
in the particular case where we vary the correlation between the features that is useful in separating
the classes from each other. Note, however, that there exist also othertypes of dependency than
correlation. The amount of correlation is just easy to measure, thus being suitable for formal power
analysis.

We present the power analysis on similar data as studied in Section 4.2. The results in the
previous subsection can be seen as informal power analysis. In summary, we observed that when
the magnitude of the correlation in the data studied in Section 4.2 was larger than about 0.5 and
the classifier was exploiting the feature dependency, that is, a classifier different from Naive Bayes,
Test 2 was able to reject the null hypothesis. However, based on the datait is clear that even smaller
correlations increased the class separation and were helpful in classifying the data but Test 2 could
not regard such improvement as significant. The following analysis supports these observations.

Let the data setX consist ofn points with two features belonging to two classes,+1 and−1.
Let a pointx∈ X be in classy= +1 with probability 0.5 and in classy= −1 with probability 0.5.
Let the pointx ∈ X be sampled from two-dimensional normal distribution with mean(0,0), unit
variances and covarianceyρ whereρ ∈ [0,1] is a given parameter. Thus, in the first class,y= +1,
the correlation between the two features is positive and in the second class,y= −1, it is negative.
Compared to the data sets in Section 4.2, now the covariance changes between the classes, not the
mean vector. An optimal classifier assigns a pointx ∈ X to classy = +1 if x1x2 > 0 and to class
y=−1 if x1x2 < 0, wherexi is thei-th feature of the vectorx.

The null hypothesis of Test 2 is that the classifier is not exploiting the dependency between
the features in classification. To alleviate the power analysis, we assume thatthe classifier is able
to find the optimal classification, that is, it assigns the pointx to class sgn(x1x2) where sgn(·) is
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the signum function. If the classifier is not optimal, it will just decrease the power of the test.
The nonoptimality of the classifier could be taken into account by introducing aprobability t for
reporting a nonoptimal class label; this approach is used in the next subsection for power analysis
of Test 1 but is left out here for simplicity in the analysis. Under this optimality scenario, the
probability of correctly classifying a sample is

Pr(sgn(x1x2) = y) =
1
2

Pr(x1x2 > 0 | y=+1)+
1
2

Pr(x1x2 < 0 | y=−1)

= Pr(x1x2 > 0 | y=+1) = 2
∫ ∞

0

∫ ∞

0
Pr(x1,x2)dx1dx2

= 2
∫ ∞

0

∫ ∞

0

1

2π
√

1−ρ2
exp

[
−x2

1−2ρx1x2+x2
2

2(1−ρ2)

]
dx1dx2

=
1
2
+

1
π

arcsinρ, (2)

where Pr(x1,x2) is just the standardized bivariate normal distribution. The null hypothesis corre-
sponds to the case where the correlation parameter is zero,ρ = 0, that is, no feature dependency
exists. In that case, the probability of correctly classifying a sample is 1/2.

In our randomization approach, we are using classification error as the test statistic. Since we
assume that the optimal classifier is given, we use all then points of the data setX for testing
the classifier and calculating the classification error. Under the null hypothesisH0 and under the
alternative hypothesisH1 of Test 2, the classification errorse( f | H0) ande( f | H1) are distributed
as follows:

n·e( f | H0)∼ Bin

(
n,

1
2

)
≈N

(n
2
,
n
4

)
,

n·e( f | H1)∼ Bin

(
n,

1
2
− 1

π
arcsinρ

)
≈N

(n
2
− n

π
arcsinρ,

n
4
− n

π2 arcsin2 ρ
)
,

where1
2 − 1

π arcsinρ is the probability of incorrectly classifying a sample by Equation (2). The nor-
mal approximationN (np,np(1− p)) of a binomial distribution Bin(n, p) holds with good accuracy
whennp> 5 andn(1− p)> 5. In our case, the approximation is valid ifn(1

2 − 1
π arcsinρ)> 5. This

holds, for example, ifn≥ 20 andρ ≤ 0.7.
Now the power of Test 2 for this generated data is the probability of rejectingthe null hypothesis

H0 of ρ = 0 with significance levelα when the alternative hypothesisH1 is that the correlation
ρ > 0. Note that we are implicitly assuming that the classifier is optimal, that is, we are excluding
the classifier quality from the power analysis. Thus, the power is the probability that e( f | H1) is
smaller than 1−α of the errorse( f | H0) under the alternative hypothesisH1:

Power= Pr
(

e( f | H1)< F−1
e( f |H0)

(α)
)

≈ Pr

(
1
2
− 1

π
arcsinρ+

√
1
4n

− 1
nπ2 arcsin2 ρ ·Z <

1
2
+

1
2
√

n
Φ−1(α)

)

= Φ


2

√
narcsinρ+πΦ−1(α)√

π2−4arcsin2 ρ


 , (3)
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Figure 5: Contour plots of the statistical power of Test 2 as a function of thenumber of rowsn in the
generated data set and the correlation parameterρ. Each solid line corresponds to a constant value
of the power that is given on top of the contour. The power values are calculated by Equation (3)
for two different values of significance levelα.

whereFe( f |H0) is the cumulative distribution function ofe( f | H0), Z is a random variable following
standard normal distribution andΦ is the cumulative distribution function of the standard normal
distribution. Note that we are using exactp-value instead of empiricalp-value, effectively leaving
out the influence of variance by usingk randomized samples; see Fay et al. (2007) for analysis of
resampling risk of usingk samples. However, this has little effect to the power of the test. When the
correlationρ = 0, the power isα, that is, when the null hypothesis is true, it is rejected incorrectly
aboutα of the times. Therefore,α is really the significance level of the tests.

In Figure 5 we present contour plots of the statistical power in Equation (3)for different values
of the two varying parameters. As expected, the higher the correlationρ and the number of rows
n are, the higher the statistical power of Test 2 is. For example, if the data setcontains about 1000
rows, we can infer with 90% probability that the classifier is exploiting the feature dependency of
approximately a correlation of 0.2 in the data. The results are also in line with the results from
Section 4.2 although the studied data sets are slightly different. When the significance level used is
α = 0.01 we can infer that the classifier is exploiting the feature dependency of correlation larger
than 0.4 approximately 90% of the times when the data set has 200 rows.

Notice that if we had not considered an “optimal” classifier, that is, if we hadintroduced a
probability t of assigning each observation to the incorrect label, then Equation (3) would depend
on three parameters. In that case, the highert, the smaller is the power of the test; however, for
a fixed t we still would observe the same behaviour as in the contourplots above: the higher the
correlationρ and the larger then, the higher is the statistical power of Test 2. The error parametert
is taken into account in the next section, where the power analysis of Test1 does not depend onρ
between the features.
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4.4 Power Analysis of Test 1

Let the data setX consist ofn observations belonging to two different classes with equal probability.
We assume that we have a classifierf whose error rate ist ∈ [0,1], that is, the classifier assigns each
observation to the correct class with probability 1− t. Another way to see this is that the classifier
f is optimal but the original class label of each point is erroneous with probability t. We perform
power analysis of Test 1 for this general form of data.

Note that the results in Section 4.2 can be seen as informal power analysis ofTest 1 on similar
setting as studied here. The results in Figure 4 can be summarized as follows.When the error rate
was smaller thant < 0.4, Test 1 was able to reject the null hypotheses. Note, however, that theerror
ratet used in this section is not directly comparable to the error rate used in Section 4.2.

The power analysis of Test 1 proceeds similarly as in the previous subsection for Test 2. Under
the null hypothesisH0 and under the alternative hypothesisH1 of Test 1, the classification errors
e( f | H0) ande( f | H1) are distributed as follows:

n·e( f | H0)∼ Bin

(
n,

1
2

)
≈N

(n
2
,
n
4

)
,

n·e( f | H1)∼ Bin(n, t)≈N (nt,nt(1− t)) .

The null hypothesisH0 assumes that there is no connection between the data and the class labels
thus the probability of incorrect classification is 1/2 as the classes are equally probable. Note that
the null hypothesis corresponds to the case where the error rate of the classifier f is t = 1/2.

Now the power of Test 1 is the probability of rejecting the null hypothesisH0 with significance
level α when the alternative hypothesisH1 is true, that is,

Power= Pr
(

e( f | H1)< F−1
e( f |H0)

(α)
)

≈ Pr

(
t +

√
t(1− t)

n
Z <

1
2
+

1
2
√

n
Φ−1(α)

)

= Φ

(
(1−2t)

√
n+Φ−1(α)

2
√

t(1− t)

)
, (4)

where the same notation as in the previous subsection is used. First, note thatwhen the null hypoth-
esis is true, that is,t = 1/2, the power of Test 1 calculated by Equation (4) equals the significance
level α as it should.

In Figure 6 we present contour plots of the statistical power of Test 1 calculated by Equation (4)
for different values of parameters. As expected, when the number of observationsn increases or the
error ratet decreases, the power increases. Furthermore, the larger the significance levelα is, the
larger the power of Test 1 is. When the parameter values areα = 0.01, n = 200 andt = 0.4, the
power of Test 1 is about 0.7 that is comparable to the results in Section 4.2.

In this section, we analyzed the behaviour and the power of the tests. Note that although we used
correlation as the only type of dependency between features in this section, there exist also other
forms of dependency that the classifier can exploit. As conclusions fromthe power analysis, the
more rows the data set has, the easier we can infer that the classifier is using the feature dependency
or some other properties in the data.
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Figure 6: Contour plots of the statistical power of Test 1 as a function of thenumber of rowsn in
the generated data set and the probability of misclassificationt. Each solid line corresponds to a
constant value of the power that is given on top of the contour. The power values are calculated by
Equation (4) for two different values of significance levelα.

5. Empirical Results

In this section, we give extensive empirical results on 33 various real data sets from UCI machine
learning repository (Asuncion and Newman, 2007). Basic characteristics of the data sets are de-
scribed in Table 2. The data sets are divided into three categories based on their size: small, medium
and large. Some data sets contain only nominal or numeric features whereassome data sets contain
both kind of features (mixed). About one-third of the data sets contain alsomissing values. Notice
that in most data sets the features are measured in different scales, thus itis not sensible to swap the
values between different features. This justifies why it is only reasonable to consider column-wise
permutations, and why some recent data mining randomization methods (Gionis etal., 2007; Ojala
et al., 2009; Chen et al., 2005) are not generally applicable in assessingclassification results.

In the experiments we use Weka 3.6 data mining software (Witten and Frank, 2005) that contains
open source Java implementations of many classification algorithms. We use four different types
of classification algorithms with the default parameters: Decision Tree, Naive Bayes, 1-Nearest
Neighbor and Support Vector Machine classifier. The Decision Tree classifier is similar to C4.5
algorithm. The default kernel used with Support Vector Machine is linear.Missing values and the
combination of nominal and numerical values are given as such as the inputfor the classifiers; the
default approaches in Weka of the classifiers are used to handle these cases. Notice that tuning the
parameters of these algorithms is not in the scope of this paper; our objective is to show the behavior
of the discussedp-values for some selected classifiers on various data sets.

We use different classification procedures and the number of randomized data sets for each
of the different size categories of the data sets (small, medium and large). For small data sets,
we use stratified 10-fold cross-validation error as the statistic and 1000 randomized data sets for
calculating the empiricalp-values. For medium-sized data sets, we use the same stratified 10-fold
cross-validation error and 100 randomized data sets. Finally, for large data sets, we divide the data
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Data Set Rows Features Classes Missing Domain

S
m

al
l

Audiology 226 70 24 2.0% nominal
Autos 205 25 6 1.2% mixed
Breast 286 9 2 0.3% nominal
Glass 214 9 6 No numeric
Hepatitis 155 19 2 5.7% mixed
Ionosphere 351 34 2 No numeric
Iris 150 4 3 No numeric
Lymph 148 18 4 No mixed
Promoters 106 57 2 No nominal
Segment 210 19 7 No numeric
Sonar 208 60 2 No numeric
Spect 267 22 2 No nominal
Tumor 339 17 21 3.9% nominal
Votes 435 16 2 5.6% nominal
Zoo 101 17 7 No mixed

M
ed

iu
m

Abalone 4177 8 28 No mixed
Anneal 898 38 5 65.0% mixed
Balance 625 4 3 No numeric
Car 1728 6 4 No nominal
German 1000 20 2 No mixed
Mushroom 8124 22 2 1.4% nominal
Musk 6598 166 2 No numeric
Pima 768 8 2 No numeric
Satellite 6435 36 6 No numeric
Spam 4601 57 2 No numeric
Splice 3190 60 3 No nominal
Tic-tac-toe 958 9 2 No nominal
Yeast 1484 8 10 No numeric

La
rg

e

Adult 48842 15 2 0.9% mixed
Chess 28056 6 18 No mixed
Connect-4 67557 42 3 No nominal
Letter 20000 16 26 No numeric
Shuttle 58000 9 7 No numeric

Table 2: Summary of 33 selected data sets from UCI machine learning repository (Asuncion and
Newman, 2007). The data sets are divided into three categories based ontheir size: small, medium
and large.
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set into training set with 10 000 random rows and to test set with the rest of the rows. We use 100
randomized data sets for calculating the empiricalp-values with large data sets. The reason for the
smaller number of randomized samples for medium and large data sets is mainly computation time.
However, 100 samples is usually enough for statistical inference. Furthermore, as seen in Section 4
the power of the tests is greater when the data sets have more rows, that is, with large data sets it is
easier to reject the null-hypotheses, supporting the need of fewer randomized samples in hypothesis
testing.

Since the original classification error is not a stable result due to the randomness in training
the classifier and dividing the data set into test and train data, we perform the same classification
procedure ten times for the original data sets and calculate an empiricalp-value for each of the ten
results. This was described in Section 3.2. We give the average value of these empiricalp-values as
well as the average value and the standard deviation of the original classification errors.

As we are testing multiple hypotheses simultaneously, we need to correct for multiple compar-
isons. We apply the approach by Benjamini and Hochberg (1995) to control the false discovery rate
(FDR), that is, the expected proportion of results incorrectly regardedas significant. In the exper-
iments, we restrict the false discovery rate belowα = 0.05 separately for Test 1 and Test 2. In the
Benjamini-Hochberg approach, ifp1, . . . , pm are the original empiricalp-values in increasing order,
the resultsp1, . . . , pl are regarded as significant wherel is the largest value such thatpl ≤ l

mα.
The significance testing results for the Decision Tree classifier are givenin Table 3, for Naive

Bayes in Table 4, for 1-Nearest Neighbor classifier in Table 5 and finallyfor Support Vector Ma-
chine classifier in Table 6. The mean and the standard deviation of the 10 original classification
errors are given as well as the mean and standard deviation of the errors on the 1000 or 100 ran-
domized samples with Test 1 and Test 2. The empiricalp-values corresponding to nonsignificant
results, when the false discovery rate is restricted below 0.05, are in boldface in the tables. With all
classifiers, the largest significant empiricalp-value was 0.01. The smallest non-significantp-values
were 0.03 with Decision Tree and 1-Nearest Neighbor classifiers, 0.08 with Naive Bayes classifier
and 0.19 with Support Vector Machine classifier.

The results for the traditional permutation method Test 1 show that the classification errors with
most data sets are regarded as significant. These results show that the data sets contain clear class
structure. However, they do not give any additional insight for understanding the class structure in
the data sets.

There are two reasons why the simple permutation test, Test 1, regards the class structure of
the data sets as significant. Firstly, most of the data sets that are publicly available, as all the
data sets used in this paper, have already passed some quality checks, that is, someone has already
found some interesting structure in them. Secondly, and as a more important reason, the traditional
permutation tests easily regard the results as significant even if there is only aslight class structure
present because in the corresponding permuted data sets there is no class structure, especially if the
original data set is large.

Furthermore, the few results which were regarded as nonsignificant withTest 1 are with such
classifiers that have not performed well on the data. That is, the other classifiers have produced
smaller classification errors on the same data sets, and, in contrast, these results are regarded as
significant.

Next, we consider the results for permuting the features inside each class,that is, Test 2. The
results show that there are actually now almost equal amount of nonsignificant and significant results
with respect to Test 2. This means that in many data sets the original structureinside the classes is
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Decision Tree

Original Test 1 Test 2

Data Set Err. (Std) Err. (Std) p-val. Err. (Std) p-val.
S

m
al

l
Audiology 0.22 (0.01) 0.82 (0.03) 0.001 0.23 (0.02)0.482
Autos 0.19 (0.01) 0.76 (0.04) 0.001 0.38 (0.04) 0.001
Breast 0.26 (0.01) 0.30 (0.00) 0.001 0.29 (0.02)0.116
Glass 0.33 (0.02) 0.72 (0.03) 0.001 0.34 (0.03)0.457
Hepatitis 0.22 (0.02) 0.23 (0.02)0.319 0.15 (0.03) 0.955
Ionosphere 0.10 (0.01) 0.38 (0.02) 0.001 0.07 (0.01)0.964
Iris 0.05 (0.01) 0.67 (0.03) 0.001 0.05 (0.01)0.765
Lymph 0.22 (0.02) 0.51 (0.05) 0.001 0.23 (0.04)0.437
Promoters 0.21 (0.04) 0.50 (0.06) 0.002 0.22 (0.05)0.377
Segment 0.13 (0.02) 0.86 (0.03) 0.001 0.17 (0.02)0.132
Sonar 0.27 (0.02) 0.49 (0.03) 0.001 0.27 (0.03)0.507
Spect 0.19 (0.01) 0.22 (0.01) 0.004 0.15 (0.02)0.966
Tumor 0.58 (0.01) 0.82 (0.02) 0.001 0.60 (0.02)0.138
Votes 0.03 (0.00) 0.42 (0.02) 0.001 0.03 (0.01)0.791
Zoo 0.07 (0.01) 0.64 (0.03) 0.001 0.07 (0.01)0.593

M
ed

iu
m

Abalone 0.79 (0.01) 0.89 (0.00) 0.01 0.67 (0.01)1.00
Anneal 0.07 (0.01) 0.24 (0.00) 0.01 0.13 (0.01) 0.01
Balance 0.22 (0.01) 0.55 (0.02) 0.01 0.29 (0.02) 0.01
Car 0.08 (0.00) 0.30 (0.00) 0.01 0.26 (0.01) 0.01
German 0.29 (0.01) 0.32 (0.01) 0.01 0.28 (0.01)0.66
Mushroom 0.00 (0.00) 0.50 (0.01) 0.01 0.01 (0.00) 0.01
Musk 0.03 (0.00) 0.16 (0.00) 0.01 0.09 (0.00) 0.01
Pima 0.25 (0.01) 0.35 (0.01) 0.01 0.24 (0.01)0.67
Satellite 0.14 (0.00) 0.81 (0.00) 0.01 0.07 (0.00)1.00
Spam 0.07 (0.00) 0.40 (0.00) 0.01 0.06 (0.00)1.00
Splice 0.06 (0.00) 0.60 (0.01) 0.01 0.07 (0.01) 0.01
Tic-tac-toe 0.15 (0.01) 0.36 (0.01) 0.01 0.30 (0.01) 0.01
Yeast 0.44 (0.01) 0.76 (0.01) 0.01 0.47 (0.01)0.03

La
rg

e

Adult 0.00 (0.00) 0.24 (0.00) 0.01 0.00 (0.00)1.00
Chess 0.46 (0.00) 0.89 (0.00) 0.01 0.77 (0.00) 0.01
Connect-4 0.25 (0.00) 0.34 (0.00) 0.01 0.33 (0.00) 0.01
Letter 0.16 (0.01) 0.96 (0.00) 0.01 0.38 (0.01) 0.01
Shuttle 0.00 (0.00) 0.21 (0.00) 0.01 0.01 (0.00) 0.01

Table 3: Classification errors and empiricalp-values obtained with Decision Tree classifier for
Test 1 and Test 2. The empiricalp-values are calculated over 1000 randomized samples for small
data sets and over 100 randomized samples for medium and large data sets. Classification on the
original data is repeated ten times. In the table, the average values and standard deviations of the
classification errors are given. Boldp-values correspond to nonsignificant results when the false
discovery rate is restricted below 0.05 with Benjamini and Hochberg (1995)approach.
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Naive Bayes

Original Test 1 Test 2

Data Set Err. (Std) Err. (Std) p-val. Err. (Std) p-val.
S

m
al

l
Audiology 0.27 (0.00) 0.79 (0.03) 0.001 0.26 (0.01)0.869
Autos 0.43 (0.01) 0.79 (0.04) 0.001 0.22 (0.02)1.000
Breast 0.27 (0.01) 0.33 (0.02) 0.001 0.24 (0.02)0.959
Glass 0.52 (0.02) 0.81 (0.05) 0.001 0.45 (0.02)0.994
Hepatitis 0.16 (0.01) 0.30 (0.05) 0.001 0.09 (0.02)1.000
Ionosphere 0.17 (0.00) 0.46 (0.03) 0.001 0.01 (0.01)1.000
Iris 0.05 (0.01) 0.67 (0.05) 0.001 0.01 (0.01)0.999
Lymph 0.16 (0.01) 0.53 (0.05) 0.001 0.11 (0.02)0.995
Promoters 0.08 (0.01) 0.50 (0.06) 0.001 0.07 (0.02)0.746
Segment 0.21 (0.01) 0.86 (0.03) 0.001 0.13 (0.01)1.000
Sonar 0.32 (0.01) 0.50 (0.04) 0.001 0.13 (0.02)1.000
Spect 0.21 (0.01) 0.25 (0.03)0.077 0.07 (0.01) 1.000
Tumor 0.50 (0.01) 0.81 (0.02) 0.001 0.49 (0.02)0.751
Votes 0.10 (0.00) 0.44 (0.02) 0.001 0.00 (0.00)1.000
Zoo 0.03 (0.00) 0.81 (0.05) 0.001 0.03 (0.01)0.541

M
ed

iu
m

Abalone 0.76 (0.00) 0.88 (0.01) 0.01 0.56 (0.01)1.00
Anneal 0.35 (0.01) 0.36 (0.04) 0.65 0.31 (0.01) 1.00
Balance 0.09 (0.00) 0.54 (0.02) 0.01 0.24 (0.01) 0.01
Car 0.14 (0.00) 0.30 (0.00) 0.01 0.24 (0.01) 0.01
German 0.25 (0.00) 0.33 (0.01) 0.01 0.23 (0.01)1.00
Mushroom 0.04 (0.00) 0.50 (0.01) 0.01 0.00 (0.00)1.00
Musk 0.16 (0.00) 0.34 (0.06) 0.01 0.02 (0.00)1.00
Pima 0.24 (0.00) 0.37 (0.01) 0.01 0.22 (0.01)0.99
Satellite 0.20 (0.00) 0.80 (0.02) 0.01 0.00 (0.00)1.00
Spam 0.20 (0.00) 0.49 (0.05) 0.01 0.10 (0.00)1.00
Splice 0.05 (0.00) 0.53 (0.01) 0.01 0.03 (0.00)1.00
Tic-tac-toe 0.30 (0.00) 0.35 (0.01) 0.01 0.28 (0.01)1.00
Yeast 0.42 (0.00) 0.71 (0.01) 0.01 0.42 (0.01)0.36

La
rg

e

Adult 0.02 (0.00) 0.24 (0.01) 0.01 0.01 (0.00)0.96
Chess 0.66 (0.00) 0.84 (0.00) 0.01 0.70 (0.00) 0.01
Connect-4 0.28 (0.00) 0.34 (0.00) 0.01 0.29 (0.00)0.19
Letter 0.36 (0.00) 0.96 (0.00) 0.01 0.26 (0.00)1.00
Shuttle 0.10 (0.01) 0.47 (0.24) 0.01 0.04 (0.01)1.00

Table 4: Classification errors and empiricalp-values obtained with Naive Bayes classifier for Test 1
and Test 2. The empiricalp-values are calculated over 1000 randomized samples for small data sets
and over 100 randomized samples for medium and large data sets. Classification on the original data
is repeated ten times. In the table, the average values and standard deviations of the classification
errors are given. Boldp-values correspond to nonsignificant results when the false discoveryrate is
restricted below 0.05 with Benjamini and Hochberg (1995) approach.
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1-Nearest Neighbor

Original Test 1 Test 2

Data Set Err. (Std) Err. (Std) p-val. Err. (Std) p-val.
S

m
al

l
Audiology 0.26 (0.01) 0.86 (0.03) 0.001 0.32 (0.03)0.030
Autos 0.26 (0.01) 0.77 (0.03) 0.001 0.45 (0.03) 0.001
Breast 0.31 (0.02) 0.41 (0.03) 0.007 0.32 (0.03)0.324
Glass 0.30 (0.01) 0.74 (0.04) 0.001 0.42 (0.03) 0.001
Hepatitis 0.19 (0.01) 0.33 (0.04) 0.002 0.14 (0.03)0.970
Ionosphere 0.13 (0.00) 0.46 (0.03) 0.001 0.26 (0.01) 0.001
Iris 0.05 (0.00) 0.66 (0.05) 0.001 0.02 (0.01)0.962
Lymph 0.18 (0.02) 0.53 (0.04) 0.001 0.20 (0.03)0.307
Promoters 0.19 (0.02) 0.50 (0.06) 0.001 0.26 (0.04)0.083
Segment 0.14 (0.01) 0.86 (0.03) 0.001 0.15 (0.02)0.266
Sonar 0.13 (0.01) 0.50 (0.04) 0.001 0.27 (0.03) 0.001
Spect 0.24 (0.02) 0.32 (0.04) 0.011 0.18 (0.02)0.970
Tumor 0.66 (0.02) 0.88 (0.02) 0.001 0.62 (0.02)0.860
Votes 0.08 (0.01) 0.47 (0.03) 0.001 0.01 (0.00)1.000
Zoo 0.03 (0.01) 0.75 (0.05) 0.001 0.04 (0.02)0.333

M
ed

iu
m

Abalone 0.80 (0.00) 0.90 (0.00) 0.01 0.68 (0.01)1.00
Anneal 0.05 (0.00) 0.40 (0.02) 0.01 0.08 (0.01) 0.01
Balance 0.20 (0.01) 0.57 (0.02) 0.01 0.35 (0.02) 0.01
Car 0.22 (0.01) 0.41 (0.05) 0.01 0.29 (0.01) 0.01
German 0.28 (0.01) 0.42 (0.02) 0.01 0.33 (0.02) 0.01
Mushroom 0.00 (0.00) 0.50 (0.01) 0.01 0.01 (0.00) 0.01
Musk 0.04 (0.00) 0.26 (0.00) 0.01 0.53 (0.01) 0.01
Pima 0.29 (0.00) 0.45 (0.02) 0.01 0.27 (0.02)0.88
Satellite 0.10 (0.00) 0.81 (0.01) 0.01 0.01 (0.00)1.00
Spam 0.09 (0.00) 0.48 (0.01) 0.01 0.09 (0.00)0.31
Splice 0.24 (0.01) 0.61 (0.01) 0.01 0.30 (0.01) 0.01
Tic-tac-toe 0.21 (0.02) 0.44 (0.07) 0.01 0.38 (0.02) 0.01
Yeast 0.47 (0.01) 0.78 (0.01) 0.01 0.52 (0.01) 0.01

La
rg

e

Adult 0.02 (0.00) 0.36 (0.00) 0.01 0.01 (0.00)1.00
Chess 0.48 (0.00) 0.90 (0.00) 0.01 0.80 (0.00) 0.01
Connect-4 0.34 (0.00) 0.50 (0.00) 0.01 0.43 (0.00) 0.01
Letter 0.06 (0.00) 0.96 (0.00) 0.01 0.46 (0.00) 0.01
Shuttle 0.00 (0.00) 0.36 (0.00) 0.01 0.02 (0.00) 0.01

Table 5: Classification errors and empiricalp-values obtained with 1-Nearest Neighbor classifier
for Test 1 and Test 2. The empiricalp-values are calculated over 1000 randomized samples for
small data sets and over 100 randomized samples for medium and large data sets. Classification on
the original data is repeated ten times. In the table, the average values and standard deviations of
the classification errors are given. Boldp-values correspond to nonsignificant results when the false
discovery rate is restricted below 0.05 with Benjamini and Hochberg (1995)approach.
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Support Vector Machine

Original Test 1 Test 2

Data Set Err. (Std) Err. (Std) p-val. Err. (Std) p-val.
S

m
al

l
Audiology 0.20 (0.01) 0.83 (0.03) 0.001 0.20 (0.02)0.443
Autos 0.30 (0.02) 0.73 (0.04) 0.001 0.26 (0.03)0.873
Breast 0.30 (0.01) 0.31 (0.01)0.191 0.25 (0.02) 0.970
Glass 0.42 (0.01) 0.65 (0.03) 0.001 0.43 (0.02)0.363
Hepatitis 0.14 (0.01) 0.21 (0.00) 0.001 0.08 (0.02)0.999
Ionosphere 0.12 (0.01) 0.37 (0.01) 0.001 0.08 (0.01)0.995
Iris 0.04 (0.01) 0.67 (0.05) 0.001 0.02 (0.01)0.990
Lymph 0.14 (0.01) 0.51 (0.05) 0.001 0.12 (0.03)0.686
Promoters 0.09 (0.01) 0.50 (0.06) 0.001 0.10 (0.03)0.455
Segment 0.12 (0.01) 0.86 (0.03) 0.001 0.12 (0.01)0.529
Sonar 0.23 (0.02) 0.49 (0.04) 0.001 0.10 (0.02)0.999
Spect 0.17 (0.01) 0.21 (0.00) 0.001 0.08 (0.02)1.000
Tumor 0.53 (0.01) 0.77 (0.01) 0.001 0.53 (0.02)0.406
Votes 0.04 (0.00) 0.39 (0.01) 0.001 0.01 (0.00)1.000
Zoo 0.04 (0.00) 0.66 (0.04) 0.001 0.04 (0.01)0.666

M
ed

iu
m

Abalone 0.75 (0.00) 0.84 (0.00) 0.01 0.57 (0.01)1.00
Anneal 0.15 (0.00) 0.24 (0.00) 0.01 0.14 (0.01)0.78
Balance 0.12 (0.01) 0.54 (0.03) 0.01 0.25 (0.01) 0.01
Car 0.06 (0.00) 0.30 (0.00) 0.01 0.25 (0.01) 0.01
German 0.25 (0.00) 0.30 (0.00) 0.01 0.22 (0.01)1.00
Mushroom 0.00 (0.00) 0.50 (0.01) 0.01 0.00 (0.00) 0.01
Musk 0.05 (0.00) 0.15 (0.00) 0.01 0.01 (0.00)1.00
Pima 0.23 (0.00) 0.35 (0.00) 0.01 0.21 (0.01)1.00
Satellite 0.13 (0.00) 0.77 (0.00) 0.01 0.00 (0.00)1.00
Spam 0.10 (0.00) 0.39 (0.00) 0.01 0.04 (0.00)1.00
Splice 0.07 (0.00) 0.48 (0.00) 0.01 0.06 (0.01)0.99
Tic-tac-toe 0.02 (0.00) 0.37 (0.01) 0.01 0.30 (0.01) 0.01
Yeast 0.43 (0.00) 0.69 (0.01) 0.01 0.42 (0.01)0.72

La
rg

e

Adult 0.00 (0.00) 0.24 (0.00) 0.01 0.00 (0.00)1.00
Chess 0.66 (0.01) 0.85 (0.00) 0.01 0.72 (0.00) 0.01
Connect-4 0.24 (0.00) 0.45 (0.07) 0.01 0.29 (0.00) 0.01
Letter 0.19 (0.01) 0.96 (0.00) 0.01 0.32 (0.00) 0.01
Shuttle 0.04 (0.01) 0.21 (0.00) 0.01 0.04 (0.00)0.45

Table 6: Classification errors and empiricalp-values for the Support Vector Machine classifier for
Test 1 and Test 2. The empiricalp-values are calculated over 1000 randomized samples for small
data sets and over 100 randomized samples for medium and large data sets. Classification on the
original data is repeated ten times. In the table, the average values and standard deviations of the
classification errors are given. Boldp-values correspond to nonsignificant results when the false
discovery rate is restricted below 0.05 with Benjamini and Hochberg (1995)approach.
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pretty simple, or it is not used by the classification algorithm. That is, the classes differ from each
other, from the point of view of the classifiers, mainly due to their differentvalue distributions of
the features and not due to some dependency between the features. Thus, in many data sets the class
structure is explained by considering the features independently of eachother.

The results with Naive Bayes classifier are in line with the analysis in Section 4.2. That is,
practically all of the results are nonsignificant with Naive Bayes with Test 2as it explicitly assumes
independence of the features. However, there are three data sets where the results are regarded
as significant with Test 2: Balance, Car and Chess. These three data sets seem to contain a good
balance between the features that makes the Naive Bayes classifier to perform better on the original
data than on the randomized data sets. That is, each instance contains usually at least one feature
which makes the classification easy whereas in the randomized data sets thereare instances that do
not have separating values in any of the features. Thus, applying Test2 to Naive Bayes classifier
does not tell whether the classifier uses the interdependency between thefeatures but whether the
data are such that usually at least one feature in each instance has a clear separating value.

Compared to the other three classifiers, Naive Bayes is having both better and worse perfor-
mance with all kind of data sets. Surprisingly, however, Naive Bayes is performing better also in a
few such cases where the other classifiers are exploiting the feature dependency. For example, with
data sets Splice and Yeast the Naive Bayes classifier has the best accuracy although the Decision
Tree and 1-Nearest Neighbor classifiers are significant with Test 2. Thus if a classifier is using
the feature dependency in the classification, it does not directly imply that some other classifier
could not do better without using the dependency. In such case, however, it is likely that neither
of the classifiers are optimal and we could obtain even better performance by combining the good
properties of both the classifiers.

In the rest of this section, we will consider only the three other classifiers,namely Decision Tree,
1-Nearest Neighbor and Support Vector Machine classifiers. Thereis a clear difference between the
small and large data sets with these classifiers. The results with Test 2 for small data sets are almost
all nonsignificant whereas the results for large data sets are almost all significant. Only the Adult
data set from large data sets seems to contain simple class structure. Actually,the Decision Tree and
Support Vector Machine classifiers are able to classify correctly all the test samples on the original
Adult data set as well as on the randomized versions of the Adult data set of Test 2. The results with
the studied small UCI data sets are understandable, as many of them are known to contain fairly
simple structure.

The results with the three classifiers are close to each other with all tests. Surprisingly, however,
1-Nearest Neighbor classifier has been able to use the interdependency between the features the
most, that is, it contains the most of small, significantp-values with Test 2. However, other more
complex classifiers could be able to find more data sets where the dependency between the features
is useful in classification.

Let us now study the results with Test 2 in more detail. Consider the well-knownIris data set
that contains measurements of three different species of iris flowers from four features: the length
and the width of sepal and petal. It turns out that the classes are almost linearly separable given
the length of petal or given the width of petal. Although there is a high positivelinear correlation
between the length and width of petal, it is not important for the classification result as both features
can explain the classes by themselves.

Actually, observe that for the Iris data set with Test 2, the classification error on the random-
ized samples is even smaller than in the original data set. This phenomenon is explained by the
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positive linear correlation between the length and the width of petal, which disappears after the
randomizations, as seen in Figure 2 in Section 3.1. Randomizations eliminate most of the rows
containing extreme values for both of the features inside the classes. Thus, the classifiers do not use
the dependency between these two features, as their correlation does not help in classifying the Iris
data. When this positive correlation is eliminated per classes, the separation between the classes
increases, and therefore, the classification accuracy is improved.

For most of the data sets where the empiricalp-values are very high for the null hypothesis of
Test 2, there are either outliers inside the classes or positive correlation between some features that
is not used in the classification as it does not help in separating the classes.For example, the data set
Votes contains congressional “yes” and “no” voting records from republicans and democrats. There
are few voting cases where the opinion of the voter clearly reveals the political views. However,
there are some outliers, that is, people who have behaved more like democrats although they are
republicans, or vice versa, that vanish after randomization. Nevertheless, these reasons do not
remove the fact that the features independently classify the voting records.

Finally, we discuss the results for the Balance data set. With all classifiers theclassification
results of the Balance data set are significant under the null hypothesis of Test 2, that is, the clas-
sifiers have exploited the dependency between the features. The structure of the data supports
this: The data contains four features of a balance scale: left-weight, left-distance, right-weight and
right-distance. The scale is in balance if left-weight times left-distance equalsright-weight times
right-distance. There are three classes: the scale tips to the left, to the right,or is in balance. It is
clear that the dependency between the features is necessary for correct classification result.

Note however, that understanding the structure inside the data sets wherethe classification re-
sults are regarded as significant under the null hypothesis of Test 2 requires more study, that is,
we just know that the features do not explain the class structure independently. Analyzing the de-
pendency structure of the features is then a further task. But as seen,the null hypothesis of Test 2
explains about half of the good classification results in the 33 data sets.

We conclude the experiments with a summary about the running times of the methods. We used
MATLAB for producing the randomized data sets and Weka for performingthe classification on a
2.2 GHz Opteron with 4 GB of main memory. The running times of producing one randomization
of each data set and the running times of calculating the classification errorson the original data sets
and on the randomized data sets are given in Table 7. The running times of producing the random-
ized data sets are negligible compared to the running times of calculating the classification errors
of the data sets, that is, training and testing the classifiers. There is, however, a small difference
between the running times of obtaining the classification errors on the originaland the randomized
data sets. Usually, the classification is a little bit faster on the original data set than on the random-
ized data sets. Furthermore, the classification on randomized data sets of Test 2 is usually faster
than on randomized data sets of Test 1. The reason is that it is harder to teach a classifier on a
randomized data set which has usually a weaker class structure than the original data set. Among
the two randomization tests, Test 2 generally preserves the original class structure the most because
it preserves some connection between the data and the class labels.

6. Conclusions

We have considered the problem of assessing the classifier performance with permutation tests in
the statistical framework of hypothesis testing. We have described two different null hypotheses and
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Rand. Decision Tree Naive Bayes 1-Near. Neighbor Supp. Vect. Mach.

Data Set T1 T2 Or. T1 T2 Or. T1 T2 Or. T1 T2 Or. T1 T2

S
m

al
l

Audiology 0.0 0.0 1.9 2.0 1.5 1.8 1.8 1.8 1.8 1.5 1.8 39 36 36
Autos 0.0 0.0 0.5 0.5 0.5 0.5 0.4 0.4 0.5 0.4 0.4 3.2 2.2 2.3
Breast 0.0 0.0 0.5 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.4 1.1 0.9 0.7
Glass 0.0 0.0 0.4 0.4 0.3 0.3 0.3 0.2 0.3 0.2 0.2 2.4 2.3 2.3
Hepatitis 0.0 0.0 0.4 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.5 0.4 0.4
Ionosphere 0.0 0.0 1.2 1.0 0.9 0.8 0.7 0.7 0.9 0.8 0.9 1.2 1.3 1.0
Iris 0.0 0.0 0.2 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.5 0.6 0.4
Lymph 0.0 0.0 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1.2 1.2 1.1
Promoters 0.0 0.0 0.8 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.6 1.0 0.9 0.8
Segment 0.0 0.0 0.5 0.6 0.4 0.4 0.3 0.3 0.4 0.3 0.4 3.6 2.4 2.3
Sonar 0.0 0.0 1.2 0.9 1.1 0.9 0.7 0.7 0.9 0.9 0.9 1.1 1.1 0.9
Spect 0.0 0.0 0.7 0.6 0.6 0.6 0.8 0.6 0.8 0.6 0.6 0.8 0.8 0.7
Tumor 0.0 0.0 0.9 0.8 0.8 0.8 0.7 0.6 0.8 0.8 0.8 30 21 26
Votes 0.0 0.0 1.0 0.8 0.7 0.9 0.9 0.7 1.0 0.9 0.8 1.2 1.1 1.1
Zoo 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 3.1 3.1 2.6

M
ed

iu
m

Abalone 0.0 0.0 7.0 8.9 6.7 3.1 3.0 3.0 7.6 7.8 7.8 54 78 60
Anneal 0.0 0.0 2.9 2.9 2.9 2.3 2.3 2.3 3.1 3.1 3.2 4.7 9.3 4.6
Balance 0.0 0.0 0.5 0.5 0.5 0.4 0.3 0.4 0.5 0.5 0.4 0.9 1.0 0.8
Car 0.0 0.0 1.4 1.5 1.4 1.4 1.4 1.3 1.8 1.8 1.7 5.1 8.0 7.7
German 0.0 0.0 1.8 1.5 1.5 1.6 1.2 1.5 2.0 2.1 2.1 9.4 6.3 9.8
Mushroom 0.0 0.0 21 24 21 20 21 20 68 70 70 60 1197 26
Musk 0.0 0.2 130 110 176 55 63 80 230 309 318 502 5816 86
Pima 0.0 0.0 0.8 0.7 0.9 0.7 0.7 0.5 0.8 0.7 0.8 0.9 0.8 0.9
Satellite 0.0 0.0 26 128 21 13 14 14 59 62 81 19 157 15
Spam 0.0 0.1 32 16 23 14 14 14 39 56 56 21 38 17
Splice 0.0 0.0 17 17 16 15 16 15 36 28 28 87 1922 95
Tic-tac-toe 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.2 3.1 3.5 6.6
Yeast 0.0 0.0 1.7 2.2 1.6 1.3 1.0 1.3 1.4 1.4 1.7 5.2 5.3 4.9

La
rg

e

Adult 0.0 0.4 55 60 58 56 62 67 315 325 304 77 134 63
Chess 0.0 0.1 71 57 54 45 54 59 131 105 111 93 89 102
Connect-4 0.0 0.9 379 380 292 387 391 291 1161 1297 1285 975 5581066
Letter 0.0 0.1 37 45 42 32 45 34 95 103 99 43 50 45
Shuttle 0.0 0.2 176 139 142 141 143 138 339 419 319 149 170 140

Table 7: Average running times in seconds for obtaining one randomization version of each data set
for Test 1 (T1) and Test 2 (T2), as well as running times for obtaining one classification error for the
four studied classifiers on each original data set (Or.) and on each randomized version of each data
set (T1, T2). The running times are the average values over all the samples produced. Note that the
classification procedures for small, medium and large data sets differ fromeach other.
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shown how samples can be produced from the corresponding null modelsby simple permutation
methods. Each test provides an empiricalp-value for the classifier performance; eachp-value
depends on the original data (whether it contains the type of structure tested) and the classifier
(whether it is able to use the structure). The two null hypotheses can be summarized as follows: (1)
the data and the class labels are independent; and (2) the features are mutually independent given
the class label.

Each test evaluates whether a certain structure (label–class dependency or dependency between
features inside a class) is present in the data, and whether the classifier can use such structure
for obtaining good results. If the original data really contains the structurebeing tested, then a
significant classifier should use such information and thus obtain a lowp-value. If the classifier is
not significant then it will not notice the structure from the original data andthus, get a highp-value.
On the other hand, if the original data does not contain any structure at all,then allp-values should
be very high.

We have performed extensive experiments both on synthetic and real data. Experiments showed
that the traditional permutation test (i.e., data and class labels are independent) is not useful in
studying real data sets as it produces a smallp-value even if there is only a weak class structure
present. Compared to this, the new test proposed, that is, permuting the features inside a class, was
able to evaluate the underlying reasons for the classifier performance onthe real data sets. Surpris-
ingly, however, in about half of the studied real data sets the class structure looks fairly simple; the
dependency between the features is not used in classifying the data with thefour tested classifiers.
In such cases, there might be no reason to use the chosen classifier. That is, either the same or even
better performance could be obtained by using some simpler methods, or the classification perfor-
mance could be improved further by taking some useful unused feature dependency into account by
changing the classification algorithm.

Interpreting the descriptive information provided by Test 2 needs care.If the classifier is signif-
icant with Test 2, then the data really contains a feature dependency that the classifier is exploiting.
However, if the classifier is not significant with Test 2, that is, we obtain a high p-value, there are
three different possibilities: (1) there are no dependencies between thefeatures in the data; (2) there
are some dependencies between the features in the data but they do not increase the class separation;
or (3) there are useful dependencies between the features in the data that increase the class sepa-
ration but the chosen classifier is not able to exploit them. In the third case, we would like to find
such a classifier that could use the feature dependency to improve the classification performance.
However, in general, when a highp-value is obtained with Test 2, we cannot know which of these
applies to the data and to the chosen classifier. Thus the best we can do is to continue the search for a
better classifier by assuming that any of them could be true. That is, we try more complex classifiers
that could use the possible existing feature dependency, as well as simplerclassifiers that could per-
form better if no feature dependency exists. Nevertheless, the answerprovided by Test 2 is definite,
that is, it tells whether the chosen classifier uses feature dependency to improve the classification
performance.

Future work should explore the use of Test 2 for selecting the best discriminant features for
classifiers, in similar fashion as Test 1 has been used for decision trees and other biological appli-
cations (Frank, 2000; Frank and Witten, 1998; Maglietta et al., 2007). Also, it would be useful to
extend the setting to unsupervised learning, such as clustering. In addition, more study is needed
for exploiting the descriptive information provided by Test 2. Specifically,how should we proceed
to improve and study the classification performance when a highp-value is obtained with Test 2?
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