(will be inserted by the editor)

Software Tools for Technology Transfer manuscript No.

An Abstraction-Based Decision Procedure for Bit-Vector

Arithmetic *

Randal E. Bryant!, Daniel Kroening?, Joél Ouaknine?, Sanjit A. Seshia?, Ofer Strichman?,

Bryan Brady?

Carnegie Mellon University, Pittsburgh
Oxford University Computing Laboratory
University of California, Berkeley

The Technion, Haifa

=W N =

The date of receipt and acceptance will be inserted by the editor

Abstract. We present a new decision procedure for fi-
nite-precision bit-vector arithmetic with arbitrary bit-
vector operations. Such decision procedures are essential
components of verifications systems, whether the domain
of interest is hardware, such as in word-level bounded
model-checking of circuits, or software, where one must

often reason about programs with finite-precision datatypes.

Our procedure alternates between generating under- and
over-approximations of the original bit-vector formula.
An under-approximation is obtained by a translation to
propositional logic in which some bit-vector variables are
encoded with fewer Boolean variables than their width.
If the under-approximation is unsatisfiable, we use the
unsatisfiable core to derive an over-approximation based
on the subset of predicates that participated in the proof
of unsatisfiability. If this over-approximation is satis-
fiable, the satisfying assignment guides the refinement
of the previous under-approximation by increasing, for
some bit-vector variables, the number of Boolean vari-
ables that encode them. We present experimental results
that suggest that this abstraction-based approach can
be considerably more efficient than directly invoking the
SAT solver on the original formula as well as other com-
peting decision procedures.

1 Introduction

Decision procedures for quantifier-free fragments of first-
order theories find widespread use in hardware and soft-
ware verification. Current uses of decision procedures fall

* B. Brady, R. E. Bryant, and S. A. Seshia were supported in
part by SRC contract 1355.001. This research was also supported
in part by the MARCO Gigascale Systems Research Center and
by NSF grant CNS-0627734.

into one of two extremes. At one end, a Boolean satis-
fiability solver is directly employed as the decision pro-
cedure, with systems modeled at the bit-level. Sample
applications of this kind include bounded model check-
ing [5,10] and SAT-based program analysis [28]. At the
other extreme, verifiers use decision procedures that rea-
son over arbitrary-precision abstract types such as the
integers and reals (Z and R).

In reality, system descriptions are best modeled with
a level of precision that is somewhere in between. Sys-
tem descriptions are usually at the word-level; i.e., they
use finite-precision arithmetic and bit-wise operations on
bit-vectors. Of course, reasoning about hardware designs
or programs written in languages that support finite-
precision arithmetic, such as C, are naturally modeled
(or treated directly) at the word-level. Ignoring the finite-
ness of the represented numbers can make a reasoning
system unsound.

The following formula, for example, obviously holds over
the integers:

(z-y>0) < (z>y). (1)

If x and y are interpreted as finite-width bit-vectors,
however, this equivalence no longer holds, due to pos-
sible overflow of the subtraction operation. As another
example, consider the following small C program:

unsigned char number = 200;
number = number + 100;
printf("Sum: %d\n", number);

The program may return a surprising result, as most
architectures use 8 bits to represent variables with type
unsigned char:

11001000 = 200
4+ 01100100 =100
= 00101100 =44

2 Randal E. Bryant et al.: An Abstraction-Based Decision Procedure for Bit-Vector Arithmetic

When represented with 8 bits by a computer, 200 is
stored as 11001000. Adding 100 results in an overflow,
as the ninth bit of the result is discarded.

The direct use of a SAT solver as cited earlier (also
known as “bit-blasting”) is the conceptually simplest
way to implement a bit-vector decision procedure, even
though it ignores higher-level structure present in the
original decision problem.

Naive bit-blasting is used, for example, in Microsoft, for
verifying device drivers. Cook et al. [11] report exper-
imental results that quantify the impact of replacing
ZAPATO, a decision procedure for a fragment of linear
arithmetic, with Cogent, a bit-vector decision procedure
based on bit-blasting. The increased precision of Cogent
not only improved the performance of SLAM, it also re-
sulted in the discovery of a previously unknown bug in
a Windows device driver.

However, the bit-blasting approach can be too compu-
tationally expensive in practice (see, for example, [1]).
There is therefore a pressing need for better decision
procedures for bit-vector arithmetic.

What is this article about? We present a decision pro-
cedure for quantifier-free bit-vector arithmetic that uses
automatic abstraction-refinement. This procedure is now
implemented in the verification system UCLID, and we
shall call it by this name from hereon. Given an in-
put bit-vector formula ¢, UCLID first builds an under-
approximation ¢ from ¢ by restricting the number of
Boolean variables used to encode each bit-vector vari-
able (see details of this encoding in Section 3.1). The
reduced formula is typically much smaller and easier to
solve. If ¢ is satisfiable, so is ¢, and the algorithm ter-
minates. In case the Boolean formula is found to be un-
satisfiable, the SAT solver is able to output a resolution
proof of this fact, from which the unsatisfiable core used
in this proof can be extracted. Using this core, an over-
approximation ¢ is built. This over-approximation uses
the full set of bits of the original vectors, but only a sub-
set of the constraints. This subset is determined by ex-
amining the unsatisfiable core of ¢. If ¢ is unsatisfiable,
50 is ¢, and UCLID terminates. Otherwise, the algorithm
refines the under-approximation ¢ by increasing, for at
least one bit-vector variable, the number of Boolean vari-
ables encoding it. Specifically, the new size is implied by
the value of this variable in the satisfying assignment to
. This process is repeated until the original formula is
shown to be either satisfiable or unsatisfiable. The al-
gorithm is trivially guaranteed to terminate due to the
finite domain.

This approach has the potential of being practically ef-
ficient in one of the following two scenarios:

1. The bit-vector formula is satisfiable, and there exists
a numerically ‘small’ solution, i.e., a solution that
can be represented with a small number of bits.

2. The bit-vector formula is unsatisfiable, and a rela-
tively small number of terms in this formula partic-
ipate in the proof (i.e., the proof still holds after re-
placing the other terms with new inputs).

Whether this potential is fulfilled depends on one’s abil-
ity to find such small solutions and small unsatisfiable
cores’ efficiently: for the former, we search for gradually
increasing solutions in terms of the number of bits that
are needed in order to represent them, and hence are
guaranteed to find a small one if it exists; for the lat-
ter, modern SAT solvers are quite apt at finding small
cores when they exist. In practice, as our experiments
show, one of these conditions frequently holds and we
are able to detect it with our tool faster than analyzing
the formula head-on without any approximations.

Our approach can be seen as an adaptation to bit-vector
formulas of our previous work [18] on abstraction-refine-
ment of quantifier-free Presburger Arithmetic, which,
in turn, was inspired by the proof-based abstraction-
refinement approach to model checking that was pro-
posed by McMillan and Amla [20]. Other than the differ-
ent problem domain (bit-vectors vs. Presburger formu-
las), we also extend the theoretical framework to oper-
ate on an arbitrary circuit representation of the formula,
rather than on a CNF representation. We also employ
optimizations specific to bit-vector arithmetic. On the
applied side, we report experimental results on a set of
benchmarks generated in both hardware and software
verification. Our experiments suggest that our approach
can be considerably more efficient than directly invoking
the SAT solver on the original formula as well as other
state-of-the-art decision procedures.

This article extends the proceedings version [8] mainly
by adding more technical background and motivation,
elaborating more on the over-approximation technique
and clarifying various issues.

Related Work Current decision procedures for bit-vector
arithmetic fall into one of three categories:

1) Bit-blasting and its variants: Many current decision
procedures are based on bit-blasting the input formula to
SAT, with a variety of methods for encoding the various
bit-vector operations. Most of the modern tools apply
various simplifications and high-level reasoning before
the bit-blasting phase. The Cogent [11] procedure men-
tioned earlier belongs to this category. The most cur-
rent version of CVC-Lite [14] pre-processes the input
formula using a normalization step followed by equal-
ity rewrites before finally bit-blasting to SAT. Wedler
et al. [26] have a similar approach wherein they normal-
ize bit-vector formulas in order to simplify the gener-

1A small unsatisfiable core of the CNF encoding of a formula
does not necessarily correspond to a small number of terms from
the original formula, but obviously the two measures are corre-
lated.

Randal E. Bryant et al.: An Abstraction-Based Decision Procedure for Bit-Vector Arithmetic 3

ated SAT instance. STP [15] is a decision procedure for
both bit-vector arithmetic and the theory of arrays; it
performs a lazy instantiation of array axioms as well as
arithmetic and Boolean simplifications on the bit-vector
formula before bit-blasting to MiniSat. Yices [13] applies
bit-blasting to all bit-vector operators except for equal-
ity. The tool Spear [2], by Babi¢ and Hu, is based on
bit-blasting and a fast SAT solver with numerous opti-
mization parameters.

2) Canonizer-based procedures: Earlier work on deciding
bit-vector arithmetic centered on using a Shostak-like
approach of using a canonizer and solver for that theory.
The work by Cyrluk et al. [12] and by Barrett et al. on
the Stanford Validity Checker [4] fall into this category;
the latter differs from the former in the choice of a canon-
ical representation. These approaches are very elegant,
but are restricted to a subset of bit-vector arithmetic
comprising concatenation, extraction, and linear equa-
tions (not inequalities) over bit-vectors.

3) Procedures for modular and bounded arithmetic: The
third category of systems focuses on techniques to han-
dle (linear and non-linear) modular arithmetic. The most
recent work in this area is by Babi¢ and Musuvathi [3],
who encode non-linear operations as non-linear congru-
ences and make novel use of Newton’s p-adic method
for solving them. However, this approach does not treat
some of the operations that we handle such as inte-
ger division, and seems harder to extend to new opera-
tions. Brinkmann and Drechsler [6] use an encoding of
linear bit-vector arithmetic into integer linear program-
ming with bounded variables in order to decide proper-
ties of RTL descriptions of circuit data-paths, but do
not handle any Boolean operations. Parthasarathy et
al. [23] build on this approach by using a lazy encoding
with a modified DPLL search, but non-linear bit-vector
arithmetic is not supported. Huang and Cheng [17] give
an approach to solving bit-vector arithmetic based on
combining ATPG with a solver for linear modular arith-
metic. This approach is limited in its treatment of non-
linear operations which it handles by heuristically rewrit-
ing them as linear modular arithmetic constraints.

McMillan and Amla [20] use a technique related to ours
in order to accelerate model checking algorithms over fi-
nite Kripke structures. Specifically, they invoke a bounded
model checker to decide which state variables should
be made visible in order to generate a ‘good’ abstrac-
tion for the next iteration of model checking. Gupta
et al. [16] propose a similar model-checking framework,
which among others makes greater use of counterexam-
ples and uses abstract models for both validation and
falsification attempts. Our approach differs from both of
these in the following respects: we use a bit-vector deci-
sion procedure instead of a model checker, and we seek
to eliminate constraints rather than variables (or gates
or latches, as the case may be).

Lahiri et al. [19] present an algorithm for deciding sat-
isfiability of quantifier-free Presburger arithmetic that
is based on alternating between an under- and an over-
approximation. The under-approximation is constructed
as in [18]. The over-approximation uses a Craig Inter-
polant.

2 Preliminaries

2.1 Boolean Satisfiability

We begin by recalling some well-known terms and ob-
servations concerning Boolean formulas and satisfiabil-
ity (SAT). A literal is either a variable or its negation. A
clause is a disjunction of zero or more literals, with the
empty clause denoting False. A formula is said to be in
Conjunctive Normal Form (CNF) if it is a conjunction
of clauses.

Linear conversion to CNF: Let 3 be a Boolean formula
with variables bq,...,b,. It is possible to construct a
Boolean formula cnf(¢) with variables by, . .., b1, (Where
the by11, . .., bpyp are fresh Boolean variables), such that

— cnf(() is in conjunctive normal form (CNF):

Cnf(ﬁ) = Bj)

~-

j=1

where each B; is a Boolean clause,
— cnf(Q) is satisfiable iff 3 is satisfiable; more precisely,

Elbn+1, ceey bn+p- cnf(ﬂ)

is tautologically equivalent to 3, and
— The number of variables and the number of clauses
in cnf(8) are both linear in the size of 3.

Linear-time algorithms for computing cnf(3) are well-
known since Tseitin [24].

Tseitin suggested to add one new variable for every logi-
cal gate in the original formula, and several clauses (e.g.,
three for ‘and’ and ‘or’ nodes, two for ‘xor’) to constrain
the value of this variable to be equal to the gate it rep-
resents, in terms of the inputs to this gate. The original
formula is satisfiable if and only if the conjunction of
these clauses together with the new variable associated
with the top-most operator, is satisfiable. This is best
illustrated with an example.

Ezample 1. Given a propositional formula
bl = (bz A bg) s (2)

with Tseitin’s encoding we assign a new variable to each
subexpression, or, in other words, to each logical gate,
e.g., ‘and’ (A), ‘or’ (V), ‘not’ (=) ete.

4 Randal E. Bryant et al.: An Abstraction-Based Decision Procedure for Bit-Vector Arithmetic

Fig. 1. Tseitin’s encoding. Assigning an auxiliary variable to
each logical gate (here in square brackets) enables us to translate
each propositional formula to CNF, while increasing the size of the
formula only linearly.

For this example, let us assign the variable as to the ‘and’
gate (corresponding to the subexpression by Ab3) and ay
to the ‘implication’ gate (corresponding to by = as),
which is also the top-most operator of this formula. Fig. 1
illustrates the derivation tree of our formula, together
with these auxiliary variables in square brackets. We
need to satisfy a;, together with two equivalences:

a1 <= (by = as)
ay < (bg /\bg).

(3)
The first equivalence can be rewritten in CNF as:

(a1 V bl) N
(a1 V —asz) A (4)
("(Ll V _|b1 \Y 02) 5

and the second equivalence can be rewritten in CNF as:

("(LQ V bg) AN
("CLQ V b3) A\ (5)
(ag V —by V ﬁb3) .

Thus, the overall CNF formula is the conjunction of (4),
(5) and the unit clause

(a1) , (6)

which represents the top-most operator. 0O

SAT solvers: A CNF SAT solver is an algorithm that
determines, given a Boolean formula § in CNF, whether
0 is satisfiable. If so, it outputs a satisfying assignment
for 8. If, on the other hand, § is unsatisfiable, modern
SAT solvers can also generate a proof of unsatisfiabil-
ity [29,20] based on the binary resolution inference-rule.
The leafs of such proofs (the assumptions) constitute
an unsatisfiable core, i.e., an unsatisfiable subset of the
clauses of 3. In practice, SAT solvers tend to find small
unsatisfiable cores if they exist. Indeed, in many cases in
practice, formulas contain a large number of redundant
constraints.

2.2 Bit-Vector Arithmetic

The quantifier-free fragment of the first-order theory of
bit-vector arithmetic that we consider here includes finite-
precision integer arithmetic with linear and non-linear

operators, as well as standard bit-wise operators, such
as left shift, logical and arithmetic right shifts, extrac-
tion, concatenation, and so forth. In fact, the approach
we use in this paper is orthogonal to the the set of op-
erators, since it only relies on the given finite width for
each variable, as well as on the existence of a proposi-
tional encoding of the formula.

At present, UCLID supports all bit-vector arithmetic con-
structs defined in the grammar that appears in Fig. 2.
Standard notation has been used in describing the above
grammar, and we only point out certain aspects of the
notation. Terms denote bit-vectors while formulas are
Boolean-valued expressions. The expression

formula ? term : term

is an “if-then-else” expression that selects between two
terms on the basis of the value of its Boolean first argu-
ment. The expression term[i : j] denotes the extraction
of bits ¢ through j of the bit-vector expression term. The
operator % denotes the integer mod operator, while @
denotes concatenation.

Each bit-vector expression is associated with a type. The
type is the width of the expression in bits and whether
it is signed (two’s complement encoding) or unsigned
(binary encoding). Assigning semantics to this language
is straightforward, e.g., as done in [6].

Note that all arithmetic operators (addition: +, subtrac-
tion: —, multiplication: *, division: +, modulo: %) are
finite-precision, and come with an associated operator
width.

Note also that the relational operators >, <, <, >, the
non-linear arithmetic operators (x,+, %) and the right-
shift depend on whether an unsigned, binary encoding is
used or a two’s complement encoding is used. We assume
that the type of the expression is clear from the context.

This paper addresses the satisfiability problem for bit-
vector formulas: given a bit-vector formula ¢, is there an
assignment to the bits in ¢ under which ¢ evaluates to
True? It is easy to see that this problem is NP-complete.

3 The Decision Procedure

We now present the main contribution of this paper, a
SAT-based decision procedure that operates by generat-
ing increasingly precise abstractions of bit-vector formu-
las.

Notation: Formulas in bit-vector arithmetic are denoted
by ¢, ¢', ¢1, ¢Po,..., and Boolean formulas by 3, (1,
Ba,.... We denote by ¢ the input bit-vector arithmetic
formula and by v, va,vs,..., Vv, its bit-vector variables.
Each such variable v; has an associated bit-width w;.

Randal E. Bryant et al.: An Abstraction-Based Decision Procedure for Bit-Vector Arithmetic

t

formula : formula V formula | formula A formula | —formula | atom

atom : term rel term | Boolean-Identifier
eli= | £l <2 <>

term : term op term | identifier | ~ term | constant | terml[i : j] | formula ? term : term

opitl—lx|+|%] << | >> [Q@[&]

Fig. 2. Supported grammar: UCLID supports all bit-vector arithmetic operators defined in the above grammar.

Generate
Under—-approx.

Select small

Input bit-Vec

Increase bit-vector encoding sizes to cover satisfying solution

Formul Encode to
ormula ¢ encoding sizes SAT

Bit-Vec Formula ¢
Satisfiable

YES

Generate
Abstraction =

NO

Potential
calls to SAT solver

Bit-Vec Formula ¢
Unsatisfiable

Fig. 3. Abstraction-based approach to solving bit-vector arithmetic

3.1 Owverview

We first give a broad overview of our decision procedure,
which is illustrated in Fig. 3. Details of design decisions
are described later in this section.

The decision procedure performs the following steps:

1. Initialization: For each variable v;, we select a corre-
sponding number s; of Boolean variables to encode
it with, where 0 < s; < w;.

We will call s; the encoding size of bit-vector variable
V;.

2. Under-Approximation and Encoding to SAT: An under- 5
approximation, denoted ¢, is generated by restricting
the values of each v; to range over a set of cardinality
2%, Thus, the Boolean encoding of v; will comprise s;
Boolean variables; note, however, that the length of
the vector of Boolean variables replacing v; remains
w;.

There are several ways to generate such an under-
approximation and its Boolean encoding. One op-
tion is to encode v; using Boolean variables on its
s; low order bits and then zero-extend it to be of
length w;. The other is to “sign-extend” it instead.
For example, if s; = 2 and w; = 4, the latter would
generate the Boolean vector [v;1, v;1, V41, Vip] (where
v,; are Boolean variables). Our implementation cur-
rently uses the latter encoding, as it enables searching
for solutions at both ends of the ranges of bit-vector
values (e.g., in the example above the possible val-
ues are 0000, 0001, 1110 and 1111). This is especially
useful in cases where the formula contains compar-

isons to high values (such as MAXINT in C). Further
exploration of this aspect is left to future work.

A Boolean formula (§ is then computed from ¢ us-
ing standard circuit encodings for bit-vector arith-
metic operators. The width of the operators is left
unchanged. The formula § is passed to an off-the-
shelf SAT solver. The only feature required of this
SAT solver is that its response on unsatisfiable for-
mulas be accompanied by an unsatisfiable core.

If the SAT solver reports that (§ is satisfiable, then
the satisfying assignment is an assignment to the
original formula ¢, and the procedure terminates.
However, if 3 is unsatisfiable, we continue on to the
next step.

. Over-Approximation from the Unsatisfiable Core: The

SAT solver extracts an unsatisfiable core C from the
proof of unsatisfiability of 3. We use C to generate an
over-approximating abstraction ¢ of ¢. The formula
¢ is also a bit-vector formula, but typically much
smaller than ¢.

The algorithm that generates ¢ is described in Sec-
tion 3.2. The key property of ¢ is that its transla-
tion into SAT, using the same sizes s; as those that
were used for ¢, would also result in an unsatisfiable
Boolean formula.

The satisfiability of ¢ is then checked using a sound
and complete decision procedure P for bit-vector arith-
metic, e.g., a bit-blasting approach.

If ¢ is unsatisfiable, we can conclude that so is ¢. On
the other hand, if ¢ is satisfiable, it must be the case
that at least one variable v; is assigned a value that
is not representable with s; Boolean variables (recall

the key property enjoyed by ¢ cited earlier). This

6 Randal E. Bryant et al.: An Abstraction-Based Decision Procedure for Bit-Vector Arithmetic

larger satisfying assignment indicates the necessary
increase in the encoding size s; for v;. Proceeding
thus, we increase s; for all relevant 4, and go back to
Step 2.

Remark 1. Note that in this step it would be per-
missible to merely use a sound, but not necessarily
complete, bit-vector arithmetic decision procedure P.
In other words, we require that the outcome of P be
correct whenever this outcome is ‘Unsat’, but we can
tolerate spurious satisfying assignments. Indeed, in
cases where P provides a satisfying assignment that
is not a satisfying assignment for ¢, we can simply
increase s; by 1 for each i such that s; < w;, and go
back to Step 2. Of course, bit-blasting is both sound
and complete.

Since s; increases for at least one ¢ in each iteration of
this loop, this procedure is guaranteed to terminate in
O(NWiay) iterations, where wy,q, = max; w;. Each such
iteration involves a call to a SAT solver and a decision
procedure for bit-vector arithmetic.

One of the main theoretical advances we make over the
earlier work on Presburger arithmetic [18] is a different
method for generating the abstraction. We describe this
in the following section.

8.2 Generating an Qver-Approximating Abstraction

The earlier work assumed that ¢ was in conjunctive
normal form (CNF), whereas our procedure works with
an arbitrary directed acyclic graph (DAG) or circuit-
based representation, which is the format in which the
input problems are typically given. While ¢ can be trans-
formed to CNF (in two different ways, listed below), we
argue below that neither of those approaches is desir-
able, primarily due to the presence of nested if-then-else
(ITE) expressions at arbitrary locations in ¢.

1) Eliminating ITE using new variables: By giving each
ITE expression in the formula a fresh bit-vector variable
name, we can eliminate all ITEs with just a linear in-
crease in the number of bit-vector variables and formula
size.

Introducing such new bit-vector variables restricts the
amount of cheap simplifications one can perform on the
formula before passing it to a SAT solver. For many for-
mulas, such simplifications (corresponding, for example,
to standard Boolean identities) are essential for scal-
ability. For example, consider the ITE-based formula
ITE(b,T1,T») = v where T} and T3 are bit-vector terms.
Using fresh variables v; and v, for 77 and T5 respectively,
we would obtain the transformed ITE-free expression as
(b:>v:vl)/\(ﬁb:>v:vg)/\(v1 :Tl)/\(vg :TQ).
Now, if owing to simplifications v always differs from T3
and 75 in the least significant bit, the I'TE-based formula

will simplify to False. However, the ITE-free represen-
tation will require the SAT solver to propagate implica-
tions to be able to perform the same simplification. This
inability to adequately simplify the formula before pass-
ing it to SAT can result in an unnecessarily large SAT
problem with a resultant slowdown.

Note that the number of input bit-vector variables (v;’s)
is usually a few orders of magnitude smaller than the size
of the formula ¢. As a result, when treating the new vari-
ables as inputs, the SAT solver’s performance has been
observed to suffer a great deal. Since the value of each
such new variable is implied by the values of the origi-
nal variables, it may seem that one way to deal with the
above problem is to restrict the SAT solver from splitting
on the bit-encodings of the new ITE variables. However,
such restrictions have also been found to severely ad-
versely affect the run-time of current SAT engines. (It is
rarely the case that changing the generic decision heuris-
tic of a modern SAT solver due to high-level information
improves performance.)

2) Direct elimination of ITE: Another way of eliminating
ITEs is to expand out the cases without introducing new
variables. However, this leads to a worst-case exponential
blow-up in formula size, which is commonly witnessed in
practice.

We have therefore devised an abstraction-generation al-
gorithm 4 that operates directly on the DAG represen-
tation of ¢, denoted Dy. The inputs to A are Dy, the
root node, and the unsatisfiable core C. The output is a
DAG Dg representing ¢, which is an over-approximation

of ¢. Let N® and N? be the set of nodes in Dy and Dy,
respectively.

Before describing the algorithm, we need to describe the
process of transforming the Boolean encodings of ¢ and ¢
into CNF. It can be seen as a generalization of Tseitin’s
encoding (which introduces fresh variables for internal
nodes, as described in §2) to the case of bit-vector for-
mulas. Each internal node n € N? is annotated with a
set of CNF clauses c(n) that relate the output of that
node o(n) to its inputs, according to the operator in the
node. These output variables then appear as input to the
parent nodes of n. Then a conjunction of the clauses in
{e(n)|n € N?} and one more unit clause with the vari-
able encoding the top node, is the CNF representation
of ¢. A subset of these clauses constitutes the UNSAT
core C. These definitions and notations also apply to Dy,
and we will use them for both DAGs when the meaning
is clear from the context. For a formula (or equivalently,
a set of clauses) C, we denote by vars(C) the set of
variables that appear in C.

Procedure A (see Algorithm 1) recurses down the struc-
ture of Dy and creates Dg. It replaces a Boolean node n
with a new variable and backtracks, if and only if none
of the variables in vars(c(n)) are present in the unsatis-

Randal E. Bryant et al.: An Abstraction-Based Decision Procedure for Bit-Vector Arithmetic 7

fiable core C2. It uses the functions left-child(Dy,n) and
right-child(Dg, n) to return the left and right child of n
on Dy, respectively.

Algorithm 1 An algorithm for abstracting an NNF
formula ¢ such that only subformulas that do not con-
tribute to the UNSAT core C are replaced with a new
variable
procedure A(DAG Dy, node n, unsat-core C)
if n is a leaf then return ;
end if
if n is Boolean and vars(c(n)) Nwvars(C) = 0 then
Replace n in Dy with a new Boolean variable;
return ;
end if
A(Dy, left-child(Dg, n),C);
A(Dgy, right-child(Dg, n), C);
end procedure

The replacement of Boolean nodes with new variables
can be further optimized using the “pure-literal rule”:
if ng is a Boolean-valued node and only appears un-
negated, replace it by True; likewise, if ng only appears
negated, replace it by False. In other words, in such cases
no new Boolean variable is needed.

Note that the resulting DAG Dg can be embedded into

Dy. For each node n € N ¢ we will denote by n its coun-
terpart in Dg before the abstraction process begins (af-
ter the abstraction some of them can be eliminated by
simplifications).

The correctness of our abstraction technique is formal-
ized by the following two theorems:

Theorem 1. ¢ is an over-approximating abstraction of

®.

Proof. Let « be a satisfying assignment of ¢. We show
how to construct &, a satisfying assignment for ¢. First,
for each variable v € vars(¢) such that the (leaf) node
representing v is still present in Dy, define a(v) = a(v).
Second, for each Boolean variable b € {vars(¢)\vars(¢)}
(i.e., the new abstracting variables) represented by node
n € Dg, define a(b) to be equal to the Boolean value
of the corresponding node in Dy, as implied by a. For
example, if a(by) = True, a(by) = False and the node
by V by was replaced with a new variable b, then a(b) =
True V False = True. Clearly, & satisfies ¢, since every
node in DE is evaluated the same as its counterpart in
Dy. Hence, if ¢ is satisfiable, then so is ¢, which implies
the correctness of the Theorem. 0O

2 The same replacement criterion can be applied to bit-vector-
valued nodes, which can then be replaced with fresh bit-vector
variables. Our implementation ignores this option, however, and
we shall therefore also ignore this possibility in the proof.

Next, we have to prove termination. Termination is im-
plied if we can show that any satisfying assignment to
¢ requires width larger than the current one s; (i.e., the
width with which the unsatisfiable core C was derived),
or, equivalently:

Theorem 2. The SAT encoding of ¢ with encoding sizes
s; 1s unsatisfiable.

Proof. We will prove that the CNF encoding of ¢ with
sizes s; contains the clauses of the UNSAT core C.

Three observations about this encoding are important
for our proof:

1. First, for an internal node n that represents a Boolean
operator, each clause in ¢(n) contains the output vari-
able of its node. For example, the CNF of an ‘and’
node o =aAbis (oV-aV-b),(-oVa),(-oVb), and
indeed o, the output variable of this node, is present
in all three clauses. The same applies to the other
Boolean operators. Hence, we can write o(cl) for a
clause cl to mean the output variable of the node
that ¢l annotates (hence, o(cl) € cl).

2. Second, the same observation applies to predicates
over bit-vectors. For simplicity, we concentrate only
on the bit-vector equality predicate. In such a node,
each clause contains either the output variable or an
auxiliary variable present only in this node. For ex-
ample, the CNF of the node o = (vy = va) for 2-bit
bit-vectors vy and vg, is the following:

x V v1[0] V va[0]), (z V =v1[0] V =v2[0]),

-2V v1[0] V =v2[0]), (mz vV =v1[0] V v2[0]),

oV -z V vyl V=va[l]), (oV -z Vvi[l]V va[l]),
—\O\/V)l[l] V =va[l]), (moV —vy[l] V va[l]),

—oVzx

P,

—~

the first four clauses encode x = (v1[0] = v2[0]), the
other clauses encode 0 = x A (v1[1] = va[1]) where
is the local auxiliary variable).

3. Finally, observe that resolution among clauses that
relate the output and input of a node using the out-
put variable as the resolution variable, results in a
tautology. For example, recall the CNF representa-
tion of the ‘and’ node above: resolving on the output
variable o of that node results in a tautology. The
same observation applies to other Boolean operators
and equality between bit-vectors.

We use these observations for analyzing the three possi-
ble cases for a node n in Dy: either it is retained in Dy,
replaced with a new variable, or eliminated. Our goal,
recall, is to show that despite the abstraction implied by
these changes to the DAG, the set of clauses that encode
the new DAG Dy still contains the UNSAT core C of ¢.

— Claim 1: for each node n € N? for which the cor-
responding i € N? is retained in the abstraction
process, ¢(n)NC =c¢(n)NC.

8 Randal E. Bryant et al.: An Abstraction-Based Decision Procedure for Bit-Vector Arithmetic

Proof. Since n and n encode the same operator and
receive the same type of input (e.g., if n and n rep-
resent a bit-vector operator, then their respective in-
puts are bit-vectors of the same width), then c(n)
and ¢(n) are equivalent up to renaming of variables.
Such a renaming can occur if the abstraction process
replaced one of the inputs (or both) with a new vari-
able. But this means that none of these inputs are in
C, hence those clauses in ¢(f) that contain renamed
literals, are not in C. Hence, ¢(n) NC = ¢(A) NC.

— Claim 2: for each node n € N? that was replaced
with a new variable in N¢, ¢(n) N C = (.

Proof. This is trivial by the construction of the ab-
straction: if any of the clauses in ¢(n) were in C, then
this node would not be replaced with a new variable.

— Claim 3: For each node n € N ¢ whose corresponding
node i € N? was eliminated (i.e., the paths of this
node to the root were all ‘cut’ by the abstraction),

c(n)ync =0.

Proof. On each path from n to the root node, there
exists one or more nodes other than n that were re-
placed with free variables. For simplicity of the proof,
we will consider one such path and denote the closest
node to n that was replaced with a new variable by
Ne.

We will now prove the claim by induction on the dis-
tance (in terms of number of DAG operators) from n
to n.. In the base case n is a direct child of n.. Falsely
assume that there exists a clause ¢l € ¢(n) such that
cl € C. ¢(n.) contain o(n), the output variable of n,
and ¢l also contains o(n) (see observations 1 and 2
above). Hence, if ¢l € C, then o(n) € vars(C) which
contradicts the condition for abstracting n. with a
new variable.

For the induction step falsely assume that there ex-
ists a clause ¢l € c¢(n) such that ¢/ € C. By the in-
duction hypothesis, none of the clauses in the par-
ent node of n are in C. Hence, only clauses from
¢(n) can contain the output variable of ¢l in C. This
means that o(cl) can only be resolved-on among ¢(n)
clauses. By noting that this kind of resolution can
only result in a tautology (see observation 3 above),
this resolution step cannot be on the path to the
empty clause in the resolution proof. This contra-
dicts, however, the requirement that any variable in
every clause that participates in a proof of the empty
clause must be resolved on in order to eliminate it.

Thus, the set of clauses annotating Dg contains C and

hence ¢ is unsatisfiable. 0O

In comparison with our previous CNF-based abstraction
scheme [18], we note that, for ITE-free formulas, that ap-
proach can generate more compact abstractions, as they

do not introduce new variables. However, for real-world
benchmarks from both hardware and software verifica-
tion, such as those discussed in the following section, we
found that elimination of ITEs leads to significant space
and time overheads. The approach of this paper allows us
to extend the abstraction-based approach to operate on
arbitrary DAG-like formulas. Moreover, we found that
the Boolean structure in the original bit-vector formula
is typically not the primary source of difficulty; it is the
bit-vector constraints that are the problem.

3.8 Abstraction with partially-interpreted functions

It is well-known that certain bit-vector arithmetic oper-
ators, such as integer multiplication of two variables (of
adequately large width), are extremely hard for a pro-
cedure based on bit-blasting. However, for many prob-
lems involving these operators, it is unnecessary to rea-
son about all of the operators’ properties in order to
decide the formula. Instead, using a set of rules (based
on well-known rewrite rules) allows us to perform fine-
grained abstractions of functions, which often suffices.
Such (incomplete) abstractions can be used in the over-
approximation phase of our procedure, while maintain-
ing the overall procedure sound and complete (see Re-
mark 1 in §3.1). This is a major advantage, because these
rules can be very powerful in simplifying the formula.

Therefore, UCLID invokes a preprocessing step before
calling Algorithm .A. In this step, it replaces a subset of
“hard” operators by lambda expressions that partially
interpret those operators. The resulting formula is then
bit-blasted to SAT.

For example, UCLID replaces the multiplication operator
#,, of width w (for w > 4, chosen according to the capac-
ity of current SAT engines) by the following lambda ex-
pression involving the freshly introduced uninterpreted
function symbol mul,,:

M. A\y. ITE(x=0Vy=0,0,ITE(x =1,y, (7)
ITE(y = 1,z,muly(z,y)))) -

This expression can be seen as partially interpreting mul-
tiplication, as it models precisely the behavior of this
operator when one of the arguments is 0 or 1, but is
uninterpreted otherwise.

4 Experimental Results

The new procedure is now incorporated within the UCLID
verification system [25], which is implemented in Moscow
ML [22] (a dialect of Standard ML). MiniSat [21] was
used as the SAT solver to solve over-approximations,
while Booleforce (written by Armin Biere) was used as
a proof-generating SAT solver for under-approximations.

Randal E. Bryant et al.: An Abstraction-Based Decision Procedure for Bit-Vector Arithmetic 9

The initial value of s; is set to min(4, w;) for benchmarks
not involving hard operators (like multiplication) while
it is set to min(2, w;) otherwise.

Table 1 shows experimental results obtained on a set of
bit-vector formulas. We compare the run-time of UCLID
against bit-blasting to MiniSat, and the STP [9] and
Yices [13] decision procedures. (The latter two proce-
dures jointly won the bit-vector division of the SMT-
COMP’06 competition, and we compare against the ver-
sions that were entered to the competition.) All results
were obtained on a system with a 2.8 GHz Xeon proces-
sor and 2 GB RAM. The benchmarks are drawn from
a wide range of sources, arising from verification and
testing of both hardware and software:3

— Verification of word-level versions of an x86-like pro-
cessor model [7] (Y86-std, Y86-btnft);

— Detection of format-string vulnerabilities in C pro-
grams [27] (s-40-50);

— Hardware verification benchmarks obtained from In-
tel, slightly modified (BBB-32, rfunit_flat-64);

— Word-level combinational equivalence checking bench-

marks obtained from a CAD company? (C1-P1, C1-
P2, C3-OP80); and

— Directed random testing of programs [9] (egt-5212).
This represents the set of benchmarks used in SMT-
COMP’06, which are easily solved within a fraction
of a second.’

The first three sets of benchmarks involve only (finite-
precision) linear arithmetic. The combinational equiva-
lence checking benchmarks involve finite-precision mul-
tiplication with large widths (e.g., C1-P1 and C1-P2
involve 65-bit, 49-bit, and 30-bit multiplication), apart
from bitwise operations including extraction and con-
catenation. The last set includes linear arithmetic and
bitwise operations.

An analysis of UCLID’s performance on the benchmarks
is given in Table 2. We observe the following: 1) Only
very few iterations of the abstraction-refinement loop are
required (just 1 in most cases); 2) The abstractions gen-
erated are small in most cases; and 3) UCLID yields a
speed-up in all but one case when the number of itera-
tions is 1. In the 2 other cases, where some s; reached
the maximum w;, it performs worse.

We look more closely at two benchmarks. UCLID’s per-
formance is orders of magnitude better than the other
solvers on the C1-P2 benchmark: this involves multipli-
cation as noted earlier, and the abstraction described
in Section 3.3 was particularly effective. However, on
the benchmark s-40-50, it is 10 times worse than STP,

3 All benchmarks that we have permission to make publicly
available have been submitted to the SMT-LIB repository at
http://goedel.cs.uiowa.edu/smtlib/benchmarks/QF_BV.

4 Name withheld on their request.

5 As the run-times on this benchmark is very small, we state
them to three decimal places, unlike the others.

with most of the time spent in encoding. This problem is
mainly due to re-generation of the SAT instance in each
step, which an incremental implementation can fix.

The results indicate a complementarity amongst the sol-
vers with respect to this set of benchmarks: either bit-
blasting (with rewrites as explained in §3.3) is effective,
or the problem is unsatisfiable with a small UNSAT core,
or there is a satisfying solution within a small range at
the high and low ends of the bit-vector’s value domain.
In the latter two cases, our abstraction-based approach
is effective.

5 Conclusion

We have demonstrated the utility of an abstraction-based
approach for deciding the satisfiability of finite-precision
bit-vector arithmetic. The speed-ups we have obtained,
especially on benchmarks involving non-linear arithmetic
operations, indicate the promise of the proposed ap-
proach. The algorithm is applicable in many areas in for-
mal verification (e.g., word-level bounded model check-
ing) and can be extended to handle floating-point arith-
metic. Ongoing and future work includes generalizing the
form of over- and under-approximations beyond those we
have proposed herein, and making the encoding to SAT
incremental.

References

1. Tamarah Arons, Elad Elster, Limor Fix, Sela Mador-
Haim, Michael Mishaeli, Jonathan Shalev, Eli Singer-
man, Andreas Tiemeyer, Moshe Y. Vardi, and Lenore D.
Zuck. Formal verification of backward compatibility
of microcode. In Proc. Computer-Aided Verification
(CAV’05), LNCS 2404, pages 185-198, July 2005.

2. Domagoj Babic and Frank Hutter. Spear. Proceedings
of the SAT 2007 competition, Jan 2007.

3. Domagoj Babi¢ and Madanlal Musuvathi. Modular
Arithmetic Decision Procedure. Technical report, Mi-
crosoft Research, Redmond, 2005.

4. Clark W. Barrett, David L. Dill, and Jeremy R. Levitt.
A decision procedure for bit-vector arithmetic. In Pro-
ceedings of DAC’98, pages 522-527. ACM Press, June
1998.

5. A. Biere, A. Cimatti, E. Clarke, and Y. Yhu. Symbolic
model checking without BDDs. In TACAS, pages 193—
207, 1999.

6. Raik Brinkmann and Rolf Drechsler. RTL-datapath veri-
fication using integer linear programming. In Proceedings
of VLSI Design, pages 741-746. IEEE, 2002.

7. Randal E. Bryant. Term-level verification of a pipelined
CISC microprocessor. Technical Report CMU-CS-05-
195, Computer Science Department, Carnegie Mellon
University, 2005.

10

Randal E. Bryant et al.: An Abstraction-Based Decision Procedure for Bit-Vector Arithmetic

Bit-Blasting UCLID
Formula Ans. Run-time (sec.) Run-time (sec.) STP Yices
Enc. | SAT | Total Enc. SAT Total (sec.) (sec.)
Y86-std UNSAT 17.91 TO TO 23.51 987.91 | 1011.42 || 2083.73 TO
Y86-btnft UNSAT 17.79 TO TO 26.15 | 1164.07 | 1190.22 err TO
s-40-50 SAT 6.00 | 33.46 39.46 || 106.32 10.45 116.77 12.96 65.51
BBB-32 SAT 37.09 | 29.98 67.07 19.91 1.74 21.65 38.45 183.30
rfunit_flat-64 SAT 121.99 | 32.16 | 154.15 19.52 1.68 21.20 873.67 | 1312.00
C1-P1 SAT 2.68 | 45.19 47.87 2.61 0.58 3.19 err err
C1-P2 UNSAT 0.44 TO TO 2.24 2.12 4.36 TO TO
C3-OP80 SAT 14.96 TO TO 14.54 349.41 363.95 TO | 3242.43
egt-5212 UNSAT 0.064 | 0.003 0.067 0.163 0.001 0.164 0.018 0.009

Table 1. Comparison of run-time of abstraction-based approach (uUcLID) with bit-blasting, STP, and Yices
run-time is highlighted in bold font. A “TO” indicates that a timeout of 3600 seconds was reached. An “err” indicates that
the solver could not handle bit-vectors of width as wide as those in the benchmark or quit with an exception. Bit-blasting
used MiniSat. UCLID used Booleforce for proof generation and MiniSat on the abstraction. STP is based on MiniSat. “Ans”
indicates whether the formula was satisfiable (SAT) or not (UNSAT). “Enc” indicates time for translation to SAT, and “SAT”
indicates the time taken by the SAT solver (both calls).

Formula Ans. max; s; | max; w; | Num. Iter |$\ Speedup
max il

Y86-std UNSAT 4 32 1 0.18 2.06
Y86-btnft UNSAT 4 32 1 0.20 > 3.01
s-40-50 SAT 32 32 8 0.12 0.11
BBB-32 SAT 4 32 1 — 1.78
rfunit_flat-64 SAT 4 64 1 — 7.27
C1-P1 SAT 2 65 1 - 15.00
C1-P2 UNSAT 2 14 1 1.00 > 825.69
C3-0OP8&0 SAT 2 9 1 - 8.91
egt-5212 UNSAT 8 8 1 0.13 0.06

. The best

Table 2. Statistics on the abstraction-based approach (UcLID). “max; s;” indicates the maximum value of s; generated in
the entire run. “Num. Iter” indicates the number of iterations of the abstraction-refinement loop where an iteration is counted
if at least one of the SAT solver calls is made. The second to last column compares the size of the largest abstraction ¢ created
as a fraction of the size of the original formula ¢, where sizes are measured as the number of nodes in the DAG representations
of the formulas. “Speedup” indicates the factor by which the abstraction-based approach is faster than its nearest competitor,
or slower than the best solver.

10.

11.

12.

Randal E. Bryant, Daniel Kroening, Joél Ouaknine, San-
jit A. Seshia, Ofer Strichman, and Bryan A. Brady. De-
ciding bit-vector arithmetic with abstraction. In Orna
Grumberg and Michael Huth, editors, 13th Intl. Conf.
on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS’07), pages 358-372, 2007.
Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski,
David L. Dill, and Dawson R. Engler. EXE: Automati-
cally generating inputs of death. In 13th ACM Confer-
ence on Computer and Communications Security (CCS
’06), pages 322-335. ACM, 2006.

Edmund Clarke and Daniel Kroening. Hardware verifica-
tion using ANSI-C programs as a reference. In Proceed-
ings of ASP-DAC 2003, pages 308-311. IEEE Computer
Society Press, January 2003.

Byron Cook, Daniel Kroening, and Natasha Sharygina.
Cogent: Accurate theorem proving for program verifi-
cation. In Proceedings of CAV 2005, pages 296-300.
Springer, 2005.

David Cyrluk, M. Oliver Méller, and Harald Ruef. An
efficient decision procedure for the theory of fixed-sized

13.

14.

15.

16.

17.

bit-vectors. In Computer-Aided Verification (CAV °97),
pages 60-71, 1997.

Bruno Dutertre Leonardo de Moura.
The Yices SMT Available at
http://yices.csl.sri.com/tool-paper.pdf, Septem-
ber 2006.

Vijay Ganesh, Sergey Berezin, and David Dill. A de-
cision procedure for fixed-width bit-vectors. Technical
report, Computer Science Department, Stanford Univer-
sity, April 2005.

Vijay Ganesh and David L. Dill. A decision procedure for
bit-vectors and arrays. In Computer Aided Verification
(CAV ’07), Berlin, Germany, July 2007. Springer-Verlag.

Aarti Gupta, Malay Ganai, Zijiang Yang, and Pranav
Ashar. Iterative abstraction using SAT-based BMC with
proof analysis. In ICCAD, 2003.

Chung-Yang Huang and Kwang-Ting Cheng. Assertion
checking by combined word-level ATPG and modular
arithmetic constraint-solving techniques. In Proc. DAC,
pages 118-123, 2000.

and
solver.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

Randal E. Bryant et al.: An Abstraction-Based Decision Procedure for Bit-Vector Arithmetic

Daniel Kroening, Joél Ouaknine, Sanjit Seshia, and Ofer
Strichman. Abstraction-based satisfiability solving of
Presburger arithmetic. In Rajeev Alur and Doron Peled,
editors, Proc. 16" Intl. Conference on Computer Aided
Verification (CAV’04), number 3114 in LNCS, pages
308-320, Boston, MA, July 2004. Springer.

S. Lahiri and K. Mehra. Interpolant based decision pro-
cedure for quantifier-free Presburger arithmetic. Techni-
cal Report 2005-121, Microsoft Research, 2005.

K. McMillan and N. Amla. Automatic abstraction with-
out counterexamples. In Hubert Garavel and John Hat-
cliff, editors, TACAS’03, volume 2619 of Lect. Notes in
Comp. Sci., 2003.

MiniSat. http://www.cs.chalmers.se/Cs/Research/
FormalMethods/MiniSat/.

Moscow ML. http://www.dina.dk/~sestoft/mosml.html.

G. Parthasarathy, M. K. Iyer, K.-T. Cheng, and L.-C.
Wang. An efficient finite-domain constraint solver for
circuits. In Design Automation Conference (DAC), pages
212-217, 2004.

G. Tseitin. On the complexity of proofs in poroposi-
tional logics. In J. Siekmann and G. Wrightson, editors,
Automation of Reasoning: Classical Papers in Computa-
tional Logic 1967-1970, volume 2. Springer-Verlag, 1983.
Originally published 1970.

UCLID verification system. http://www.cs.cmu.edu
/~uclid.

Markus Wedler, Dominik Stoffel, and Wolfgang Kunz.
Normalization at the arithmetic bit level. In Proc. DAC,
pages 457-462. ACM Press, 2005.

Wisconsin Safety Analyzer Project.
http://www.cs.wisc.edu/wisa.

Yichen Xie and Alexander Aiken. Scalable error detec-
tion using Boolean satisfiability. In Proc. 32nd ACM
Symposium on Principles of Programming Languages
(POPL), pages 351-363, January 2005.

L. Zhang and S. Malik. Extracting small unsatisfiable
cores from unsatisfiable boolean formulas. In In Sizth
International Conference on Theory and Applications of
Satisfiability Testing (SAT2003), S. Margherita Ligure,
2003.

11

