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Abstract

Based on two previous reports related with soliton-solutions for two
equations: the first a biological model and the other a physic model, we
consider the generalized tanh-coth method for obtain exact solutions
for the first in a more general form that those obtained in previous
reports. Additionally, we solve a second nonlinear equation whose rel-
evance consists on the fact that solutions of it can be used for obtain
solutions of the first and to other equation related with nano-ionic cur-
rents associated with transmission lines. Finally, some conclusion are
given.
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1 Introduction

Many computational methods for obtain exact traveling wave solutions to non-
linear partial differential equations (NLPDE’s) have been used widely in the
literature referent to this theme. The search of new methods or generalized
methods is a very relevant task due to the availability of computer symbolic
systems and the importance of this line of investigation. The generalized tanh-
coth method [1] [2] have been used to solve some NLPDE’s showing it effec-
tiveness and simple description. Recently, the authors in [3] have derived two
nonlinear equations in two different fields, whose solutions are considered as
nano-solitons. We will use the generalized tanh-coth method for solve these
two models.

The main idea of this work, is to obtain exact solutions for the following
two equations

Utt(x, t)− ghUxx +
1

2h
(Ut)

2
x =

1

3
h2Uttxx, (1)

and
d2w

dξ2
= aw2 + bw + c, (2)

with a, b, c are nonzero constants, h is a depth of certain inviscid, incompress-
ible and non-rotating flow of fluid and g is the gravitational accelerationm
U = U(x, t), w = w(ξ) are unknown functions. The equation (1) have rele-
vance in Biology. More exactly, in the reference [3], the authors have realized
an analogy between giant ocean solitons and the cellular ionic nano-solitons.
They have obtained (1) as the final model which can be used to modeling a
nonlinear ionic wave along micro-tubules in living cells. The model given by
equation (2) have very near relation with (1) as we will see below and can be
derived as the final step in the analysis of a model of MT as nonlinear trans-
mission lines. The solution of the two models have been made using elliptic
functions by the authors in [3]. Additionally, the two models described by (1)
and (2) were analyzed by the authors in the paper [4] using the extended Jaco-
bian elliptic function expansion method. In follows, we will use the generalized
tanh-coth method [1],[2] for solve the two models. The paper is organized as
follows: In Sec. 2, we solve (1) using the generalized tanh-coth method. In
Sec. 3, we use the same method for obtain exact solutions to (2). Finally, we
give a conclusions where we compare the obtained solutions with those derived
for the respective authors of the mentioned papers ([3], [4]).

2 Exact solution to (1)

We use the wave transformation
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{
U(x, t) = u(ξ),

ξ = x− λt+ ξ0,
(3)

where λ is the speed of the wave and ξ0 an arbitrary constant. By substituting
(3) into (1) and after one integration with respect to ξ we obtain the following
ordinary differential equation

−λ
2h2

3
u′′′(ξ) +

λ2

2h
(u′(ξ))2 + (λ2 − hg)u′(ξ) + k = 0, (4)

with k the integration constant.
Using the idea of the improved generalized tanh-coth method [1],[2], we

seek the solution to (4) using the expansion

u(ξ) =
M∑
i=0

aiφ(ξ)i +
2M∑

i=M+1

aiφ(ξ)M−i, (5)

where M is a positive integer that will be determined by using the balance
method and φ = φ(ξ) satisfies the Riccati equation

φ′(ξ) = α + βφ(ξ) + γφ(ξ)2. (6)

The ai, i = 1, 2, . . . , 2M , α, β, γ are constants to be determined later and the
solution of (6) in the case β2 − 4αγ 6= 0 is given by (see [5]):

φ(ξ) =
−
√
β2 − 4αγ tanh[1

2

√
β2 − 4αγξ + ξ0]− β

2γ
. (7)

Substituting (5) into (4), and balancing u′′′(ξ) with (u′(ξ))2 we obtain

M + 3 = 2(M + 1),

so that
M = 1.

Therefore, (5) reduces to

u(ξ) = a0 + a1φ(ξ) + (t)(φ(ξ))−1. (8)

Now, substituting (8) into (4), taking in account (6) and equating to zero the
coefficients of all powers of φ(ξ), we get a set of algebraic equations for a0,
a1, a2, α, β, γ and k. Solving it with aid the Mathematica we obtain a lot of
solutions from which we consider only the following

a0 = a0; a1 = 4h3γ; a2 =
3(−gh+ hλ2)

4γλ2
; k = 0, (9)
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which give us the more general expression. Using (9), (8), (3), and reversing
the substitutions we have the following general solution to (1):

U(x, t) = u(ξ) = a0 + 4h3γφ(ξ) +
3(−gh2 + hλ2)

4γλ2
φ(ξ)−1, (10)

where φ(ξ) = −
√
3
√
− gh−λ2

h2λ2
tanh

(
1
4

√
3
√
− gh−λ2

h2λ2
ξ

)
4γ

, ξ = x− λt+ x0 and a0, λ, γ are
arbitrary constants.

3 Exact solution for equation (2)

Substituting (5) into (2) and balancing w′′(ξ) with u2(ξ) we have M+2 = 2M .
We obtain the relation M = 2, and then (5) take the form

w(ξ) = a0 + a1φ(ξ) + a2φ
2(ξ) + a3φ(ξ)−1 + a4φ

−2(ξ). (11)

Substituting (11) into (2), using (6) and after simplifications we have a
equation in the variable φ(ξ). Equating to zero the coefficients of all powers
of φ(ξ), we get a set of algebraic equations for a0, a1, a2, a3, a3, α, β, γ and c.
Solving the system with respect to these unknowns with aid of Mathematica
we obtain a big set of solutions. However, for sake of simplicity, we consider
the following two, which give us the more general expressions:

{
a0 = −2

√
b2−4ac−3β2+b

2a
, a1 = 6βγ

a
, a2 = 6γ2

a
, α =

β2γ−
√
b2γ2−4acγ2
4γ2

,

a3 = 0, a4 = 0,
(12)

and 
a0 = −2b−

√
b2−4ac

4a
, a1 = a3 = 0, a2 = 6γ2

a
,

a4 = 3(b2−4ac)
128aγ2

, γ = − b2−4ac
16γ

, β = 0,

(13)

Respect to (12), in accordance with (7) and (11) we have the following
solution to (2),

w(ξ) = −2
√
b2 − 4ac− 3β2 + b

2a
+

6βγ

a
φ(ξ) +

6γ2

a
φ2(ξ), (14)

where

φ(ξ) = −
4
√
b2 − 4ac tanh

(
1
2

4
√
b2 − 4acξ

)
+ β

2γ
,

γ, β and c arbitrary constants.
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Now, respect to (13), in accordance with (7) and (11) we have the following
solution to (2),

w(ξ) =
−2b−

√
b2 − 4ac

4a
+

6γ2

a
φ(ξ)2 +

3(b2 − 4ac)

128aγ2
φ(ξ)−2, (15)

where

φ(ξ) = −
4
√
b2 − 4ac tanh

(
1
4

4
√
b2 − 4acξ

)
4γ

,

γ and c arbitrary constants.

4 Conclusions

Using the generalized tanh-coth method, we have obtained solutions to (1)
and (2). We can see that (4) can be converted to (2) if we use the change of

variable w(ξ) = u′(ξ) and redefining a = 3
2h3

and b = 3(λ2−gh)
λ2h2

, k = c. Clearly,
the solution obtained here for (2) is more general that those obtained in [4],
which is more general that those obtained in [3]. On the other hand, from
(14) and (15) we can to obtain others (different and more general) solutions
to (1). The importance of the model given by (1) is that it is associated with
one related with nonlinear ionic waves along micro-tubules in living cells (see
[3]). The relevance of the model given by (2) consists on it relation with (1) as
we mentioned previously. Moreover, as can be see in [3], (2) have to see with
the solutions of a model of a MT as nonlinear transmission line (Eq. (51) in
[3]). More exactly, solutions of the model

Ux + AUxxx +BU + Cut +DUUt = 0,

which correspond to transmission lines for suitable constant A,B,C,D, can
be derived from the solutions obtained here for (2). For more details respect
to this last model we refer to [3].
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