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Abstract 

 

   This paper is devoted to studying the numerical solution of Lane-Emden type 

initial value problems. A Variational Homotopy Perturbation Method is applied. 

Some numerical examples are discussed to demonstrate the efficiency and accuracy 

of the proposed algorithm. 
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1. Introduction 

 

   Lane-Emden type initial value problems are well known ordinary differential 

equations (ODE's), used in the modeling of Physics and Astrophysics problems. 

These equations play important role in many disciplines of science and engineering. 

Therefore, these types of problems received special attention from scientists and 

researchers. It is named after the astrophysicists Jonathan H. Lane and Robert 

Emden [13], as it was first studied by them. The general form of Lane-Emden type 

of equations is: 

 ( ) ( ) ( ) 0v x v x g v
x


      (1.1) 

subject to the initial conditions (0) v a   and (0) v b . Here a   and b  are 

constants, ( )g v  is a real-valued continuous function. 
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The equation has been numerically processed in many papers [2, 5, 14, 15, 16, 17, 

19, 22]. The authors in [4, 18, 23, 24] have studied the Homotopy Perturbation 

Method (HPM) for solving Lane-Emden differential equation, in [20] the 

Variational Iteration Method (VIM) was applied. In [10] the authors were used 

modified homotopy analysis method. In [1] Lane-Emden differential equation was 

solved by combining homotopy perturbation and reproducing kernel Hilbert space 

methods. Optimal homotopy asymptotic method was applied for singular Lane–

Emden type equation in [21]. 

In this paper, we will present a method based on combining the VIM and HPM, the 

Variational Homotopy Perturbation Method (VHPM) is proposed to solve many 

kinds of differential equations, for example, Bratu-Type Problems [1], Riccati 

Differential Problems [12] and Stiff Systems of ODEs [11]. Also, VHPM was 

applied on partial differential equations such as Fisher's Equation [21], Burgers’ 

equations [9], Klein-Gordon and sine-Gordon equations [25]. The results reveal that 

the proposed method is very effective and simple. 

In this paper we study the VHPM for solving the Lane-Emden type initial value 

problems. We organize this paper as follows. In Section 2, we introduce analysis of 

the method. In Section 3, we present some numerical results to illustrate the 

efficiency of the presented method. 

 

 

2. Analysis of the method 

 
   We start this method by applying HPM in following nonlinear differential 

equation 

 ( ) ( ) ( ) 0L v N v f x     (2.1) 

where L  is a linear operator, N is a nonlinear operator and ( )f x  is a known 

analytical function [7]. 

Construct the following homotopy 

 

  0( ; ) (1 )[ ( ) ( )] [ ( ) ( ) ( )] 0, , 0,1v q q L v L u q L v N v f x x q            (2.2) 

Then 

 0 0( ) ( ) [ ( ) ( ) ( )] 0,L v L u q L v N v f x       (2.3) 

The solution can be written as a power series in q  

 
0

( ) ( )i

i

i

v x q v x




   (2.4)  

The correct function for VIM can be written down as follows [9] 

 
1

0

( )[ ( ) ( ) ( )]

x

n n n nv v q L v N v f d          (2.5) 

Now we using correction functional in Eq.(2.3) to get 

 
1 0 0

0

( ){ ( ) ( ) [ ( ) ( ) ( )]}

x

n n n nv v L v L u q L u N v f d            (2.6) 

To solve Eq.(1.1) using VHPM, we apply the formula in Eq.(2.6) and we get 
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1 0 0

0

( ){ ( ) ( ) [ ( ) ( ) ( )]}

x

n n n nv v L v L u q L u N v f d            (2.7) 

Taking the variation of Eq.(2.7) with respect to the independent variable nv we find 

 
1 0 0

0

( ){ ( ) ( ) [ ( ) ( ) ( )]}

x

n n n nv v L v L u q L u N v f d               (2.8) 

where nv is a restricted value that means it behaves as a constant, hence 0nv  , 

where  is the Variational derivative.  

Since ( ) ( ) ( )n n nL v v v
x


    , Eq.(2.8) becomes 

 
1 2

0

( ) ( )
[1 ( ) ( )] ( ) ( ) [ ( ) 2 ]

x

n n n nv v v v d
x

     
             




 
               (2.9) 

The extremum condition of 1nv  requires that 1 0nv   . This means that the left-hand 

side of  Eq.(2.9) is zero, and as a result, the right-hand side should be zero as well.  

 

This yield the constant conditions: 

 
2

( ) ( )
1 ( ) ( ) 0, ( ) 0, ( ) 2 0

x x x xx   

    
       

   

 
          (2.10) 

Thus, the Lagrange multiplier can be determined as 
( )x

x

 



 . 

 

Finally, Eq.(2.7) can be given as 

 
1 0 0

0

( )[ ( ) ( ) ( )]

x

n nv u q L u N v f d          (2.11) 

Now we can rewrite Eq.(2.11) in the form 

 
0 0

0 00

( )[ ( ) ( ) ( )]

x

i i

i i

i i

q v u q L u N q v f d   
 

 

       (2.12) 

As we see, the procedure is formulated by the coupling of VIM and HPM, a 

comparison of like powers of q give the solutions of the various orders. 

 

 

3. Numerical Examples 

 

Example 1. 

   Consider the nonlinear Lane-Emden equation [21] 

 
( )

( ) 2
2

( ) ( ) 4(2 ) 0
v x

v xv x v x e e
x

       (3.1) 

subject to the initial conditions (0) (0) 0v v   . 

The exact solution of above equation is 
2( ) 2ln(1 )v x x   . 

The Taylor expansion of ( )v x about 0x  gives 

2 4 6 8 10 12 142 1 2 1 2
( ) 2

3 2 5 3 7
v x x x x x x x x          
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Suppose that the initial approximation is 0 ( ) 0u x  . 

 

In order to solve this equation by using the VHPM, using the formula in Eq.(2.12) 

leads to 

 0 0

0 0

0 0 00

1
( ) ( )

2
( )[ 4(2( ) ( )]

! !

i n i n
x i i

i i i

i

i n n

q v q v

q v u q u d
n n

  

 

  
 

  

   
 

     (3.2) 

Substituting 
( )x

x

 



  give 

 0 0

0 0

0 0 00

1
( ) ( )

( ) 2
[ 4(2( ) ( )]

! !

i n i n
x i i

i i i

i

i n n

q v q v
x

q v u q u d
x n n

 


 

  
 

  


   

 
     (3.3) 

 

By comparing the coefficient of like powers of q , we get 

 

0

0 0

0
1 20

1

0 00

0 1
2 40 1

2

0 00

2
2 0 1 2

3 0 1 2

3

0

: ( ) ( ) 0

1
( )

( )( ) 2: ( ) 4 [2 ) ] 2
! !

1 1
( ) ( )

( )( ) 2 2: ( ) 4 [2 ) ]
! !

1 1
( ) ( ( ))

( ) ( )( ) 2 2: ( ) 4 [2 )
! !

n
x n

n n

n
x n

n n

n
n

n

q v x u x

v
vx

q v x d x
x n n

v v
v vx

q v x d x
x n n

v v v
v v vx

q v x
x n n

 


 


 

 

 

 

 





 


   


  




 

 

 

 6

00

2
]

3

x

n

d x






 (3.4) 

The other components of the VHPM can be determined in similar way. Finally, the 

approximate solution of Eq.(3.1) is 

 2 4 6 8 10 12 14

0

2 1 2 1 2
( ) 2

3 2 5 3 7
i

i

v x x x x x x x x




           (3.5) 

Which converge to the exact solution. 

 

Example 2. 

   Consider the nonlinear Lane-Emden equation [21] 

 
2

( ) ( ) 6 ( ) 4 ( ) ln ( ) 0v x v x v x v x v x
x

       (3.6) 

subject to the initial conditions (0) 1, (0) 0.v v     

The exact solution is 
2

( ) xv x e . 

The Taylor expansion of ( )v x about 0x  gives 

2 4 6 81 1 1
( ) 1

2 6 24
v x x x x x       

Suppose that the initial approximation is 0 ( ) 1u x  . 

In order to solve this equation by using the VHPM, applying the formula in 

Eq.(2.12) to obtain 
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1

0

0 0

0 0 0 10

( 1) ( 1)

( )[ 6 4( )( )]

k i k
x i

i i i i

i i i

i i i k

q v

q v u q u q v q v d
k

  




   


   

 

   


      (3.7) 

Substituting Lagrange multiplier 
( )x

x

 



  give 

 

1

0

0 0

0 0 0 10

( 1) ( 1)
( )

[ 6 4( )( )]

k i k
x i

i i i i

i i i

i i i k

q v
x

q v u q u q v q v d
x k

 





   


   

 


   


     (3.8) 

By comparing the coefficient of like powers of q , we get 

 

   

   
   

0

0

01 2

1 0

1

0

10

9
02

2 0 1 0 0 1

1 0

1

1

0

4

: ( )

)

1 1
6 4

1

1

( )
: (

( 1
6 4( 1 1

2

)

)
: ( )

n n

n n

n

x
n

n n

n

x

q v x

vx
q v x v v d x

x

vx
q v x v v v v v

n

x
d

x n

 


 














 

  
  
 
 

  
     
 
 




 






 

 

 (3.9) 

   
The other components of the VHPM can be determined in similar way. Finally, the 

approximate solution of Eq.(3.6) is 

2 4 6 8

0

1 1 1
( ) 1

2 6 24
i

i

v x x x x x




       

Which converge to the exact solution. 

 

4. Conclusion 

 

   In this paper, the VHPM has been successful in finding the solution of nonlinear 

Lane-Emden equations with initial conditions. A clear conclusion can be drawn 

from the numerical results that the VHPM produces a series that converges to the 

exact solution. It is noticed that the present scheme uses the full advantage of the 

variational iteration method and the homotopy perturbation method. Finally, we 

conclude that the VHPM may be considered as a good improvement in existing 

numerical techniques. 
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