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Abstract

In this paper it will be study the solution of a non-linear elliptic dif-
ferential equation with Neumann boundary condition, studied by Marin
and Ortiz. We write the problem in finite differences and then we find
the solution points and with these we obtain the Vandermonde poly-
nomial corresponding to the solution. Also with Scilab’s help we could
see the numerical solution and the Vandermonde approximation poly-
nomial.
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1 Introduction

Now, on the other hand, we have the importance of the Principle of the Max-
imum that, as is known, provides valuable information on the characteristics
of the solution of the differential equation of type elliptical without knowing
the solution explicitly, so it allows us to obtain the uniqueness of the solu-
tion certain problems with Dirichlet and Neumann type boundary conditions
[2],[3],[4],[6],[7],[8],[9],[10],[11],[12].

This principle is nothing more than the generalization of the following
elementary fact of calculus: Given any function f which satisfies the inequality
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f ′′ > 0 over an interval (a, b) that reaches its maximum value at the extremes
of the interval.

In order to achieve the stated objective, we first consider some preliminaries
such as the principle of Maximum with the boundary condition of Neumann.
Finally the problem will be solved numerically; that is, the central finite dif-
ferences will be applied to the problem{

a(x)u′′(x) + b(x)u′(x) + c(x)u(x) = f(u)

u′ (1) = −u′(−1)
(1)

2 Maximum Priciple

Let u ∈ C2((−1, 1)) ∪ C0([−1, 1]) be a solution of

L(u) = a(x)u′′(x) + b(x)u′(x) + c(x)u(x) = f(u(x))

on (−1, 1) with u′(1) = −u′(−1); where a, c : [−1, 1] → R are bounded func-
tions and symmetric with respect to the origin such that a(x) > 0 and c(x) 6 0
for all x ∈ [−1, 1], and also

L(u) > 0,∀x ∈ [−1, 1] (2)

u can not reach its maximum value at a point inside the interval [−1, 1];
that is, if equation (2) is verified, then the function u reaches its maximum
at the extremes of the interval, because if we assume that the function u
reaches its maximum value in d ∈ (−1, 1), then we have by the nullification
of the derivative at an inner end that u′(d) = 0 and also by the criterion of
the second derivative for extremes in a critical point remains that u′′(d) 6 0;
but it not fulfil the inequality (2). In the following theorem it was studied the
symmetric solutions for a non-linear elliptic equation with Neumann boundary
condition.

Theorem 2.1. [3] Let u ∈ C2((−1, 1)) ∪ C0([−1, 1]) be a non negative
solution of the non-linear elliptic problem with Neumann condition boundary{

a(x)u′′(x) + b(x)u′(x) + c(x)u(x) = f(u(x))

u′(1) = −u′(−1)
(3)

Where a, c : [−1, 1] → R are bound functions and symmetric with respect
to the origin such that a(x) > 0 and c(x) ≤ 0 for all x in the interval [−1, 1].
b : [−1, 1] → R is a bounded function and odd. Supposing that f is strictly
increasing, then u is radially symmetric with respect to the origin.
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3 Numerical Development

We have finite differences are:

du (x)

dx

∣∣∣∣
xi

=
ui+1 − ui−1

2∆

d2u (x)

dx2

∣∣∣∣
xi

=
ui+1 − 2ui + ui−1

∆2

replacing in the first equation (1) we have

a(xi)

[
ui+1 − 2ui + ui−1

∆2

]
+ b(xi)

[
ui+1 − ui−1

2∆

]
+ c(xi)ui = f(ui)

[2a(xi)− b(xi)∆]ui−1 +
[
2∆2c(xi)− 4a(xi)

]
ui + [2a(xi) + b(xi)∆]ui+1

= 2∆2f(ui)

Let

A1i = 2a (xi)− b (xi) ∆

A2i = 2∆2c (xi)− 4a (xi)

A3i = 2a (xi) + b (xi) ∆

Then the previous equation becomes:

A1iui−1 + A2iui + A3iui+1 = 2∆2f (ui) (4)

For different values of i = 1, 2, 3, ..., n where n is the number of partitions
of the interval (−1, 1) we have that:

i = 1, A11u0 + A21u1 + A31u2 = 2∆2f (u1)
i = 2, A12u1 + A22u2 + A32u3 = 2∆2f (u2)
i = 3, A13u2 + A23u3 + A33u4 = 2∆2f (u3)
i = 4, A14u3 + A24u4 + A34u5 = 2∆2f (u4)
... =

...
... =

...
i = n− 1, A1(n−1)un−2 + A2(n−1)un−1 + A3(n−1)un = 2∆2f (un−1)
i = n, A1nu(n−1) + A2nun + A3nu(n+1) = 2∆2f (un)

(5)

In the first equation for i = 1 we do not know the value of u0 but we know its
first derivative. We know that:
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u1 − u−1
2∆

= u′(−1)

u−1 = u1 − 2∆u′(−1) (6)

Adding a new equation. For i = 0 in the equation (4) we have get

A10u−1 + A20u0 + A30u1 = 2∆2f (u0) (7)

Substituting the equation (6) in the equation (7) we obtain

A10 [u1 − 2∆u′(−1)] + A20u0 + A30u1 = 2∆2f(u0)

A20u0 + (A10 + A30)u1 = 2∆2f(u0) + 2∆u′(−1)A10 (8)

Analogously for i = n

un+1 − un−1
2∆

= u′(1)

un+1 = un−1 + 2∆u′(1) (9)

Replacing the equation (9) in the last of the equations of (5)

A1nu(n−1) + A2nun + A3nu(n+1) = 2∆2f (un)

A1nu(n−1) + A2nun + A3n [un−1 + 2∆u′(1)] = 2∆2f (un)

[A1n + A3n]u(n−1) + A2nun = 2∆2f (un)− 2∆u′(1)A3n(10)

Now from the equations (5), (8) and (10) we have the following system of
non-linear equations

A20u0 + [A10 + A30]u1 = 2∆2f(u0) + 2∆u′(−1)A10

A11u0 + A21u1 + A31u2 = 2∆2f(u1)

A12u1 + A22u2 + A32u3 = 2∆2f(u2)
... =

...

[A1n + A3n]u(n−1) + A2nun = 2∆2f (un)− 2∆u′(1)A3n

If we denote by
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A =



A20 [A10 + A30] 0 0 · · · 0
A11 A21 A31 0 · · · 0
0 A12 A22 A32 · · · 0
0 0 A13 A23 · · · 0
...

...
...

. . . . . .
...

0 0 0 · · ·
[
A1(n) + A3(n)

]
A2(n)


and by Φ(u) : Rn+1 −→ Rn+1 such that

Φ(ui) =



f(u0) +
u′(−1)A10

∆
f(u1)
f(u2)

...

f(un)−
u′(1)A3(n)

∆


We reduce the problem of Neumann boundary conditions (1) to a system

of non-linear equations:

Au = 2∆2Φ(u) (11)

with u = (u0, u1, u2, ..., un)t. In general, a problem of boundary non-linear it
can be expressed as follows{

g(x, u, u′, u′′) = 0
u′(1) = −u′(−1)

Trough a process of discretization analogous to the above, it is possible
to obtain a system of non-linear equations whose solution is also that of the
boundary problem.

On the other hand we see that the equations of (11) can be expressed as

A20u0 + [A10 + A30]u1 − 2∆2f(u0)− 2∆u′(−1)A10 = 0

A11u0 + A21u1 + A31u2 − 2∆2f(u1) = 0

A12u1 + A22u2 + A31u3 − 2∆2f(u2) = 0
... =

...

[A1n + A3n]u(n−1) + A2nun − 2∆2f (un) + 2∆u′(1)A3n = 0
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If we do u = (u0, u1, u2, .., un) and F (u) = (f0, f1, f2, ..., fn) with

f0 = A20u0 + [A10 + A30]u1 − 2∆2f(u0)− 2∆u′(−1)A10

f1 = A11u0 + A21u1 + A31u2 − 2∆2f(u1)

f2 = A12u1 + A22u2 + A32u3 − 2∆2f(u2)
... =

...

fn = [A1n + A3n]un−1 + A2nun − 2∆2f(un) + 2∆u′(1)A3n

we have (11) that is equivalent to finding u such that

F (u) = 0 (12)

Once u in (12) is found from the solution of non-linear equations systems, we
approximate the points by a polynomial function; for this we use the Vander-
Monde interpolation.

4 Interpolation of VanderMonde

Given the points (x0, u0), (x1, u1), (x2, u2), ..., (xn, un) all with different abscis-
sas (for how the xi is chosen for the discretization) or n, these are different;

P (x) = a0 + a1x+ a2x
2 + ...+ anx

n (13)

the interpolating polynomial. Imposing the n+ 1 conditions

P (xj) = uj, j = 0, 1, 2, ..., n,

It results in a system of n+1 linear equations in n+1 unknowns a0, a1, a2, ..., an
a0 + a1x0 + a2x

2
0 + ...+ anx

n
0 = u0

a0 + a1x1 + a2x
2
1 + ...+ anx

n
1 = u1

... =
...

a0 + a1xn + a2x
2
n + ...+ anx

n
n = un

The system can be written matrix in the form
1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

. . .
...

1 xn x2n · · · xnn



a0
a1
...
an

=


u0
u1
...
un


After solving the previous system we have that the interpolation polynomial

that approximates the solution of the problem (3) is the polynomial (13)
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5 Some Results

Solution of u′′(x) = u(x),−u′(−1) = u′(1) = 1 Exact Solution: u(x) = c1(e
x +

e−x) where c1 = e/(e2 − 1).
Vandermonde Interpolation Polynomial

u(x) = 1.307717 + 1.1338713x+ 1.0053805x2

+ 0.9171049x3 + 0.8655135x4 + 0.8485427x5

+ 0.8655135x6 + 0.9171049x7 + 1.0053805x8

+ 1.1338713x9 + 1.307717x10

The heat equation ∂T
∂t

= ∂2T
∂x2

[1], [5] with the self-similar variable η = x√
t
,

T = u(η) we obtain 2u′′ + ηu′ = 0 whose solution is u(η) = C1

∫
e−η

2/4dη+C2

but this equation can be solved numerically when u′(−1) = u′(1) = 1 we can
apply our numerical method in Scilab.

Vandermonde Interpolation Polynomial

u(x) = −1.905122− 1.695122x− 1.467622x2 − 1.2260498x3 − 0.9746176x4

−0.7181059x5 − 0.4615942x6 − 0.2101619x7 + 0.0314103x8

+0.2589103x9 + 0.4689103x10

6 Conclusion

We see that our algorithm can be applied not only to ordinary differential
equations with symmetric solutions with respect to the origin but also to dif-
ferent problems of physics, mathematics and engineering.
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