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Abstract

This paper presents a new approximation of pressures on the inter-
face between fluid and structure based on Fourier series development.
This approximation gives easily an analytic solution to structure equa-
tion. Using the least squares method, we introduce an optimization
problem to determine Fourier coefficients series and deduct the struc-
ture displacement, the fluid velocity and the fluid pressure. This present
work aims to extend and improve the approximation method of pres-
sures on the interface.
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1 Introduction

Problems involving fluid structure interaction occur in a wide variety of en-
gineering problems and therefore have attracted the interest of many investi-
gations from different engineering disciplines. As a results, much efforts has
gone into the development of general computational method for fluid structure
systems [15], [16], [2], [5], [6],[13], [3], [9], [4], [10], [11], [12].

We saw in a previous paper [13] that pressures on the interface was approx-
imated by a linear combination of shape functions as well as by a development
of Fourier sine series in [11]. In [13], fluid-structure interaction problem has
been solved in the reference domain ΩF

0 .
Thus, this paper aims at showing a new approximation method of pressures

on the interface between fluid and structure based on Fourier cosine series de-
velopment. This appproximation gives easily an analytic solution to structure
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equation. The latter depends on Fourier coefficients series. Using the least
squares method, we establish an optimization problem to compute Fourier co-
efficients and obtain the structure displacement, the fluid velocity and the fluid
pressure. In this work, we note that the fluid structure interaction problem is
solved in the moving domain ΩF

u . To solve this optimization problem by the
quasi-Newton BFGS method we need the derivative of the cost function. De-
spite, it is a difficult task, the gradient of the cost function is computed in this
work. In addition, the fluid is modeled by two dimensional Stoke equations
for steady flow and the structure is represented by the one dimensional beam
equation.

2 Fluid structure interaction problem

We denote by ΩF
u the two-dimensional domain occupied by the fluid, and Γu

the elastic interface between fluid and structure and Γ = Σ1 ∪ Σ2 ∪ Σ3 be the
remaining external boundaries of the fluid as depicted Fig. 1.
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Figure 1: Sets appearing to the fluid structure interaction problem

Moreover, the reference domain is defined by ΩF
0 = [0, L] × [0, H ].

The coupled problem is to find (u, v, p) such that:

EI
d4u

dx4
1

=
(
−(σ(p, v) · n) · �e2

√
1 + (u′(x1))2

)
for 0 < x1 < L(1)

u(0) = u(L) =
du(0)

dx1
=

du(L)

dx1
= 0 (2)

−μΔv + ∇p = fF , in ΩF
u (3)

∇ · v = 0, in ΩF
u (4)

v = g, on Σ1 (5)

−pI2n + μ∇v · n = 0, on Σ3 (6)

v = 0, on Γu (7)

v2 = 0, on Σ2 (8)

∂v1

∂x2

= 0, on Σ2 (9)
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Where,

• E is the young modulus,

• I is the moment of inertia,

• I2 is the identity matrix,

• μ is the fluid viscosity,

• v1 first component of v,

• v2 second component of v,

• the vector �e2 = (0, 1),

• n is the unit outward normal vector,

• Σ2 is the symetric axis,

• On Σ2, we have the non penetration condition: v · n = v2 = 0,

• On Σ2, we have the continuity of Cauchy shear stress: σ · n = ∂v1

∂x2
= 0,

• g the velocity profil in inflow Σ1.

We assume that (−(σ(p, v) · n) · �e2

√
1 + (u′(x1))2 = p(x1, H + u(x1)) [13], [9].

As a consequence, equation (1) becomes EI d4u
dx4

1
= p(x1, H + u(x1)).

3 Fourier cosine series development

We assume that on the interface between the fluid and the structure:

p(x1, H + u(x1)) = α0 +
∞∑

n=1

αn cos(nωx1). (10)

Where

• ω = 2π
T

is the frequency,

• α = (α0, α1, . . . , αN) is Fourier cosine coefficients series.

Now, to have numerical results, the partial sum is used:

p(x1, H + u(x1)) ≈ α0 +
N∑

n=1

αn cos(nωx1). (11)
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Where N � 1. Thus, this approximation gives the structure displacement
u as follows:

u(x1) =
1

EI

(
α0

x4
1

24
+

N∑
n=1

αn

(nω)4
cos(nωx1) + k1

x3
1

6
+ k2

x2
1

2
+ k3x1 + k4

)
,

(12)
Thanks to equation (2) we determine constants k1, k2, k3, k4. Using the least
squares method, we introduce the cost functional J to find Fourier coefficients.
We have the following optimization problem:

inf J(α) =
∫ L

0

(
N∑

n=0

αn cos(nωx1) − p(x1, H + u(x1))

)2

dx1, (13)

subject to equations (12)-(2) and (3)-(9).
To solve this optimization problem by the quasi-Newton BFGS method we

need the derivative of J with respect to αk, k ∈ {0, 1, . . . , N}.

4 Computation of gradient

Let αk the k-th component of the vector α, we compute for each k in {0, 1, . . . , N}
the partial derivative of J with respect to αk as follow:

∂J

∂αk

= 2
∫ L

0

(
N∑

n=0

an cos(nωx1) − p(x1, H + u(x1))

)(
cos(kωx1) − ∂p(x1, H + u(x1))

∂αk

)
dx1

To compute the term ∂p(x1,H+u(x1))
∂αk

, we introduce two propositions [13], [9].

Proposition 1 Find v ∈ (H1(ΩF
u ))2, v=g on ∂ΩF

u and p ∈ L2(ΩF
u )/R such

that:{ ∫
ΩF

u
μ∇v · ∇wdx − ∫

ΩF
u
(∇ · v)p dx =

〈
fF , w

〉
, ∀w ∈ (H1

0 (ΩF
u ))2

− ∫ΩF
u
(∇ · v)q dx = 0, ∀ q ∈ L2(ΩF

u )/R
(14)

have a unique solution.

Thanks to the transformation Tu : Ω
F
0 → Ω

F
u such that:

Tu(x̂1, x̂2) = (x1, x2) =

⎧⎪⎨⎪⎩
x1 = x̂1, ∀(x̂1, x̂2) ∈ ΩF

0

x2 = H+u(x̂1)
H

x̂2, ∀(x̂1, x̂2) ∈ ΩF
0

(15)

we write the proposition 1 in the reference domain ΩF
0 in order to partial

derivatives under integral [13], [9]. After derivation, we use again the trans-
formation Tu to write equations in the moving domain ΩF

u . Then, we deduct
the following proposition.
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Proposition 2 Applications α ∈ Rm 
→ v ∈ (H1(ΩF
u ))2 and α ∈ Rm 
→ p ∈

L2(ΩF
u )/R are differentiable and there partial derivative ∂v

∂αk
∈ (H1(ΩF

u ))2 and
∂p

∂αk
∈ L2(ΩF

u )/R verify the following system:⎧⎪⎨⎪⎩
aF (α, ∂v

∂αk
, w) + bF (α, w, ∂p

∂αk
) = cF (α, v, p), ∀w ∈ (H1(ΩF

u ))2

bF (α, ∂v
∂αk

, q) = 0 ∀ q ∈ L2(ΩF
u )/R,

(16)

Where,

aF (α, ∂v
∂αk

, w) =
∫
ΩF

u
μ∇ ∂v

∂αk
· ∇wdx

bF (α, w, ∂p
∂αk

) = − ∫ΩF
u
∇ · w ∂p

∂αk
dx

cF (α, v, p) =
∑2

i=1

∫
ΩF

u

1
a11

∂a11

∂αk
fF

i widx

+
∫
ΩF

u

μ

(
1

a11

∂a11

∂αk

∂w1

∂x1
− (

1

a11

∂a12

∂αk
− 1

a2
11

∂a11

∂αk
a12)

∂w1

∂x2

)
pdx

−
2∑

i=1

∫
ΩF

u

μ

(
1

a11

∂a11

∂αk

∂vi

∂x1

∂wi

∂x1

− (
1

a11

∂a12

∂αk

− 1

a2
11

∂a11

∂αk

a12)
∂vi

∂x1

∂wi

∂x2

)
dx

(17)

a11 =
H + u(x1)

H
, a12 =

u
′
(x1)

H
x2,

∂a11

∂αk
=

1

H

∂u(x1, α)

∂αk
,

∂a12

∂αk
=

1

H

∂u
′
(x1, α)

∂αk
x2

Remark 1 To compute the gradient, we need to solve:

• the structure equation (1)-(2), to find u,

• the fluid equation (3)-(9), to find v and p,

• the system (16), to find ∂p(x1,H+u(x1))
∂αk

.

Remark 2 In [13], author solves fluid-structure problem in reference domain
ΩF

0 . In the paper, we solve the fluid-structure problem in the moving domain
ΩF

u .

5 Numerical results

We assume that the velocity on the boundary fluid domain is:

v1(x1, x2) =

{
30(1 − x2

2

H2 ), (x1, x2) ∈ Σ1

30, ∀(x1, x2) ∈ Σ2

v2(x1, x2) = 0, ∀(x1, x2) ∈ Γu

The parameter values of the fluid and the structure are:
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Parameter related to fluid: The fluid viscosity is μ = 0.035 g
cm·s , the chan-

nel length is L = 3cm, the channel width is H = 0.5cm, the volume force
of the fluid fF = (0, 0).

Paramater related to structure: The structure thickness h = 0.1cm, Young’s
modulus is E = 0.75 · 106 g

cm·s2 , the moment of inertia is I = h3

12
.

We use the P2 Lagrange finite element to approach velocities and P1 Lagrange
finite element is used to approach the pressure. FreeFem++ [8] is used for the
numerical tests.

Table 1: Optimal values with BFGS method after 10 iterations, the starting
point αinitial = 0.

N ω J(αinitial) J(αoptimal) ‖J‖∞ CPU
1 1 317.524 1.30957 6.70 × 10−4 9.58s
2 1 317.524 1.30872 4.118 × 10−4 12.29s
3 1 317.524 0.169343 6.970 × 10−3 14.19s
4 1 317.524 0.161446 4.013 × 10−4 17.28s
6 1 317.524 0.0406271 4.747 × 10−4 20.44s

Table 2: αoptimal with BFGS method after 10 iterations, the starting point
αinitial = 0.

N αoptimal

1 (9.83274, 7.68247)
2 (9.83582, 7.67294, 0.0392021)
3 (9.76943, 7.82079, -0.105078, 1.27328)
4 (9.777, 7.80926, -0.0928571, 1.25828, 0.102329)
6 (9.75304, 7.86072, -0.141766, 1.30454, 0.0567803, 0.403188, 0.0649477)
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Figure 2: Pressure and approximation case
N=2.
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Figure 3: Pressure and approximation case
N=4.
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Figure 4: Pressure and approximation case
N=6.
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Figure 5: case N=2,4 and 6.
The above figures display the pressure on the interface and the Fourier series
approximation.

When the number of Fourier coefficients N is increased, the approximation
increases as well. It follows, therefore, that the approximation of the pressure
on the interface by Fourier cosine series is becoming more accurate that greater
the number of coefficients taken and tending to the pressure itself.
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Figure 6: velocity case N=2. Figure 7: Pressure case N=2.

Figure 8: velocity case N=4. Figure 9: Pressure case N=4.

Figure 10: velocity case N=6. Figure 11: Pressure case N=6.
The above figures display the structure displacement, the fluid velocity and
the pressure.



fluid structure interaction problem 83

6 Conclusion

In this work, we introduce Fourier series development to solve fluid structure
interaction problem. This approximation enable us to determine easily an an-
alytic solution to structure equation. Using least squares method, we establish
an optimization problem to compute Fourier coefficients α, the displacement u,
the velocity v and the pressure p. Fourier series gives good results for N=6. It
can be noted, if Fourier coefficients N is increased then J goes to zero and the
coupled problem becomes equivalent to the optimization problem. This article
is coming also with a view to extend and improve approximation methods of
pressures on the interface.
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