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Abstract

The aim of this paper is to propose a numerical simulation of fluid
structure interaction problem with BFGS method. Thus, fluid flow
is governed by the incompressible newtonian steady stokes equations
and we consider an elastic structure from the static theory of linear
elasticity. Moreover, the finite element method is used for the fluid and
the structure. Thereby, this paper shows that the benchmark problems
can be simulated using an optimization method according the numerical
results.
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1 Introduction

Problems involving fluid structure interaction occurs in a wide vatiety of en-
gineering problems and therefore have attracted the interest of many investi-
gations from different engineering disciplines. As a results, much efforts have
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gone into the development of general computational methods for fluid struc-
ture systems [1, 2, 3, 4, 5, 8, 9].
Amongst the computational methods for fluid structure interaction problems,
we cite the fixed point method, the Newton method, the Quasi-Newton method,
the fictitious domain method. In effect, the fluid structure interaction prob-
lems occur in biomedical fluids areas for example blood flow interaction with
elastic veins. In our previous works, our computational domain was a pipe
with borders represented by an elastic structure[1, 2, 3]. Several methods are
used to solve numerically the fluid structure interaction through a pipe. The
aim of this paper is to show that we can use an optimization method to solve
numerically the fluid structure interaction problems with a new computational
domain see Figure 1. We assume that the structure is divided in two parts, Ωr

a rigid part and Ωs an elastic part immersed in a fluid. On the one hand, we
use a polynomial appriximation for the structure stress tensors acting on the
fluid-structure interface, On the other hand, we use least squares method to
define the objective function J to minimize by BFGS algorithm. In our last
work [3, 4], we showed that if J goes to zero the optimization problem will
be equivalent to the fluid structure interaction problem. In addition, the fluid
flow is modelled by two dimensional Stokes equations for steady flow and the
elastic structure by equations from a linear elasticity. The weak formulations
are presented for the equations of fluid and structure.

2 Position of the problem

In this section, we present the mathematical model of fluid structure interac-
tion problem and the weak formulation we consider.

2.1 Structure equations
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Figure 1: The fluid-structure-solid domain.

- Ωr is the solid part of the structure.
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Figure 2: Details of the solid-elastic domain

- Ωs is the elastic part of the structure.

- l is the structure elastic length.

- h is the structure elastic thickness.

In the case of small displacement of the elastic structure, we consider an
isotropic elastic structure Ωs ⊂ R2. Let u = (u1, u2) be the displacement
and f s the body forces. Thereby, in the static theory of linear elasticity, the
equation satisfied by the displacement u = (u1, u2) is:

−div(σs(u)) = f s, in Ωs (1)

where the stress tensor σs(u) is defined by:

σs(u) = 2µsε(u) + λstr(ε(u))I.

The positive constants µs and λs are called the Lam constant and I is the 2×2
identity matrix. We also define the strain tensor ε(u) by:

ε(u) =
1

2
(∇(u) + (∇u)T ).

Where, ε(u) is a symmetric 2× 2 matrix which has the components:

εij(u) =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

).

where (i, j) ∈ {1, 2} × {1, 2}.

- On ∂Ωr ,we impose the displacement boundary condition u = 0.

- On ∂Ωs, we impose the traction boundary condition (where ns is the
unit outer normal vector) σs(u).ns = g.

We have the following problem, find u : Ωs → R2 such as:

−div(σs(u)) = f s, in Ωs (2)

σs(u) = 2µsε(u) + λs(tr(ε(u))I), in Ωs (3)

u = 0, on ∂Ωr (4)

σs.ns = g, on ∂Ωs (5)
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Therefore, we have the following weak formulation of (2) through (5).
Find u ∈ V = {v ∈ (H1(Ωs))2, v = 0 on ∂Ωr} such as

as(u, vs) = ls(vs) (6)

forall vs ∈ V , where

as(u, vs) = 2µs
∫

Ωs

ε(u) : ε(vs)dx+ λs
∫

Ωs

div(u)div(vs)dx. (7)

and

ls(vs) =

∫
Ωs

f.vs dx+

∫
∂Ωs

g.vs ds. (8)

Assume that f ∈ H−1, g ∈ L2(∂Ωs), and meas(∂Ωr) > 0. Then the
variational problem (6) has a unique solution.([7])

2.2 Fluid flow equations

The Stokes equations for steady flow are considered to discribe the fluid flow.
The Stokes equations can be written in a non-conservative form as:

−2µfdiv(ε(v)) +∇p = fF , in ΩF (9)

div(v) = 0, in ΩF (10)

subject to the boundary conditions

v = G, on Σ1 (11)

v = 0, on Σ2 ∪ Σ4 ∪ ∂Ωs ∪ ∂Ωr (12)

σf .nf = 0, on Σ3 (13)

Where,

σf = −pI + µf (5v + (5v)T ) (14)

is the stress tensor, µf the viscosity, v the velocity, p the pressure, G are the
prescribed velocity on Σ1, fF the body forces and nf is the unit outer normal
vector to the boundary surface. Therefore, we consider the folloving mixed
variational problem to find v = (v1, v2) ∈ W and p ∈ Q such as:

a(v, w) + b(w, p) = l(w), ∀w ∈ W (15)

b(v, q) = 0, ∀q ∈ Q (16)
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where,

Q = L2(ΩF ),

W = {w ∈ H1(ΩF ), w = 0 surΣ1 ∪ Σ2 ∪ Σ4},

and,

a(v, w) = 2µ

∫
ΩF

ε(v) : ε(w)dx

b(w, p) = −
∫

ΩF

p∇ · wdx

l(w) =

∫
ΩF

fF · wdx

2.3 Coupling conditions

Of course the coupling between the fluid and the structure must satisfy the
equalities of the stress tensors and the velocity at the fluid-structure interface
as:

σf .nf = σs.ns and v = 0

2.4 The coupled problem

Using the variational formulations for the structure elastic equations and the
fluid flow equations, the coupled problem can be written in compact form as:
Find (u, v, p) ∈ V ×W ×Q such as:

as(u, vs) = ls(vs), ∀vs ∈ V (17)

a(v, w) + b(w, p) = l(w), ∀w ∈ W (18)

b(v, q) = 0, ∀q ∈ Q (19)

σf .nf = σs.ns (20)

forall (vs, w, q) ∈ V ×W ×Q.

3 The numerical resolution

In this section, we present the technics used to simulate the fluid strcture
interaction problem. For the structure the triangular finite element P2 was
used and for the fluid the triangular finite element P2 − P1 was used.
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3.1 The numerical method of the coupled problem

We propose a numerical method of the coupled problem based on the BFGS[3,
4] algorithm. Thus, we introduce an objective function J to minimize. Hence,
we approximate the forces applied by the fluid on the elastic structure interface.
The stress tensors equality on the interface lead:

σf11 = 2µs
∂u1

∂x1

+ λdiv(u) (21)

σf22 = 2µ
∂u2

∂x2

+ λdiv(u) (22)

σf12 = µs(
∂u1

∂x2

+
∂u1

∂x1

) (23)

For the approximation, we assume that:

u1(x, y) = a0 + a1x1 + a2x2 + a3x
2
1 + a4x

2
2 + a5x1x2 (24)

u2(x, y) = b0 + b1x1 + b2x2 + b3x
2
1 + b4x

2
2 + b5x1x2 (25)

From the form of u1 and u2, we obtain:

σf11 = f1(α) (26)

σf22 = f2(α) (27)

σf12 = f3(α) (28)

where, α = {ai, bj} for all 0 ≤ i, j ≤ 5 and

µs
∂u1

∂x1

+ λsdiv(u) = f1(α) (29)

2µs
∂u2

∂x2

+ λsdiv(u) = f2(α) (30)

µs(
∂u1

∂x2

+
∂u1

∂x1

) = f3(α) (31)

In order to find the displacement u = (u1, u2), the velocity v and the pressure
p, we will solve the following unconstrained optimization problem:
Find α and (v, p) ∈ W ×Q such as:

InfJ(α) (32)

as(u, vs) = ls(vs, α), ∀vs ∈ V (33)

a(v, w) + b(w, p) = l(w), ∀w ∈ W (34)

b(v, q) = 0, ∀q ∈ Q (35)

(36)
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forall (vs, w, q) ∈ V ×W ×Q, where

ls(vs, α) =

∫
Ωs

f.vs dx+

∫
∂Ωs

g(α).vs ds (37)

and

J(α) =

∫
∂Ωs

[(σf11 − f1)2 + (σf12 − f3)2 + (σf22 − f2)2]dσ (38)

Remark
if J goes to zero, the coupled problem will become equivalent to the uncon-
strained optimization problem [3].

3.2 Numerical results

The Finite differences method gives the components of the gradient ∇J as
∂J
∂αk

(α) ≈ J(α+∆αkek)−J(α)
∆αk

where ek is the kth standard basis vector of Rn and
the real ∆αk > 0 tends to zero.
Parameters [8] of simulation are: the length L = 2.5m and the height H =
0.41m of the fluid domain, the radius and the center of the solid structure
Ωr are C(0.2, 0.2) and r = 0.05m, the length and the thickness of the elas-
tic structure Ωs are l = 0.35m and h = 0.02m. FreeFem++[6] is used for
simulations.

Table 1: Parameters [8]

Parameters values

ρs[103 kg
m3 ] 1

νs 0.4

µs[106 kg
ms2

] 0.5

ρf [103 kg
m3 ] 1

νf [10−3m2

s
] 1

A parabolic velocity profile is prescribed at Σ1 as: v1(0, y) = 1.5Ū y(H−y)

(H
2

)2

and v2 = 0 where Ū = 0.2m
s

[8].
The velocity and the pressure profile are presented in the following figures 3-4,
the structure deformation is presented in figure 5.
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IsoValue
-11.287
-4.16731
0.579172
5.32566
10.0721
14.8186
19.5651
24.3116
29.0581
33.8046
38.551
43.2975
48.044
52.7905
57.537
62.2835
67.0299
71.7764
76.5229
88.3891

Figure 3: The pressure profile and the structure deformation

Vec Value
0
0.0218288
0.0436576
0.0654864
0.0873152
0.109144
0.130973
0.152802
0.17463
0.196459
0.218288
0.240117
0.261946
0.283774
0.305603
0.327432
0.349261
0.37109
0.392918
0.414747

Figure 4: The velocity profile and the structure deformation
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Figure 5: The structure deformation

In the following table, we present numerical values obtained after simula-
tions.

Table 2: Numerical values

N J(αini) J(αop) ‖∇J(α)‖∞
20 25.2911 2.6259 2.007 ×10−2

In this table, from initial value of J = 25.2911 for α = αini = 0, we reach
about N = 20 iterations a final value of J = 2.6259 with ‖∇J(α)‖∞ = 2.007×
10−2. This table of values shows that the optimization method with BFGS
algorithm is suitable for solving a fluid structure solid interaction problem.
However, our goal is to bring J closer to zero and ‖∇J(α)‖∞ ≤ ε with ε very
small. So, changing the shape of approximations functions and increasing the
number of optimization variables, we can hope tending J to zero[4]

4 Conclusion

In this paper, we show that we can use an optimization method to solve
fluid structure interaction benchmark problems. Our method is based mainly
on the BFGS algorithm. The numerical results obtained appear good. In our
future work, we will try to find a suitable approximation functions in order to
tend J to zero and to apply this strategy on the unsteady benchmark problems.
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