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Università degli Studi di Roma “La Sapienza”

Via A. Scarpa, 14 – 00161 Roma (Italia)

P.E. Ricci

Dipartimento di Matematica “Guido Castelnuovo”
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Abstract

We reconsider some families of orthogonal polynomials, within the
framework of the so called monomiality principle. We show that the
associated operational formalism allows the framing of the polynomial
orthogonality using an algebraic point of view. Within such a frame-
work, we introduce families of pseudo-orthogonal polynomials, namely
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ing series expansions, which can be obtained from the ordinary series
using the monomiality correspondence.
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1 Introduction

It has been shown that the two variable Laguerre polynomials can be intro-
duced as (see ref. [1])

Ln(x, y) = (y − D−1
x )n (1)

where D−1
x is the negative derivative operator, defined in such a way that

D−1
x f(x) =

∫ x

0
f(ξ)dξ . (2)

With this assumption we get from eq. (1)

Ln(x, y) =
n∑

s=0

(
n

s

)
(−1)syn−sD−s

x = n!
n∑

s=0

(−1)syn−sxs

(n − s)!(s!)2
, (3)

obtained on account of the fact that, when the negative derivative operator is
acting on unity, we find

D−n
x =

xn

n!
. (4)

The ordinary Laguerre polynomials Ln(x) are obtained from eq. (3) by setting
y = 1.

The above definition, based on the negative derivative operator formalism,
allows a fairly straightforward derivation of old and new relations involving
expansions in terms of Laguerre polynomials. A very natural example is offered
by eq. (4) itself, which, rewritten as

xn = n!(y − (y − D−1
x ))n (5)

yields, according to eqs. (1)-(3),

xn = n!
n∑

s=0

(
n

s

)
(−1)syn−sLs(x, y) , (6)

i.e. the expansion of an ordinary monomial in terms of Laguerre polynomials.
It must be stressed that the derivation of the identity (6) is purely alge-

braic and does not imply any assumption on the orthogonality of the Laguerre
polynomials (see e.g. ref. [2] for an orthodox derivation). The extension of
eq. (6) to non integer values of n is easily obtained too, using the properties
of the Newton binomial.

We want to emphasize that such an algebraic point of view to the expansion
in terms of Laguerre polynomial may be a fairly interesting tool to be further
investigated for its usefulness in calculations and for possible extensions of the
orthogonality concept it may offer.
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2 Operational methods and expansion in La-

guerre polynomial series

Let us go back to the definition (1) and note that can we use the following
operational definition to introduce the Laguerre polynomials

Ln(x, y) = exp

(
−D−1

x

∂

∂y

)
yn (7)

the exponential operator, which acts on any function of y as a shift operator,
can be further understood as follows

exp

(
−D−1

x

∂

∂y

)
=

∞∑
s=0

(−1)s

s!
D−s

x

(
∂

∂y

)s

=
∞∑

s=0

(−1)s

(s!)2
xs

(
∂

∂y

)s

(8)

which can cast in a closed form as follows

exp

(
−D−1

x

∂

∂y

)
= C0

(
x

∂

∂y

)
(9)

where we have exploited the 0th order Tricomi function linked to the ordinary
cylindrical Bessel function by

Cn(x) = x−n/2Jn(2
√

x) . (10)

According to the previous relations we can also conclude that

Ln(x, y) = C0

(
x

∂

∂y

)
yn

yn = exp

(
D−1

x

∂

∂y

)
Ln(x, y) .

(11)

The last of eq. (11) is just a consequence of the fact that

exp

(
−D−1

x

∂

∂y

)
exp

(
D−1

x

∂

∂y

)
= 1 (12)

which does not imply that

C0

(
D−1

x

∂

∂y

)
C0

(
−D−1

x

∂

∂y

)
= 1 . (13)

We can use the previous relations to get further series expansion in terms
of Laguerre polynomials, without any explicit use of their orthogonality. We
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start from the definition of the exponential function in terms of the Taylor
expansion

exp(ty) =
∞∑

n=0

tnyn

n!
(14)

and note that

C0

(
x

∂

∂y

)
exp(y) = exp(y)C0(x) (15)

thus getting, from eq. (11) and (14)

exp(ty)C0(tx) =
∞∑

n=0

tn

n!
Ln(x, y) , (16)

which is one of the well known generating functions of the Laguerre polynomials
(ref. [2]).

Let us note that we can exploit other well known expansions like

∞∑
n=0

tnyn =
1

1 − yt
, | yt |< 1 , (17)

to obtain, according to the same procedure as before, (see ref. [1])

∞∑
n=0

tnLn(x, y) =
1

1 − t(y − D−1
x )

=
1

1 − yt
exp

(
− xt

1 − yt

)
, (18)

which is the ordinary generating function of Laguerre polynomials (ref. [2]).
The following well known expansion can be derived from eq. (18)

exp(−ay) =
1

1 + a

∞∑
n=0

(
a

1 + a

)n

Ln(y) , a > −1

2
. (19)

The use of eq. (15) and of the identity

C0

(
x

∂

∂y

)
Ln(y) = LLn(x, y) = n!

n∑
r=0

(−1)rLr(x, y)

(n − r)!(r!)2
, (20)

leads to

C0(−ax) =
exp(ay)

1 + a

∞∑
n=0

(
a

1 + a

)n

(LLn(x, y)) . (21)

This last relation can be viewed, on account of eq. (10), as a new form of
expansion of Bessel functions, which has been obtained using the polynomials,
given in eq. (20), without any explicit use of orthogonality properties and
without knowing whether they belong to any orthogonal set.

In the forthcoming section we will see how the above point of view can be
extended to other polynomial families and show that the concept of polynomial
orthogonality can be framed within a more general algebraic context.
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3 The pseudo-orthogonality

We have introduced the polynomials LLn(x, y), which can be exploited to
derive other expansions directly inspired by those of ordinary Laguerre, we
note indeed that we obtain from eqs. (6), (7) the relation

C0

(
x

∂

∂y

)
yn = n!

n∑
s=0

(
n

s

)
(−1)sC0

(
x

∂

∂y

)
Ls(y) (22)

which eventually yields

Ln(x, y) = n!
n∑

s=0

(
n

s

)
(−1)s

LLs(x, y) . (23)

In this case too we have not exploited any concept associated with the orthog-
onality properties of the above family of polynomials.

The ordinary Laguerre polynomials Ln(y) are bi-orthogonal (ref. [3]) to

φn(y) = exp(−y)Ln(y) , (24)

we can therefore introduce, along with the polynomials (20), (24), their pseudo-
orthogonal partners defined as

Φn(x, y) = C0

(
x

∂

∂y

)
φn(y) = φn(y − D−1

x ) (25)

which explicitly writes

Φn(x, y) = exp(−y)An(x, y) ,

An(x, y) = n!
n∑

s=0

(−1)sTs(x, y)

(s!)2(n − s)!

Ts(x, y) =
s∑

r=0

(
s

r

)
yr−s(−1)sxsCs(−x)

(26)

obtained after using the identity

D−s
x C0(x) = xsCs(x) . (27)

The polynomials (20) and the functions (26) are isospectral to the ordinary
Laguerre polynomials and to their bi-orthogonal partners but they are by no
means orthogonal, in the strict sense of the word. Notwithstanding they can
be exploited to define series expansions, like those given in eq. (21) of algebraic
nature and not implying any orthogonality condition. We will say therefore
that Φn(x, y) and LLn(x, y) form a pseudo-orthogonal set. This concept
will be further discussed in the forthcoming sections.
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4 The Hermite polynomials: an algebraic point

of view to their series expansion

The Hermite polynomials are defined within the framework of the monomiality
treatment by means of the operational rule (ref. [1])

Hn(x, y) = exp

(
y

∂2

∂x2

)
xn = n!

[n
2
]∑

r=0

xn−2ryr

r!(n − 2r)!
(28)

These polynomials belong to the Hermite-Kampé de Fériet family (see [4]) and
reduce to the ordinary Hermite for

Hn(2x,−1) = Hn(x)

Hn

(
x,−1

2

)
= Hen(x) .

(29)

It is evident from eq. (28) that we can invert the above definition to get

xn = exp

(
−y

∂2

∂x2

)
Hn(x, y) = n!

[n
2
]∑

r=0

(−y)rHn−2r(x, y)

r!(n − 2r)!
(30)

which represents a kind of expansion of the ordinary monomials in terms of
a Hermite-like family of polynomials, which can be proved to belong to an
orthogonal set for negative values of y only.

Let us consider a given function f(x) to be expanded in series of ordinary
Hermite polynomials, namely

f(x) =
∞∑

n=0

cnHen(x) (31)

according to eq. (28) we can also write

exp

(
1

2

∂2

∂x2

)
f(x) =

∞∑
n=0

cnxn . (32)

The use of the Gauss transform, namely

exp

(
a

∂2

∂x2

)
f(x) =

1

2
√

πa

∫ ∞

−∞
exp

(
−(x − ξ)2

4a

)
f(ξ)dξ (33)

allows the following conclusion.
If the function

Π(x) =
1√
2π

∫ ∞

−∞
exp

(
−(x − ξ)2

2

)
f(ξ)dξ (34)
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can be expanded as

Π(x) =
∞∑

n=0

cnxn (35)

then the expansion (31) in terms of Hermite polynomials hold, we find indeed
from eq. (34) that

Π(x) =
∞∑

n=0

xn

n!
√

2π

∫ ∞

−∞
exp

(
−ξ2

2

)
Hen(ξ)f(ξ)dξ , (36)

which yields the general form of the cn coefficient and the orthogonality of the
polynomials Hen(x).

According to the previous results the orthogonality of Hermite polynomi-
als is one of the consequences of their operational definition (28) and of the
associated Gauss transform.

Just to give a further example we note that for f(x) = exp(2bx) we find

Π(x) = exp(2b2 + 2bx) (37)

which leads to

cn = exp(2b2)
(2b)n

n!
(38)

and thus to a well known expansion in terms of Hermite polynomials.
In the case of the polynomials Hn(x) we can formulate our statement in

analogous terms, by noting indeed that

Hn(x) = exp

(
−1

4

∂2

∂x2

)
(2x)n (39)

we have to replace the function Π(x) with

Π(x) = exp

(
1

4

∂2

∂x2

)
f(x) =

1√
π

∫ ∞

−∞
exp ( − (x − ξ)2)f(ξ)dξ (40)

and cn with

c̄n =
cn

2n
. (41)

In the case of f(x) = exp(−a2x2), a2 > −1, we find

Π(x) =
1√

1 + a2
exp

(
− a2x2

1 + a2

)
. (42)

Thus yielding

cn =
(−1)n

22nn!

a2n

(1 + a2)n+ 1
2

(43)
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and the corresponding, well known, expansion in terms of Hermite polynomials.
For further extensions of the above point of view to other polynomial sets

see the concluding section.
We must underline that, albeit we have not done any explicit request of

orthogonality, the present reformulation of the series expansion in terms of
Hermite polynomials is perfectly equivalent to the ordinary case and the con-
ditions underlying the expansions are left unchanged.

It is worth stressing that not all the Hermite-Kampé de Fériet provide
orthogonal sets, in the strict sense, they are indeed limited to negative values
of the y variable only.

Notwithstanding, according to eqs. (28)-(33), we can obtain expansions in
terms of Hermite-Kampé de Fériet polynomials even when orthogonality in
the strict sense is not guaranteed. We find indeed

1√
1 + 4a

exp

(
− x2

1 + 4a

)
= exp

(
a

∂2

∂x2

)
exp(−x2) =

=
∞∑

n=0

(−1)n

n!
H2n(x, a) , | a |< 1

4
.

(44)

In the forthcoming section we will see how the above algebraic point of view
can be extended to other families of polynomials.

We can exploit the previous results to discuss the concept of pseudo-
orthogonality from a different point of view.

We consider indeed the polynomials Gn(x, y) defined as

Gn(x, y) = n!

[n
2
]∑

r=0

xn−2ryr

[(n − 2r)!]2r!
(45)

which provide a family of polynomials discussed in ref. [1] and share some
analogies with the Hermite polynomials in the sense that

Gn(x, y) = Hn(D̂−1
x , y) . (46)

It is therefore worth noting that they can be defined through the operational
rule

Gn(x, y) = exp

⎛⎝y

(
∂

∂x
x

∂

∂x

)2
⎞⎠(xn

n!

)
, (47)

which can be exploited in perfect analogy with the analogous rule defining the
Hermite polynomials to decide on their orthogonality properties.

To this aim we will try to establish the existence of the analogous of the
Gauss transform for the action of the operator exp

[
α( ∂

∂x
x ∂

∂x
)2
]

on a given
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function. To this aim we note that in operational terms, using the correspon-
dence

x → D̂−1
x (48)

we get also (see ref. [1])
∂

∂D̂−1
x

=
∂

∂x
x

∂

∂x
. (49)

Let us now consider any function f(x) admitting the series expansion

f(x) =
∞∑

r=0

ar

r!
xr (50)

and assume that, in correspondence of this, the function

g(x) =
∞∑

r=0

arx
r (51)

linked to f(x) by the Laplace-type transform

g(x) =
∫ +∞

0
f(xt) exp(−t)dt (52)

exists. We can therefore state the following identity

exp

⎛⎝α

(
∂

∂x
x

∂

∂x

)2
⎞⎠ f(x) = exp

⎛⎝α

(
∂

∂D̂−1
x

)2
⎞⎠ g(D̂−1

x ) . (53)

Accordingly we can write that

exp

⎛⎝α

(
∂

∂x
x

∂

∂x

)2
⎞⎠ f(x) =

1

2
√

πα

∫ ∞

−∞
exp

(
−(D̂−1

x − ξ)2

4α

)
g(ξ)dξ . (54)

Let us now consider the expansion of the function f(x, y), where y > 0 denotes
a fixed parameter, in terms of the polynomials Gn(x, y), namely

f(x, y) =
∞∑

n=0

cnGn(x, y) . (55)

By applying the same considerations, we used in the case of Hermite polyno-
mials, we find that

Π(x, y) := exp

⎛⎝y

(
∂

∂x
x

∂

∂x

)2
⎞⎠ f(x, y) =

∞∑
n=0

cn(y)
xn

n!
(56)



612 G. Dattoli, B. Germano, M.R. Martinelli and P.E. Ricci

and, according to eq. (54), we and up with

Π(x, y) =
1

2
√

πy

∫ ∞

−∞
exp

(
−(D̂−1

x − ξ)2

4y

)
g(ξ)dξ =

∞∑
n=0

cn(y)
xn

n!
, (57)

thus getting

cn(y) =
1

2
√

πy

∫ ∞

−∞
exp

(
−ξ2

2

)
Hn

(
ξ

2y
,− 1

4y

)
g(ξ)dξ . (58)

The conclusion is that the polynomials Gn(x, y) are not orthogonal in the
strict sense, but they can be exploited to expand a function f(x, y) using
the coefficients of the expansion in terms of Hermite polynomials of the func-
tion g(x). The polynomials Gn(x, y) can therefore be considered pseudo-
orthogonal and its partners, omitted for the sake of conciseness, have been
discussed in ref. [5].

According to the discussion of this section, we can draw a general conclu-
sion.
We consider a family of polynomials pn(x) defined by the operational rule

pn(x) = T̂ xn , (59)

where the operator T̂ admits an inverse. If the inverse function

T̂−1f(x) = Φ(x) (60)

exists and can be expanded in Taylor series, then the function f(x) can be
expanded in series of the above polynomials with the same coefficients of the
Taylor expansion of the function Φ(x).

5 The Legendre polynomials

It has been shown that the Legendre polynomials can be framed within the
monomiality treatment and that they can be introduced using an operational
definition in between the Hermite and the Laguerre case, we have indeed (ref.
[1])

Sn(x, y) = C0

(
x

∂2

∂y2

)
yn = n!

[n
2
]∑

r=0

(−1)ryn−2rxr

(n − 2r)!(r!)2
. (61)

The ordinary Legendre polynomials are obtained as a particular case of (33)
as (for the ordinary formulation see refs. [1], [2])

Pn(y) = Sn

(
1 − y2

4
, y

)
. (62)
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We can now exploit the same point of view as before and look for expansions
in terms of Legendre polynomials with the only help of algebraic concepts.

We can extend the previous considerations relevant to the Hermite polyno-
mials to the present family by noting that an alternative operational definition
is

Sn(x, y) = Hn(y,−D−1
x ) . (63)

In this case we can directly apply the formalism developed for Hermite poly-
nomials in a fairly direct way.

We can indeed expand the function f(y) = exp(2by) as follows

exp(2by) =
∞∑

n=0

(2b)n

n!
exp(4b2D−1

x )Hn(y,−D−1
x ) . (64)

The above relation is of operational nature and can be written in a more
explicit form by exploiting the following identity

Hn(y,−D−1
x ) exp(4b2D−1

x ) = n!

[ n
2
]∑

r=0

(−1)ryn−2rxr

(n − 2r)!r!
Cr(−4b2x) =

= Bn(y,−x; 4b2x) ,

(65)

thus getting

exp(2by) =
∞∑

n=0

(2b)n

n!
Bn(y,−x; 4b2x) . (66)

We will comment on the nature of the function Bn(x, y) in the concluding
section.

By noting furthermore that

exp(4b2D−1
x )Hn(y,−D−1

x ) =
∞∑

r=0

(4bx)r

r!
Sr

n(x, y) ,

Sr
n(x, y) = n!

[ n
2
]∑

s=0

(−1)syn−2sxs

(n − 2s)!(r + s)!s!

(67)

we can obtain an alternative expansion in terms of the polynomials Sr
n(x, y),

whose link with the associated Legendre polynomials will be discussed in a
forthcoming paper.

Before concluding this section we will see how the ordinary monomials can
be expanded in Legendre series. The use of the operational analogy with the
Hermite polynomials and eq. (30) yields

yn = n!

[ n
2
]∑

r=0

D−r
x Hn(y,−D−1

x )

r!(n − 2r)!
= n!

[ n
2
]∑

r=0

xrSr
n−2r(x, y)

r!(n − 2r)!
(68)

again obtained without any assumption of orthogonality.
In the forthcoming concluding section we will clarify some points left open

in the so far developed analysis.
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6 Concluding remarks

In the previous section we have introduced the functions Bn(a, b; x) = B0
n(a, b; x),

without any further specification. We will now comment on their nature and
discuss an independent derivation in terms of the generating function

exp(at)Cm(x − bt2) =
∞∑

n=0

tn

n!
Bm

n (a, b; x) ,

Bm
n (a, b; x) = n!

[ n
2
]∑

r=0

bran−2r

(n − 2r)!r!
Cm+r(x)

(69)

which can be easily derived after noting that

exp(at)Cm(x − bt2) = exp

(
at − bt2

∂

∂x

)
Cm(x) =

=
∞∑

n=0

tn

n!
Hn

(
a,−b

∂

∂x

)
Cm(x) ,

(−1)s

(
∂

∂x

)s

Cm(x) = Cm+s(x) .

(70)

This family of functions satisfies the recurrences

∂

∂a
Bm

n (a, b; x) = nBm
n−1(a, b; x)

∂

∂b
Bm

n (a, b; x) = n(n − 1)Bm+1
n−2 (a, b; x)

(71)

which are a direct consequence of their generating function.
In the previous sections we have introduced the Laguerre polynomials by

using the operational definition (7), according to which the variable x is viewed
as a parameter, on the other side we can use the identity (see ref. [1])

exp

(
−y

∂

∂x
x

∂

∂x

)(
(−1)nxn

n!

)
= Ln(x, y) (72)

which is just a consequence of the fact that the Laguerre polynomials satisfy
the p.d.e.

∂

∂y
F (x, y) = − ∂

∂x
x

∂

∂x
F (x, y)

F (x, 0) =
(−x)n

n!
.

(73)
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More in general if F (x, 0) = f(x) the solution of the above equation can be
written in terms of the following integral transform (ref. [5])

F (x, y) = exp

(
x

y

)∫ +∞

0
exp(−s)C0

(
x

y
s

)
f(−ys)ds (74)

which holds since the 0th order Tricomi function is an eigenfunction of the
operator − ∂

∂x
x ∂

∂x
.

It is evident that the previous transform plays a role analogous to the Gauss
transform of the Hermite case, we can therefore formulate the following state-
ment:
If the function

F (x) = exp(−x)
∫ +∞

0
exp(−s)C0(−xs)f(s)ds (75)

admits the expansion

F (x) =
∞∑

n=0

cn
(−x)n

n!
(76)

then f(x) can be expanded in terms of Laguerre polynomials as

f(x) =
∞∑

n=0

cnLn(x) . (77)

By expanding, indeed, the exponential and the Tricomi function in eq. (75),
we get

F (x) =
∞∑

r=0

(−x)r

r!

∫ +∞

0
exp(−s)

∞∑
p=0

(xs)p

(p!)2
f(s)ds =

=
∞∑

n=0

(−x)n

n!

∫ +∞

0
exp(−s)f(s)Ln(s)ds ,

(78)

which is the proof of our statement.
In a forthcoming paper we will see how the present results can be extended

to higher order and multidimensional Hermite polynomials.
Before concluding we want to discuss a further problem involving the

Chebyshev polynomials of second kind Un(x), which are linked to the Hermite
polynomials by means of the following transform (see ref. [1])

Un(x) =
1

n!

∫ +∞

0
exp(−s)sn/2Hn(x

√
s)ds . (79)

If a given function f(x) can be expanded in terms of Chebyshev polynomials,
we also have

f(x) =
∞∑

n=0

cn

n!

∫ +∞

0
exp(−s)sn/2Hn(x

√
s)ds (80)
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if the sum on the r.h.s. of eq. (65) is such that

F (x, s) =
∞∑

n=0

cn

n!
sn/2Hn(x

√
s) , (81)

we can conclude that all the functions of the type

f(x) =
∫ +∞

0
exp(−s)F (x, s)ds (82)

can be expanded in terms of Un(x) polynomials, just exploiting the correspond-
ing expansion in terms of ordinary Hermite.

The function F (x) = exp(−x) corresponds to f(x) = 1/(1−x) and accord-
ing to the previous relations and to eqs. (35)-(38) we find

1

1 − x
=

4

3

+∞∑
n=0

(
1√
3

)n

Un

(
2√
3
x

)
. (83)

This procedure is fairly helpful but does not fully reply the concept of orthog-
onality of Chebyshev polynomials, since the family of functions (69) is only
a family of functions admitting an expansion in terms of Un(x) polynomials.
We will show elsewhere that the method can be extended to Legendre, Gegen-
bauer, . . . polynomials and that their orthogonality properties can be framed
within an algebraic context.
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