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ABSTRACT 
A robust trajectory tracking problem is treated in the 
framework of a zero-sum linear-quadratic differential 
game of a general type. For a cheap control version of 
this game, a novel solvability condition is derived. 
Condition, guaranteeing that the tracking problem is 
solved by a cheap control game optimal strategy, is 
established. A boundedness of the minimizer's control is 
analyzed. Illustrative pursuit-evasion examples are 
presented. 
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1. INTRODUCTION 
 
The problem of tracking a given trajectory under 
uncertainties (trajectory planning, path following etc.) is 
a well-known challenge in aerospace (Ben-Asher et al., 
2004; Zhang et al., 2008), underwater vehicles control 
(Aguiar & Hespanha, 2007; Kiselev, 2009), robotics 
(Wang et al., 2009; Kowalczyk et al., 2009)and many 
other applications. Most of the approaches, known in 
the literature, provide the trajectory tracking 
asymptotically for time tending to infinity (see e.g. 
(Aguiar & Hespanha, 2007; Sun et al., 2009; Cheng et 
al., 2007)). In many practical applications, for example, 
in aerospace, the tracking should be guaranteed on a 
finite time interval. In real-life systems, the trajectory 
should be tracked in the presence of uncertainty and/or 
disturbance. However, to the best knowledge of the 
authors, only a small number of the papers considers the 
tracking problem from this viewpoint (see e.g. (Pei et 
al., 2003; Mahony & Hamel, 2004)). In (Basar & 
Bernhard, 1995; Tretyakov & Turetsky, 1995; Ben-
Asher et al., 2004), the tracking problem is formulated 
on a finite time horizon in the framework of a 
differential game. In this paper, based on such a 
formulation, the tracking problem is solved by using a 
cheap control linear-quadratic approach. 

Condition for solvability of the linear-quadratic 
differential game (LQDG) was first formulated by 
Bernhard (1979; 1980) as lack of conjugate points on a 
game time interval. This condition, although being 
necessary and sufficient, cannot be verified directly. 

Thus, for the LQDG, the conditions, guaranteeing the 
lack of the conjugate points, are of a great importance. 
A number of works, dealing with this issue, can be 
mentioned. In (Basar & Bernhard, 1995), it was 
established that the game solution exists if the 
maximizer's control cost in the performance index is 
sufficiently large. In (Reid, 1972), the game solvability 
follows from the invertibility of the solution of some 
matrix linear differential equation. Due to (Mou & 
Liberty, 2001), the game solvability is provided by the 
existence of so-called lower and upper solutions of the 
matrix Riccati differential equation, associated with the 
game. These conditions do not provide a direct 
verification scheme based on the dynamics and cost 
functional coefficients. This drawback was partially 
surmounted by the condition, formulated in (Shinar et 
al., 2008) in terms of eigenvalues of some integral 
operator in a Hilbert space. This condition can be 
directly verified, based on the dynamics and cost 
functional coefficients. 

The cheap control problem is an optimal 
control problem (differential game) with a small control 
cost (with respect to a state cost) in the cost functional. 
This problem is of considerable meaning in such topics 
of control theory as singular optimal control and its 
regularization (Bell & Jacobson, 1975), limitations of 
linear optimal regulators and filters (Braslavsky et al., 
1999; Kwakernaak & Sivan, 1972), limitations of 
nonlinear optimal regulators (Seron et al., 1999), high 
gain control (Kokotovic et al., 1986; Young et al., 
1977), inverse control problems (Moylan & Anderson, 
1973), guidance problems (Cottrell, 1976; Zarchan, 
1994), robust control of systems with disturbances 
(Turetsky & Glizer, 2004; Turetsky & Glizer, 2007), 
and some others. Cheap control problems have been 
investigated extensively for systems with a single 
decision maker (see e.g. (Kokotovic, 1984) and 
references therein). More recent results can be found in 
(Woodyatt et al., 2002; Glizer et al., 2007) and 
references therein. Cheap controls for differential games 
have been investigated much less. To the best 
knowledge of the authors, there are only few works 
where differential games with cheap control have been 
studied. In (Starr & Ho, 1969; Glizer, 2000; Turetsky & 
Glizer, 2004; Turetsky & Glizer, 2007), a finite-horizon 
game was investigated, while in (Petersen, 1986; Glizer, 
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2009), an infinite-horizon case was analyzed. In all 
these works, excepting (Turetsky & Glizer, 2007) the 
case of the minimizer's cheap control was treated, while 
in (Turetsky & Glizer, 2007), both the minimizer's and 
the maximizer's controls were assumed to be cheap. 

In the present paper, the general tracking 
problem is considered. In this problem, a tracking 
criterion is chosen as a Lebesgue-Stilties integral G  of 
squared discrepancy between the system motion and a 
given vector function (tracked trajectory), calculated 
over the mixed discrete-continuous measure. The 
problem is solved by using an auxiliary LQDG, where 
the state term of the cost functional is represented by 
G . Both the minimizer's and the maximizer's controls 
are cheap. Note that this game is a cheap control version 
of the LQDG, considered in (Shinar et al., 2008). 
Novel, cheap control, solvability condition is 
established. It is shown that, subject to some additional 
conditions, the optimal cheap control strategy also 
solves the original tracking problem. 

 
2. TRACKING PROBLEM 

 
2.1. Motivating Guidance Example 
 
Consider a planar engagement between two moving 
objects (players) - a pursuer and an evader. The 
schematic view of this engagement is shown in Fig. 1. 
The X axis of the coordinate system is aligned with the 
initial line of sight. The origin is collocated with the 
initial pursuer position. The points ( , )p px y , ( , )e ex y  

are the current coordinates; pV  and eV  are the 

velocities and pa , ea  are the lateral accelerations of the 

pursuer and the evader respectively; ,p eϕ ϕ are the 
respective angles between the velocity vectors and the 
reference line of sight; and e py y y= −  is the relative 
separation normal to the initial line of sight. The line-of-
sight angle λ  is the angle between the current and 
initial lines of sight, r  is the current range between the 
objects. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure  1: Interception geometry 
 

It is assumed that the dynamics of each object 
is expressed by a first-order transfer function with the 
time constants pτ  and eτ , respectively. The velocities 

pV , eV  and the bounds of the lateral acceleration 

commands max
pa , max

ea  of both objects are constant. 

If the aspect angles pϕ  and eϕ  are small 
during the engagement then (Shinar, 1981) the 
trajectories of the pursuer and the evader can be 
linearized with respect to the nominal collision 
geometry. The final interception time can be easily 
calculated as )/(= 0 epf VVrt + , where 0r  is the initial 

distance between the objects and the initial time 0=0t . 
The linearized model is described by the following 
differential equation:  
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 The controls of the pursuer u  and the evader v  are the 
respective lateral acceleration commands. 

In this engagement, the pursuer can have 
different objectives. For example, (1) to intercept the 
evader, (2) to intercept it with zero relative velocity 
(rendezvous), (3) to reach some prescribed points 
during the engagement, (4) to track a prescribed relative 
separation profile, etc. These objectives are expressed 
by the following cost functionals:  
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 where ),( 1ii xt , Ki ,1,= K , are given points on the 

plane ),( 1xt ; )(ty  is the prescribed function. Thus, 
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the pursuer's objective becomes to guarantee a small 
value for the quadratic functionals (4) - (5). In the next 
section, based on these functionals, a general tracking 
problem is formulated. 

 
2.2. Robust Tracking Problem Formulation 

 
Consider a controlled system  

 
,,=)(,)()()(= 000 ftttxtxvtCutBxtAx ≤≤++&

                                                                               (6) 
 where nRx∈  is the state vector, rRu∈  and 

sRv∈  are the control and the disturbance, 
respectively, 0t  and ft  are prescribed initial and final 

time instants; the matrices )(tA , )(tB  and )(tC  are 
continuous. 

Let ],( 0 fi ttt ∈ , Ki ,1,= K , and 

],[),( 0 fjj ttba ⊂ , Lj ,1,= K , be prescribed time 
instants and non-intersecting intervals, such that at least 
one of the conditions fK tt = , fL tb = , is satisfied. 

Let )(ty  and )(tD , ],[ 0 fttt∈ , be vector and matrix 
functions of the dimensions n  and nn × , respectively, 
continuous on each interval ],[ jj ba , Lj ,1,= K . 
Let define the cost functional  
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 where || ⋅  is the Euclidean norm of the vector. Note 
that the first sum in the right-hand part of (7) is the sum 
of the intermediary costs, mentioned by Bernhard 
Bernhard. The functional (7) can be written as a 
Lebesgue-Stilties integral  
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 where the bounded variation function )(tm  has the 

following structure. Let ),(=
1=

jj

L

j

baT U  and )(tζ  be 

an indicator function of T : 1=)(tζ  for Tt∈  and 
0=)(tζ  for Tt∉ . Let ]),([ baχ  be the number of 

the values ],[ bati ∈ . Then,  

]).,([)(=)( 0

0

ttdsstm
t

t

χζ +∫                                  (9) 

 

It is assumed that the disturbance satisfies the 
integral constraint  

).,[,)( 0
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 Problem. For a given 0>ν  and for any 

given 0>ζ , to construct a feedback strategy 

),( xtuζ  such that the inequality  

,< ζJ                                                                       (11) 
 is satisfied for any admissible disturbance )(tv . 

This  robust tracking problem is treated by 
embedding it into an auxiliary linear-quadratic 
differential game. 

 
3. LINEAR-QUADRATIC DIFFERENTIAL 

GAME 
 

3.1. Game Formulation 
 

For (6), let formulate a differential game with the cost 
functional  
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 where the functional G  is given by (7), the constants 
βα ,  are positive. 

The objective of the first player ( )(tu ) is to 
minimize (12), while the second player ( )(tv ) 
maximizes it, by using feedback strategies ),( xtu  and 

),( xtv , respectively. These strategies are defined for 

],[ 0 fttt∈ , nRx∈ . Due to (Krasovskii & Subbotin, 

1988) it is assumed that the functions ),( xtu  and 
),( xtv  are measurable w.r.t. t  for each fixed x  and 

satisfy the Lipschitz condition w.r.t. x  uniformly w.r.t. 
t . Moreover, for ),(= xtuu  and any 

],[)( 02 f
s ttLv ∈⋅ , the initial value problem (6) has a 

solution on the entire interval ],[ 0 ftt , where 

],[ 02 f
m ttL  denotes the space of square-integrable 

functions m
f Rttf →⋅ ],[ :)( 0 . Similarly, for 

),(= xtvv  and any ],[)( 02 f
r ttLu ∈⋅ , the initial value 

problem (6) has a solution on the entire interval 
],[ 0 ftt . In the sequel, the sets Υ  and ς  of all such 

functions ),( xtu  and ),( xtv  are called the sets of 
admissible feedback strategies of the minimizer and the 
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maximizer, respectively. For a given Υ∈⋅)(u , the 
value  

,sup=),);((
],0[2)(

00 αβJxtuJ
fttsLtv

u
∈

⋅                          (13) 

 is called the  guaranteed result of )(⋅u . The strategy 

)(0 ⋅u  is called  optimal if  
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 Similarly the  guaranteed result of the strategy 

ς∈⋅)(v  is  
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 The  optimal strategy )(0 ⋅v  is defined by  
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 If  
),,(),(=),( 00

0
00

0
00

0 xtJxtJxtJ vu ≅                     (17) 

 then ),( 00
0 xtJ  is called the LQDG  value, and the 

pair of optimal strategies ))(),(( 00 ⋅⋅ vu  is called the 
LQDG  saddle point. In this case, the LQDG is called  
solvable, and the triplet )}(),(),({ 000 ⋅⋅⋅ vuJ  
constitutes its solution. 

In the sequel, this LQDG is analyzed for the 
cheap control case  

.c==/0,0, onstμβαβα →→                (18) 
 
3.2. Cheap Control Solvability Condition 

 
It can be directly shown that the solvability condition, 
established by Shinar et al (2008), is not suitable for a 
cheap control case (18). In this section, a novel 
condition is formulated. 

For a given ],[ 0 fttt∈ , the function )(⋅m  
generates (see (Balakrishnan, 1976)) the Hilbert space 

)],,([2 mttL f
n  of the vector functions 

n
f Rttf →⋅ ],[ :)( , square-integrable over )(⋅m  on 

the interval ],[ ftt . The inner product in this space is 
defined as  
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Let introduce the parametric family of the 
operators )(tαμΦ , ],[ 0 fttt∈ , mapping 

)],,([2 mttL f
n  into itself:  
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 and ),( τtX  is the fundamental matrix of the 
homogenous equation xtAx )(=& . Also denote  
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 Due to (Shinar et al., 2008), for any ],[ 0 fttt∈ , the 

operators )(tuΦ  and )(tvΦ  are self-adjoint, positive 
and compact. 

Let introduce the matrix, vector and scalar 
functions )(tRαμ , )(trαμ  and )(tαμρ , satisfying the 
following impulsive differential equations 
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 where Ki ,1,= K ; )(tζ  is the indicator function of 

the set T ; ),()()(),(=)( f
T

f
T ttXtDtDttXtS , 

)(tQαμ  is given by (25). Note that this impulsive 
system consists of the Riccati matrix differential 
equation (26), the linear vector differential equation 
(28) and the trivial scalar differential equation (30). 

Let )(tiμλ , K1,2,=i , be the eigenvalues of 

the operator )(tμΦ . 

Theorem 1.  Let for fixed 0>μ ,  
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Then, for an arbitrary small 0>α  and μαβ /= , the 
LQDG (6) -- (12) is solvable. For any position 

n
f Rttxt ×∈ ],[),( 0 , the value and the saddle point of 
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 )(tRαμ , )(trαμ  and )(tαμρ  satisfy (26) - (31). 
 

 
4. TRACKING PROBLEM SOLUTION 

 
4.1. Tracking by LQDG Cheap Control 

 
In this section, it is shown how the optimal minimizer 
strategy )(0 ⋅αμu  can be used for tracking a given 

trajectory )(ty . In this case, the opponent control 
)(tv  is considered as an unknown disturbance from 

],[ 02 f
s ttL . The tracking accuracy is evaluated by the 

functional (7). 
Let )(txαμ  denote the solution of (6) for 

),(= 0 xtuu αμ  and )(= tvv , and 

))(,()( 0 txtutu αμαμαμ ≅ . Let introduce the operator 

)(= 00 tμμ ΦΦ − , and the function  
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 Let the eigenvalues and the eigenfunctions of 0μΦ  be 

kλ  and )(tfk , K1,2,=k , ],[ 0 fttt∈ , and the 

function )(0 tw  be represented by the series  
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Theorem 2.  Let the inequality (32) hold. If 0>kλ  for 

all K1,2,=k , and  
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 then for any ],[)( 02 f
s ttLv ∈⋅ ,  
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Corollary 1. Let the conditions of Theorem 2 hold and 

],[)( 02 f
s ttLv ∈⋅  satisfies the constraint (10). Then for 

any 0>ζ  there exists ),(= νζαα  such that  

.<))(( ζαμ ⋅xG                                                        (41) 
 This corollary means that, subject to the 

conditions of Theorem 2, the LQDG optimal strategy 
),(0

),( xtu μνζα  for sufficiently small α  solves the 
robust tracking problem. 

 
4.2. Control Boundedness 

 
In the previous section, it has been shown that, subject 
to conditions of Theorem 2, the optimal minimizer 
strategy ),(0 xtuαμ  solves the tracking problem in the 
sense (40). However, the corresponding time realization 
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)(tuαμ  can become unbounded. In some real-life 
problems, such an unboundedness is inconvenient and 
even unacceptable. Therefore, deriving the conditions, 
guaranteeing the boundedness of )(tuαμ , is of a 
considerable importance. 

It can be shown, that if the conditions of 
Theorem 2 are valid, the control time realization is 
bounded in the sense of ],[ 02 f

r ttL . Next theorem 
establishes necessary conditions of boundedness in the 
sense of ],[ 0 fttC . 

Let ),( xtuα  be a family of admissible 
minimizer's feedback strategies, where α  is a positive 
parameter, ],[ 0 fttt∈ , nRx∈ . Let )(txα  denote the 

solution of (6) for ),(= xtuu α  and arbitrary but fixed 

],[)( 02 f
s ttLv ∈⋅ . 

Theorem 3.  Let for any ],[)( 02 f
s ttLv ∈⋅ ,  
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 If, subject to (42), the control time realization 
))(,(=)( txtutu ααα  is bounded, i.e. there exists 

0>C  such that Ctu ≤|)(| α , for all ],[ 0 fttt∈  and 

sufficiently small 0>α  then: either 
 (A)  

,> 01 ta                                                                      (43) 
 or 
 (B) 01 = ta  and  

).(K)( 000 terDtyx ∈−                                         (44) 
 
Theorem 3 implies that if the condition  

1 0 0 0 0= and ( ) K ( ),a t x y t erD t− ∉                     (45) 

 is valid and the optimal minimizer strategy )(0 ⋅αμu  
solves the tracking problem, then its time realization 

)(tuαμ  is necessarily unbounded. 
 

5. EXAMPLES 
 
5.1. Scalar Illustrative Example 

 
Consider the LQDG for the scalar system  
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 for which 0=0t , 0)( ≡tA , 

1),(=)(=)(=)( 0 ≡ttXtDtCtB , 0=K , 1=L , 

0== 01 ta , ftb =1 , yielding 1)(=)( ≡tQtQ vu . 
By simple algebra, due to (21) -- (22), this implies that  
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 Assume 1<μ , which guarantees that this operator is 
positive. Thus, the Sturm-Liouville problem for the 
operator (48) can be transformed to the boundary value 
problem  
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is the eigenvalue of (48). From (49), the eigenvalues 
and the eigenfunctions of (48) are  
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 The eigenfunctions )(tfk  satisfy  
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Let the tracked function be tty =)( , yielding 

txtw −00 =)( . The coefficients kw  of the series (38) 
are calculated as  
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 implying by (50) that  
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   (53) 

which directly yields (39). Thus, the conditions of 
Theorem 2 are valid, and the cheap control LQDG 
optimal strategy solves the tracking problem for 

dtttxxG
ft

2

0

))((=))(( −⋅ ∫ .  

In Fig. 2, the curve tx =  and the trajectories of (46) 
for decreasing values of α , 0.5=μ , 0=0x , 

),(= 0 xtuu αμ  and ttv 10sin=)( , are depicted. It is 
seen that the smaller is α , the better is tracking.  
 

 
Figure 2: Tracking function tty =)(  

 
The respective control time realizations are presented in 
Fig. 3. It is seen that in this example the realizations are 
bounded. 

 

 
 
 

Figure 3: Control time realizations 

 
 

 
5.2.  Guidance Example 

 
For 4=ft , consider the guidance tracking problem for 
the system (1) -- (3) with the functional  

 
2 2

1 1
2 2 2

1 1 2
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( ( )) = [ (1) 1] [ (1.5) 1.5]

[ (1.8) 3] (4) (4)

[ ( ) (4 )] ,

G x x x

x x x

x t t t

⋅ − + − +

− + + +

− −∫

        (54) 

 which is the particular case of (7). In Fig. 4 and 5, the 
tracking results (i.e. the graphs of )(1 tx  and )(2 tx ) 

for 0.2=pτ  s, 0.3=eτ  s, 610= −α , 0.5=μ , 

100)( ≡tv  m/s 2 . It is seen that the system trajectory 
(shown in blue) tracks accurately both prescribed points 
and prescribed function (shown in red). 

 
 

 
Figure 4: Guidance tracking problem: 1( )x t   

 
 
Figure 5: Guidance tracking problem: 2 ( )x t   
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Remark 1.   In Section 5.1, a relatively simle scalar 
example was considered. This example admits an 
analytical solution. For more complex example of 
Section 5.2, a numerical solution was obtained. 
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