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Abstract

Recently, sensing devices capable of delivering real-
time color and depth information have become avail-
able. We show how they can benefit to 3D object model
acquisition, detection and pose estimation in the con-
text of robotic manipulation. On the modeling side, we
propose a volume carving algorithm capable of recon-
structing rough 3D shape with a low processing cost.
On the detection side, we find that little robustness can
be directly added to classical feature-based techniques,
but we propose an interesting combination with tradi-
tionally less robust techniques such as histogram com-
parison. We finally observe that 3D pose estimates
can also be greatly improved using the depth measure-
ments.

1 Introduction

Recently, so-called RGB-D cameras have become
available, capable of delivering synchronized color
(RGB) and depth (D) information in real-time. The
depth information is dense, and comes at negligible ad-
ditional processing cost for the host CPU. They avoid
the complexity of robust disparity map computation of
stereo systems, and are much faster than laser scanning
techniques. Thus, these sensors are very attractive for
the computer vision community and their benefits to
classical applications are worth investigating.
In this paper, we study how they can benefit to some

of the computer vision tasks involved in robotic ob-
ject manipulation. More specifically, we focus on how
the depth information can simplify the acquisition of
new 3D object models, improve object recognition ro-
bustness, and make the estimation of the 3D pose of
detected objects more accurate.
Our particular hardware setup and limitations are

introduced in Section 2. In Section 3, we briefly review
the state-of-the-art of RGB-D based model acquisi-
tion and propose a simple but efficient algorithm based
on volume carving. We then study in Section 4 how
the provided depth information can benefit to feature-
based object recognition in cluttered scenes. We show
that their ability to roughly segment object surfaces
can make the combination with classically less robust
techniques such as color histograms more attractive.
We finally observe in Section 5 that 3D pose estima-
tion is also greatly improved when few feature matches
are available.

2 Hardware setup and calibration

Several RGB-D cameras are currently available.
Most of them are based on a Time-of-Flight (ToF)
principle, and measure the time taken by an emitted

Figure 1. Left: PMD Camcube 2.0 coupled with
a color camera. Right: Turn-table setup using a
PA10 robot.

infrared (IR) signal to reach back an array of IR sen-
sors. Kolb [5] gives an overview of the existing cameras
and technical details.
The ToF camera used for all our experiments is a

PMD Camcube 2.0. It is a ToF camera with a spa-
tial resolution of 204x204 pixels, and a depth range
of 30cm-7m. Depth precision is ∼2 cm and repeata-
bility is ∼3 mm. It provides synchronized depth and
grayscale images. To capture detailed textures of the
scene, we coupled the camera with a classical color
webcam, as shown on Figure 1. The resolution of the
grayscale output of the PMD camera is high enough to
enable classical stereo calibration, such as Bouguet’s
method. It is thus possible to get color information
for each pixel of the depth image by back-projecting
the pixel to 3D using the estimated depth, and then
projecting it onto the color image.
For model acquisition, the setup includes a turntable

driven by an robotic arm. This enables repeatable and
calibrated points of view.

3 Object Model Acquisition

3.1 Previous work

Only a few methods have been proposed for object
model acquisition using RGB-D cameras. In [4], clas-
sical multi-view stereo is combined with a ToF camera
to reconstruct poorly textured regions. Using only a
single ToF camera, Cui [2] focuses on providing high
quality models with costly super-resolution techniques.
Using a different kind of RGB-D camera, Krainin [6]
proposes a surface-based technique relying on “Surface
Elements”. This technique however requires a high
depth precision that is not currently provided by ex-
isting ToF cameras.

3.2 Reconstruction based on volume carving

Observing that the ToF camera is however very good
at delivering silhouettes of the objects in a scene, we
propose to rely on a silhouette-based technique. Sil-
houettes have been used extensively in the literature
[7, 10], but their computation is still problematic us-
ing classical cameras. Uniform or easily discriminated
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Figure 2. Silhouette extraction using a ToF cam-
era and simple depth thresholding. The depth
image is color-encoded.

backgrounds are usually required, resulting into a less
flexible system.
However, using depth information, it becomes easy

to discriminate an object of interest from the back-
ground, and silhouettes can be obtained with a sim-
ple depth threshold, as illustrated on Figure 2. To
demonstrate this, we developed a simple space carving
technique based on the depth measurements. It is sim-
ilar in spirit to [10] but here no photo-consistency step
is applied. This prevents the reconstruction of small
concave details but the reconstruction is faster and the
obtained models are accurate enough for manipulation
tasks.
The proposed algorithm iteratively carves a 3D dis-

crete volume. Each voxel is represented as a cube
whose size is used-defined in function of the level of de-
tails required. For each view taken by the ToF camera,
voxels are eliminated according to their depth compat-
ibility with the new view. This is done by project-
ing each voxel onto the depth image, and comparing
its depth dvoxel with the measured depth dview. If
dview > dvoxel + δ, it means that the voxel is not con-
sistent in the scene, and it is discarded. δ is the toler-
ated margin and depends on the sensor precision. In
all our experiments it is set to 3 cm to be conservative
and avoid removing voxels with the Camcube camera.
This value is not very sensitive since most of the carv-
ing will come for the edges. A small value however
enables the reconstruction of concave structures whose
depth is greater than δ.
Depending on the voxel size, the projection of one

voxel can overlap several pixels on the depth image.
The actual overlap is approximated by computing the
projected width and height of the voxel and comparing
dvoxel with the depth measurements in the correspond-
ing neighborhood in the depth image. If at least one
dview is compatible with dvoxel, the voxel is kept.

3.3 Post-processing and results

The output of the algorithm is a rather dense set of
cube-shaped voxels. For manipulation tasks, it is more
useful to get a surface representation of the object.
This can be achieved by first removing all the inside
voxels with a simple neighborhood test, and then run
a surface reconstruction algorithm such as Poisson [3].
Some results are given in Figure 3 and 4. These models
were acquired using 35 views captured by rotating the
turntable by 10◦ steps. The camera was at a distance
of about 50 cm from the object and the chosen voxel
size is 1 mm. Processing time is currently less than
10 seconds on a 2Ghz computer for 36 views, and real-

Figure 3. Example of acquired model: cup. Top
left: object to scan, top right: carved vol-
ume, bottom left: Poisson reconstruction, bot-
tom right: reprojection on a color image with
known pose.

time performance should be reachable using a careful
implementation.

4 Object Recognition

In this section we investigate how the ToF camera
could also benefit to the recognition and 3D localiza-
tion of the object models in new scenes. Many tech-
niques have been proposed for recognition, but since
the influential work of [8], methods based on local fea-
ture matching and clustering have become very pop-
ular since they give good results for textured-enough
objects. We thus choose a method derived from [8] as
our baseline algorithm, and in this paper we focus on
how a ToF camera can contribute to improve detection
rates.

4.1 Baseline detection algorithm

We recall here the main principles of the object de-
tection method. First, SIFT points are extracted on
each color view of the acquired models and stored in a
database. Then, SIFT points are extracted on the im-
age to analyze, and are matched to the closest ones in
the database. Each single feature point association re-
sults in a candidate pose for the corresponding model.
Compatible pose candidates are then clustered, and a
statistical criterion is used to make reliable detections.

4.2 First attempts

Some applications of an RGB-D camera to feature
matching seem straightforward. However, we observed
that due to the lack of precision of the measurements,
some direct improvements turned out to bring only a
marginal benefit. We find it interesting to comment
some of them:

1. Use depth to accelerate SIFT point matching and
to discard points whose scale/depth ratio is not co-
herent. Only about 10% of wrong SIFT matches

133



Figure 4. Example of acquired model: toy. Top
left: object to scan, top right: carved vol-
ume, bottom left: Poisson reconstruction, bot-
tom right: reprojection on a color image with
known pose.

could be actually removed using this optimization.
Indeed, combining the imprecision of SIFT scale
estimation and depth measurements, and consid-
ering that most points appear at the same scale,
very few points can actually get safely discarded.

2. Use depth to discard outliers during the feature
clustering phase. The benefit of such a filtering
was also very limited, for two reasons. First, ge-
ometrical filters described in [8] are already quite
effective to remove outliers. Second, depth mea-
surements are often strongly biased when there is
a specularity in the object. In theses areas, valid
features may be wrongly discarded, somehow com-
pensating the potential benefits of the filter.

3. Take into account depth information to reduce
background influence on SIFT descriptors. This
is known to be a serious problem for small object
recognition, as pointed out by [9]. Instead of using
2D gaussian to compute the neighborhood influ-
ence, we experimented a 3D gaussian including
depth differences. However, the low spatial reso-
lution of the depth maps results into fuzzy borders
in the color image and the influence of the back-
ground remains significant. Errors due to specu-
larities here also compensate the small benefit and
the resulting gain is marginal.

4.3 Combination with depth-segmented his-
togram comparison

These unsuccessful attempts to directly improve the
core of feature based methods led us to investigate
more regional attributes. We base our study on [1],
where SIFT feature matching is combined with re-
gional histogram comparison using only a color image.
A major weakness of regional features is however their
sensitivity to the surrounding background and to oc-
cluding objects.

Figure 5. Effect of depth filtering to avoid the
influence of background and occluding pixels in
histogram computation. Left, in red: full candi-
date region. Right: filtered region using depth
dissimilarity.

Figure 6. One of the 192 annotated test images
used for performance evaluation. Bounding boxes
are shown around detected objects, along with
local features matches against the database.

In [1], histogram in the analyzed image are computed
in the bounding box of a candidate area determined by
the feature clustering step. To make histogram compu-
tation more robust, we propose to include only pixels
whose depth is similar enough to the median depth of
the feature points. This discards pixels belonging to
further background objects but also belonging to oc-
cluding objects if their depth is different enough. The
depth similarity threshold has been empirically set to
5cm in all experiments. Figure 5 shows how this fil-
tering method can significantly reduce the amount of
clutter in the histogram computation.
To quantify the improvement brought by the depth

filter, we built a test dataset. First, 17 models were
acquired using the method of Section 3. Then test
images were recorded by locating the objects into var-
ious configurations, including multiple-objects scenes,
heavy background clutter, occlusions and light vari-
ations, resulting into 192 images. These images were
finally annotated with object bounding boxes to estab-
lish a ground truth and evaluate quantitatively the per-
formance of the recognition algorithm. Figure 6 gives
an example of test image and Figure 7 presents the de-
tection improvements with depth filtering on this data
set. Detection rate is significantly improved, especially
for objects with poor texture and salient colors.

5 Improving Pose Estimation

Once an object has been detected, its precise 3D pose
has to be estimated. The most common approaches
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Figure 7. Detection rate of baseline method, base-
line combined with color histogram and baseline
combined with depth filtered color histogram.

are RANSAC and least square minimization of feature
reprojection error. RANSAC performs very well at dis-
carding outliers but requires a high number of feature
matches. Since the recognition algorithm can detect
objects with as few as 2 or 3 matches, we rely on it-
erative least square only to minimize the reprojection
error when the number of matches is too small. Using
only 2D feature coordinates, pose estimation with few
points is often under-constrained or unreliable. We ob-
served that introducing the depth information to com-
pute a 3D reprojection error can significantly improve
the results. This can be done by defining the following
error function:

err =
n∑

i=0

Δ(H(Fi), Ci)
2

with H(Fi) the 3D coordinates of the model fea-
ture i projected on the current image according to the
pose estimate H, and Ci the (x, y, d) coordinates of the
corresponding detected feature point in the analyzed
image. When depth is available, the metric distance
function Δ is computed as:

Δ(p1, p2) =

[
(x1 − x2)

fx

]2

+

[
(y1 − y2)

fy

]2

+ (d1 − d2)
2

with p1 and p2 two 3D points with respective coor-
dinates (x1,y1,d1) and (x2,y2,d2), and fx, fy the esti-
mated horizontal and vertical focal lengths of the cam-
era assuming a standard pin-hole model.
The obtained improvements on a scene with occlu-

sion is illustrated on Figure 8.

6 Conclusion

This paper presents some preliminary results regard-
ing the benefits of using a ToF camera for 3D object
model acquisition and recognition, in the context of
robotic manipulation. On the modeling side, we pro-
posed a volume carving method to rapidly acquire new
models. The acquisition setup is quite flexible and does
not require a special background. It compares favor-
ably to previously proposed surface-based techniques
when the camera depth precision is low.
On the recognition side, we observed that little

improvements can be directly added to the core of

Figure 8. Pose estimation (projected mesh in
red) can be improved using ToF measurements
(right), especially when few feature points are de-
tected, e.g when objects are occluded.

methods based on local feature clustering. However,
depth information can make regional similarity mea-
sures more robust and we showed significant improve-
ments on top of state-of-the-art algorithms on a real
dataset. Pose estimation also appears to be greatly
improved using a 3D reprojection error when only few
feature matches are available, but quantitative evalu-
ation is still ongoing work.
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