
Auto-Determination of Camera Parameters for Scenario
Simulations in Visual Surveillance Applications

Richard Chang Nam Pham Trung Karianto Leman Wang Yue
Institute for Infocomm Research (A*STAR)

1 Fusionopolis Way
#21-01 Connexis 138632 Singapore

rpchang@i2r.a-star.edu.sg

Abstract

We propose a novel method for determining geo-
metric parameters of general cameras to generate aug-
mented reality images. Visual surveillance systems are
usually evaluated by using datasets from different cam-
era configurations. Then, the system is often fixed and
one cannot ensure that the same methods can work in
all configurations. Our approach deals with the auto-
determination of geometric parameters from the im-
ages to generate virtual views situations, and evaluate
quantitatively visual surveillance systems in any con-
figuration. The method is based on geometry-free char-
acterization of the images using a common codebook
and random ferns to find correspondence points. Ex-
perimental results are presented on real data from two
different locations for people collapse scenarios.

1 Introduction

Many computer vision applications require calibra-
tion information in order to provide 3D information
about the scene. For visual surveillance systems, it
may be relevant to display camera topology or 3D lo-
cation of persons or objects. Baker and Aloimonos
[2], Faugeras et al [4] introduced the pioneering ap-
proaches of single and multi-camera calibration. This
pre-processing step is usually done offline but is very
constraining since the cameras must be stationnary
and cannot be moved once the parameters have been
computed. Different approaches were used to cali-
brate the cameras. Some methods are based on fea-
ture points [3], known pattern [5] or trajectories of the
objects [1]. These methods may be difficult to apply
due to practical conditions such as the size of area or
the number of the cameras to process. Autocalibration
methods have been also introduced [4] based on camera
motion [8] or object motion. These approaches are less
constraining since it does not require a known calibra-
tion object but rely on other parameters like camera
or object motion. Then, some assumptions have to be
made on the system which limits the range of appli-
cations. These methods may also fail in case of major
changes of the images. The camera position can in-
fluence the results of the computer vision algorithms
since the view could be completely different and a same
shape could appear differently. Testing tracking and
computer vision algorithms to ensure the robustness
of the method may be troublesome since all the con-
figurations have to be set. Simulate the data can then
be an efficient and convenient way to evaluate the per-
formance of the methods.
In this paper, we introduce a new method to com-

pute the geometric calibration parameters for tracking

and event detection system evaluation. Given these pa-
rameters, we can simulate any position or orientation
of the cameras in the scene and generate new views
including virtual people or objects accordingly. It can
be also used to generate training data to increase the
global performance of the system. Our method relies
on the global features of the image. Recent works on
bags-of-features [6] representations have become popu-
lar as they introduce geometry-free features to charac-
terize local subimage using statistical tools. The paper
presents a common description visual language to de-
termine calibration parameters from a dataset of im-
ages. It can deal with small and big changes. This
paper is organized as follows. Section 2 presents the
general overview of the method. Section 3 gives the
characterization of the image, Section 4 describes the
determination of the parameters, and finally Section 5
shows experimental results.

2 System Overview

The system is designed to evaluate visual surveil-
lance methods for tracking or event detection applica-
tions. A training phase is firstly performed to model
the parameters corresponding to the system configu-
ration using a small dataset of images. Then using
these parameters, the calibration data are determined
in order to generate simulations. Each query image I
is characterized according to the common codebook of
the dataset. Random Ferns [7] are then used to find
the nearest image In in the dataset. The geometric
parameters of the image I are then computed using
the image In. Secondly, we use calibration informa-
tion to insert virtual objects and people according to
scenarios. Fig. 1 shows the overview of the method.

3 Camera Parameters retrieval

3.1 Characterizing texture

Our approach to measure the texture relies on the
computation of a histogram of the difference between
the value of pixels of images. Given an image I, each
value of its histogram of difference hI is given by :

hI(i) =

x �=x′∨y �=y′∑
x,y,x′,y′∈I

diff(I, x, y, x′, y′, i), i ∈ [0, 255]

(1)
with

diff(I, x, y, x′, y′, i) =

{
1 if |I(x, y)− I(x′, y′)| = i
0 else

(2)

MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN4-27

144

n data

Figure 1. General overview of the method. A first
training phase corresponds to model the param-
eters of the configuration, then the calibration
parameters are computed from this model.

In second stage, the histogram hI is normalized, to
ensure the invariance according to the size of I.

3.2 Generating codebooks

Let Fz(I) be a function allowing the decomposition
of an image I into several textured patches :

Fz(I) = {z0, z1, ..., zn} with I =

n⋃
i=0

zi (3)

Let T = {hz0
, hz1

, ...hzn} be the set containing all
texture descriptors of patches zi of I. The idea is
to sample T to reduce the number of descriptors to
m ≤ n. We then add to T a metric function expressed
by dist(hzi , hzj) and a reference texture patch href .
The reference patch is set to a patch containing a sin-
gle color, corresponding to a uniform region. In second
stage all the representation of patches contained in T
are compared to href and sorted according to their
texture. The Mahalanobis distance is used as a metric
function and is set so for the rest of the paper. At
this point, Ts is then sampled into m areas. For each
area, only the median patch is selected. The resulting
selection gives the codebook V :

V = {href , h
′
z0
, h′

z1
, ...h′

zm
}, V ⊂ Ts (4)

that corresponds to the most representative patches.

3.3 Decomposing images into known patches

Let Iacq be an acquired image, Iacq is decomposed
into zacqi patches. Each computed patch must be com-
pared to the content of V , we then set a function G
that transforms the patches of acquired images into
patches of the codebook V . In case a new patch is de-
tected, it is added to the codebook as a new entry. The
acquired image Iacq is then codified using the patches
of the codebook, the resulting image Icodi

given by:

Icodi
∈ ∪G(zacqi , V) (5)

3.4 Optimal decomposition of images

An efficient decomposition must produce an optimal
and possibly unique partitioning of images. In addi-
tion it would be interesting to produce less patches,
but of variable size so that they can cover homoge-
neous texture zones. In order to achieve an optimal
generation of patches, a quadtree-like algorithm is set
up. The quadtree algorithm cuts recursively images
into subimages. Starting from the initial image, each
subimage is cut into four equal subimages. The idea
is to use the same principle, but in contrast to of the
regular quadtree approach, the division of subimage
will be driven by an entropy measure. A subimage is
cut at the location were the difference of the quantity
of information between possible subimages is minimal.
This quantity of information is given for an image I by
:

Q(I) = −

c=255∑
c=0

P (c) logP (c) (6)

where P (c) is the probability of appearance of the
grey value c within I. Finally the optimal (x, y) posi-
tion is the one minimizing the following sum of differ-
ences:

minx,y(

a=2,b=2∑
a=1,b=1

(Q(Im)− (Q, Iab, x, y)(x, y))
2) (7)

An illustration of the algorithm is given in Fig. 2. It
appears clearly that the image is decomposed more co-
herently, a complete overview of the method can be
found in [6]. The presented work is used as it is to
build the common vocabulary and to codify the im-
ages. It is a tool to characterize the frames provided
by the cameras and represents a part of our structure.

(a) (b)

Figure 2. Quadtree Decomposition of the image.
At each step, the four regions have the same
entropy value, the image is coded using 1024
patches. (a) Original Image (b) Codified image.

3.5 Finding the nearest image in the database

A geometric-free method is used to determine the ge-
ometric parameters. First of all, a dataset of images is
built offline. This database corresponds to a sampling
of the scene. Every codified query image Icodi

= {zi} is
then compared to the codified images of the database
using the cross-correlation score:

Corr(zi, zj) =

∑
(zi − z̄i) · (zj − z̄j)√∑

(zi − z̄i)
2 ·

√∑
(zj − z̄j)

2

(8)

145

The selected image is then the one with the highest
score:

In = maxi,j(Corr(zi, zj)) (9)

4 Projection matrix computation

For a given camera, the projection matrix is com-
puted using the parameters of nearest image In in the
database. Correspondence points between the query
image Iq and In are then determined to compute the
geometric parameters of Iq. The image In is then set
as a reference image.

4.1 Find correspondence points

Correspondence points from the nearest image In
and the current view Iq are found in a two-steps
method. First, random ferns [7] are applied to find
a set of correspondence points between the two views.
A fern is defined as a non-hierarchical structure that
includes a set of binary tests. Given a patched image,
a fern will output a binary number based on its bi-
nary tests. For example, Fk = {fk,1, fk,2, ..., fk,S} is
the k-th fern, where fk,j is 0 or 1 depending on the
test j of this fern. In [7], for each binary test j, two
locations from the image In are chosen. If the inten-
sity of the first location is larger than the intensity of
the second location, then fk,j will be 0. Otherwise,
fk,j will be 1. For each image patch, fern features will
be extracted and classified to each class by using the
naive Bayes classification method. Because the fern
classification is based on the statistical approach, it
can handle challenging cases such as rotation, lighting,
affine deformations provided that the training set is
large enough.
In step 2, covariance features [10] of patched images

from each pair of correspondence points in the first step
are extracted to verify the classification. The covari-
ance feature is the covariance matrix of feature vectors
of pixels in a patched image. The feature vector is
defined by:

Feat (x, y) =

{
x, y,R (x, y) , G (x, y) , B (x, y) ,

∣∣∣∣∂I (x, y)∂x

∣∣∣∣ ,
(10)∣∣∣∣∂I (x, y)∂y

∣∣∣∣ ,
∣∣∣∣∂2I (x, y)

∂x2

∣∣∣∣ ,
∣∣∣∣∂2I (x, y)

∂y2

∣∣∣∣
}

If the distance of covariance features from two cor-
respondence points is smaller than a threshold, these
two points are confirmed in the same class. Otherwise,
the correspondence pair is excluded.

4.2 Estimate projection matrix

Let Pr be the projection matrix of the reference view
chosen from the database in Section 3. Pr can be rep-
resented as Pr = Kr [Rr Tr]
where Kr is the intrinsic parameters matrix, Rr is

the rotation matrix, and Tr is the translation vector.
We need to find the projection matrix of the current
view Iq , Pc. From [5], the rotation matrix R and
translation vector T from Pr to Pc can be obtained
from the fundamental matrix F between the reference
image In and the current image Iq. The matrix F is

calculated from correspondence points in the previous
section.
Let E be the essential matrix. E can be obtained

from F : E = KT
c FKr Here, we assume that the chang-

ing of views does not affect to the intrinsic parameters.
Hence, Kc = Kr. Let U, S, V be the singular value
decomposition of E = USV T . The rotation R and
translation T from Pr to Pc are

R = UWV T or UWTV T (11)

T = v3 or − v3

where W =

[
0 −1 0
1 0 0
0 0 1

]
, and v3 is the last column

of V . From R and T , projection matrix Pc can be
obtained. The details of the algorithm are shown in
Fig. 3.

Step 1. Apply the characterization method to find
the reference view that is close to the current
view (Sec. 2)

Step 2. Using random ferns to find correspondence
points between the reference view and
the current view (Sec. 3)

Step 3.
n = 0
While (n < number of trials)

Use RANSAC to find the fundamental matrix F
Calculate R, T (Eq. (11))

R̃c = R×Rr

T̃c = R× Tr + T
d = average distance of points to epipolar lines

calculated from correspondence points

If
(
R̃r, T̃r

)
is near to (Rr, Tr) and d < dmin

dmin = d

Rc = R̃c

Tc = T̃c

EndIf
n = n+ 1

End
Step 4. Output Rc, Tc

Figure 3. Our method to find the projection ma-
trix of the current view.

5 Experimental Results

Our method has been tested in two locations. The
first one is a pantry (5m× 12m) and the second one is
a lift lobby (3.5m× 15m). A small database of 10 im-
ages is used for each location. A random query static
image is taken from a basic viewpoint. This image is
then codified using the common codebook built from
the database. The cross-correlation measure is used to
find the nearest image in the database. Fig. 4 shows
the 5 nearest images and the one selected by the sys-
tem. The selected frame has the highest correlation
value (0.97). Then, we compute some correspondence
points between both images. Using our method, we
have 24 inliers points out of 26 points shown in Fig.
5. Finally, the performance of estimating the projec-
tion matrix is shown in Table 1. In this table, the

146

Figure 4. Cross-correlation scores between the
query image and the ones in the database. The
selected one has the highest value (0.97).

error of translation is the Euclidean distance between
the translation vector from estimation methods and
ground truth. The error of rotation is the distance be-
tween the Rodrigues rotation vectors. Ground truth is
computed by using the camera calibration toolbox [3].
We compare results of the projection matrix estimation
between our method and KLT feature tracking. Since
our method to find correspondence points is based on
the training database for ferns, it can handle variations
of features. Hence, correspondence points are chosen
more accurately. This lead to better estimations of the
projection matrix. This table shows that our method
has smaller error in both translation (2.8%) and rota-
tion vector (3.18%) compared with using KLT [9] fea-
ture tracking. This estimation error is low and allows
to simulate some scenarios in both locations. Then, we
added several virtual people in the scene corresponding
to a people collapse scenarios using XNA Game Sce-
nario. Each person has an independent behavior. Fig.
6 shows that objects are fitted in the scenes correctly.
The accuracy is good for applications such as creating
data for verifying visual surveillance system.

Figure 5. Finding correspondence points from our
system between the reference (left) and the query
(right) images. 24 inliers points have been re-
trieved out of 26 points.

Methods Translation Min. Rotation Min.
Errors Errors

Our method 17cm (2.8%) 0.1 rad (3.18%)
KLT feature 43cm (7.2%) 0.11 rad (3.5%)

Table 1. Results for estimating projection matrix

Figure 6. Results of fitting virtual objects to the
scene. (left) Original images in the pantry and
the lift lobby. (b) Generated Images.

6 Conclusion

We propose a new method to compute the geometric
calibration parameters for tracking and event detection
system evaluation. The contribution of this paper fo-
cuses on determining the camera geometric parameters
using a common codebook and random ferns to gen-
erate simulations for visual surveillance system eval-
uations. A first training phase is performed to get
the model of the camera, this model is then used to
otain the calibration parameters from correspondence
points. Virtual objects and people can then be added
in the images in order to simulate any scenario. Ex-
perimental results on two different locations show the
robustness of the method and the average error in es-
timation is about 3% which is less than 8% of KLT
method.

References

[1] N. Anjum and A. Cavallaro. Single camera calibration
for trajectory-based behavior analysis. In AVSS, 2007.

[2] P. Baker and Y. Aloimonos. Complete calibration of
a multi-camera network. In Omnivis, 2000.

[3] J. Y. Bouguet. Camera calibration toolbox for matlab.
[4] O. Faugeras, Q.T. Luong, and S.J. Maybank. Camera

self-calibration: Theory and experiments. In ECCV,
1992.

[5] R.I. Hartley and A. Zisserman. Multiple View Ge-

ometry in Computer Vision. Cambridge Univ. Press,
2004.

[6] L Lacheze and R Benosman. Visual localization using
an optimal sampling of bags-of-features with entropy.
In IROS, 2007.

[7] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint
recognition in ten lines of code. In CVPR, 2007.

[8] M. Pollefeys, L.V. Gool, M. Vergauwen, F. Verbiest,
K. Cornelis, J. Tops, and R. Koch. Visual modeling
with a hand-held camera. In IJCV, 2004.

[9] Jianbo Shi and Carlo Tomasi. Good features to track.
In CVPR, 1994.

[10] O. Tuzel, F. Porikli, and P. Meer. Region covariance:
a fast descriptor for detection and classification. In
ECCV, 2006.

147

