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Abstract: In this paper, Multiple-scales method is presented for solving second and third order singularly perturbed problems with
the boundary layer at one end either left or right. The original second and third order ordinary differential equations are transformed to
partial differential equations. These problems have been solved efficiently by using multiple-scales method and Numerical simulations
are performed on standard test examples to justify the robustness of the proposed method.
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1 Introduction

Differential equations with a small parameter multiplying
the highest order derivative terms are said to be singularly
perturbed which are often found in mathematical
problems arising in sciences and engineering. Numerical
solution of singularly perturbed boundary value problems
in ordinary differential equations is a well known research
area. Many numerical methods have been developed for
solving singularly perturbed problems. For detail analysis
of this type of problems we refer [1]-[33].

The analysis of boundary layer problems and multiple
scale phenomena which have been generalized under the
notion of singular perturbation problems played a
significant role in applied mathematics and theoretical
physics [1,15]. Regular perturbation theory is often not
applicable to various problems due to resonance effects or
the cancellation of degree of freedom. In order to obtain a
uniformly valid asymptotic expansion of a solution for
these singular perturbed problems a variety of methods
has been developed such as boundary layer expansions,
multiple scales methods, asymptotic matching, stretched
coordinates, averaging and WKB expansions.

A physical system often involves multiple temporal or
spatial scales on which characteristics of the system
change. In some cases the long time behavior of the
system can depend on slowly changing time scales which
have to be identified in order to apply multiple scale
theory. The choice of the slow or fast changing scales is a

nontrivial task. A naive expansion in a power series of the
small parameter is often prevented by the appearance of
resonant terms in higher orders. These terms have to be
compensated by the introduction of counter terms.

Boundary layers are also a common feature of
singular perturbed systems. In these cases higher order
derivatives disappear in the unperturbed equations which
lead to the cancellation of degree of freedom of the
system and finally in small regions where the system
changes rapidly. Boundary layer theory is a collection of
perturbation methods for obtaining an asymptotic
approximation to the solution of a differential equation
whose highest derivative is multiplied by a small
parameterε. Solutions to such equations usually develop
regions of rapid variation asε → 0. If the thickness of
these regions approaches 0 asε → 0, they are called
boundary layer and boundary layer theory may be used to
approximate solution. These rapid changes cannot be
handled by slow scales, but they can be handled by fast or
magnified or stretched scales.

In boundary layer theory we treat the solution of the
differential equation as a function of two independent
variablesx andε i.e. y(x;ε). But the main target of this
analysis is to obtain a global approximation to solution as
a function of x, this is achieved by introducing the
stretched scaleξ = x/ε, which in this case is the same as
the inner variablex0 = x, which in this case is the outer
variable. The uniform expansion of the solution of a
singular perturbation problem cannot be expressed in
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terms of a single scale i.e. a single combination ofx andε
and , such asx or x/ε or x/ε1/2 or x/ε2, making it an
ideal problem for application of the method of multiple
scales [11].

The idea behind introducing multiple scales is to keep
expansions well ordered, minimize the error of the
approximation and avoid sometimes the appearance of
secular terms. An expansion of a function that depends on
an independent variable and a small parameter, such as
y(x;ε) depends strongly on the scale being used. In many
situations, there exist multiple-boundary layers at one
side, for which multiple calculations of inner and outer
solutions and their asymptotic matching have to be made
in different separated regions to obtain a uniformly valid
solution. Again it turns out that the multiple scales
method manages to produce the solution without any
matching needed.

Author explores in [9] to solve the boundary layer
second-order differential equations by using the
interpolation perturbation method. An approximate
boundary layer solution is presented in [7] for an axially
moving beam with small flexural stiffness. The method of
multiple scales is applied to the problem and the
composite expansion including two inner solutions and
one outer solution is found. In [19] the existence of the
exponential series solution to the boundary value problem
describing the boundary layer flows of Newtonian fluids
has been described. The Crane’s solution is generalized
for stretching walls with a power law stretching velocity.

In [20] authors study a boundary value problem for a
third order differential equation which arises in the study
of self-similar solutions of the steady free convection
problem for a vertical heated impermeable flat plate
embedded in a porous medium. Jong-Shenq Guo et al.
considered the structure of solutions of the initial value
problem for this third order differential equation. R.A.
Khan [21] used the generalized approximation method
(GAM) to investigate the temperature field associated
with the Falkner-Skan boundary-layer problem. Authors
applied in [22] the modified variational iteration method
(MVIM) for boundary layer equation in an unbounded
domain and Pade approximants had been employed in
order to make the work more concise and for the better
understanding of the solution behavior.

Classical methods find the inner solution and outer
solution separately and match the two solutions using
physical constraints. The final solution is a composite
expansion including the inner and outer solutions. On the
other hand, using the method of multiple scales, the
composite expansion can be retrieved at once using a
single expansion [3,7]. In this article, the method of
multiple scales is applied to construct the solution of
second and third order boundary layer problems. It is
shown that the method of multiple scales provides the
exact solution for second order singularly perturbed
boundary layer problems and approximate solution for
third order singularly perturbed boundary layer problems.

In [8],[23]-[25] approximate solution has been obtained
while our proposed method gives the exact solution for
second order singularly perturbed boundary layer
problems. The original second and third order ordinary
differential equations are transformed to partial
differential equations. These problems have been solved
efficiently by using multiple scale method and numerical
simulations are performed on standard test examples to
justify the robustness of the proposed method.

The paper is organized as follows: Multiple scales
method for the second and third order boundary layer
problems is described in Section 2. Numerical example of
second and third order boundary layer problems solved
by Multiple scales method are presented in Section 3. In
Section 4, concluding discussion is briefly mentioned.

2 Multiple Scales Method for Second and
Third order Boundary Layers Problems

In this section, description of multiple scales method for
general second and third order boundary layer problems
has been presented.

2.1 Second Order Boundary Layer Problem

To explain multiple scales method we consider the general
second order singular perturbed equation

εy′′+ a(x)y′+ b(x)y = 0, 0< x < 1 (1)

and boundary conditions

y(0) = α, y(1) = β (2)

Here, α,β are constants andε is the perturbation
parameter. It is well known that in equation (1) if
a(x) > 0, then the boundary layer is atx = 0 and if
a(x)< 0, then the boundary layer is atx = 1.

The point of interest is to solve problem (1) with
boundary conditions (2) by using multiple scales method.
Due to the presence of the boundary layer in the problem
(1) we consider two scales; the outer scale atx0 = x and
an inner or boundary layer scale atξ = x/ε.

Then, using chain rule, the derivatives are defined as
follows

d
dx

=
1
ε

∂
∂ξ

+
∂

∂x0
(3)

d2

dx2 =
1
ε2

∂ 2

∂ξ 2 +
2
ε

∂ 2

∂ξ ∂x0
+

∂ 2

∂x2
0

(4)

d3

dx3 =
1
ε3

∂ 3

∂ξ 3 +
∂ 3

∂x3
0

+
3
ε2

∂ 3

∂ξ 2∂x0
+

3
ε

∂ 3

∂ξ ∂x2
0

(5)

For the existence of the two scales, we assume the
following multi-scale expansion for the solution

y = y0(ξ ,x0)+ εy1(ξ ,x0)+ ε2y2(ξ ,x0)+ ... (6)
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Substituting (3), (4) and (6) into original equation (1)
we obtain

ε
(

1
ε2

∂ 2

∂ξ 2 +
2
ε

∂ 2

∂ξ ∂x0
+

∂ 2

∂x2
0

)

(y0+ εy1+ ε2y2+ ...)

+a(x)

(

1
ε

∂
∂ξ

+
∂

∂x0

)

(y0+ εy1+ ε2y2+ ...)

+b(x)(y0+ εy1+ ε2y2+ ...) = 0 (7)

Thus, the original ordinary differential equation (1) is
transformed into the partial differential equation (7).
Separating the coefficients of each order ofε, one obtain
the set of equations

©(1/ε) :
∂ 2y0

∂ξ 2 + a
∂y0

∂ξ
= 0 (8)

©(ε0) :
∂ 2y1

∂ξ 2 + a
∂y1

∂ξ
=−2

∂ 2y0

∂ξ ∂x0
− a

∂y0

∂x0
− by0 (9)

©(ε1) :
∂ 2y2

∂ξ 2 + a
∂y2

∂ξ
=−2

∂ 2y1

∂ξ ∂x0
− ∂ 2y0

∂x2
0

− a
∂y1

∂x0
− by1

(10)
The general solution of (8) is given by

y0 = A(x0)+B(x0)e
−aξ (11)

where A and B are undetermined at this level of
approximation; they are determined at this next level of
approximation by imposing the solvability conditions.
Puttingy0 in (9) gives;

∂ 2y1

∂ξ 2 +a
∂y1

∂ξ
= 2aB′e−aξ −aA′−aB′e−aξ −bA−bBe−aξ

(12)
or

∂ 2y1

∂ξ 2 + a
∂y1

∂ξ
= (aB′− bB)e−aξ − (aA′+ bA) (13)

A particular solution of (13) is

y1p =− (aB′− bB)
a

ξ e−aξ − (aA′+ bA)
a

ξ (14)

We seek a solution which is uniformly valid for 0≤
x ≤ 1 and 0≤ ξ ≤ ε−1, but the latter impliesξ → ∞ (as
ε → 0+); thus we require, for uniformity the coefficients
of ξ andξ exp(−aξ ) in (14) must vanish independently.

The result is

aB′− bB = 0, aA′+ bA = 0. (15)

Solving equation (15), find the value ofA andB. Then
substituting these values in (11) and imposing the
boundary conditions from (2), we find the values ofa and
b to obtain the approximate solution. This method has
been illustrated more precisely by considering a specific
example of second order singularly perturbed boundary
layer problem in section 3.

2.2 Third Order Boundary Layer Problem.

To discuss the method of multiple scales method we
consider the general third order singular perturbed
equation of the form;

εy′′′+ a(x)y′′+ b(x)y′+ c(x)y = 0, 0< x < 1 (16)

and initial conditions are

y(0) = α, y′(0) = β and y′′(1) = γ. (17)

Here, α,β ,γ are arbitrary constants andε is the
perturbation parameter.

Substituting (3), (4), (5) and (6) into the original
equation (16) then we have;

ε
(

1
ε3

∂ 3

∂ξ 3 +
∂ 3

∂x3
0

+
3
ε2

∂ 3

∂ξ 2∂x0
+

3
ε

∂ 3

∂ξ ∂x2
0

)

×(y0+ εy1+ ε2y2+ ...)

+a(x)

(

1
ε2

∂ 2

∂ξ 2 +
2
ε

∂ 2

∂ξ ∂x0
+

∂ 2

∂x2
0

)

×(y0+ εy1+ ε2y2+ ...)

+b(x)

(

1
ε

∂
∂ξ

+
∂

∂x0

)

(y0+ εy1+ ε2y2+ ...)

+c(x)(y0+ εy1+ ε2y2+ ...) = 0 (18)

Equating the coefficients of each power ofε to zero of
equation (18), we can write

©(1/ε2) :
∂ 3y0

∂ξ 3 + a
∂ 2y0

∂ξ 2 = 0 (19)

©(1/ε) :
∂ 3y1

∂ξ 3 +a
∂ 2y1

∂ξ 2 =−3
∂ 3y0

∂ξ 2∂x0
−2a

∂ 2y0

∂ξ ∂x0
−b

∂y0

∂ξ
(20)

©(ε0) :
∂ 3y2

∂ξ 3 +a
∂ 2y2

∂ξ 2 = −3
∂ 3y1

∂ξ 2∂x0
−3

∂ 3y0

∂ξ∂x2
0
−2a

∂ 2y1

∂ξ∂x0

− a
∂ 2y0

∂x2
0
−b

∂y1

∂ξ
−b

∂y0

∂x0
−cy0 (21)

The general solution of equation (19) is

y0 = A(x0)+B(x0)ξ +C(x0)e
−aξ , (22)

where A,B and C are undetermined at this level of
approximation; they are to be determined at the next level
of approximation by imposing the solvability conditions.

Substitutey0 from (22) in equation (20), we can write
(20) in view of

∂ 3y1

∂ξ 3 + a
∂ 2y1

∂ξ 2 = −3a2C′e−aξ −2a(B′−C′ae−aξ )

− b(B− aCe−aξ) (23)
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or

∂ 3y1

∂ξ 3 +a
∂ 2y1

∂ξ 2 =−(a2C′−abC)e−aξ −(2aB′+bB) (24)

The particular solution of (24) is

y1p =− (aC′− bC)
a

ξ e−aξ − (2aB′+ bB)
2a

ξ 2 (25)

which makesεy1, much larger thany0 as ξ → ∞ .
Hence, for a uniform expansion, the coefficients of
ξ exp(−aξ ) andξ 2 in (25) should vanish independently.
So, we have

aC′− bC = 0, 2aB′+ bB = 0. (26)

In the forthcoming section, we apply this procedure to find
the approximate solution of a particular example of third
order singular perturbed boundary layer problem.

3 Numerical Simulation

To demonstrate the applicability and robustness of the
Multiple scales method, we consider three linear singular
perturbation problems; one with left-end boundary layer
and two with right-end boundary layer. These examples
have been chosen because they have been widely
discussed in literature and exact solutions are available
for comparison.

Example 1: Consider the following homogenous
singular perturbation problem

εy′′(x)+ (1+ ε)y′(x)+ y(x) = 0; x ∈ [0,1] (27)

with
y(0) = 0 and y(1) = 1. (28)

As this problem has a boundary layer atx = 0 i.e., at
the left end of the underlying interval.

Substituting (3), (4) and (6) into the original equation
(27), we get

ε
(

1
ε2

∂ 2

∂ξ 2 +
2
ε

∂ 2

∂ξ ∂x0
+

∂ 2

∂x2
0

)

×(y0+ εy1+ ε2y2+ ...)

+(1+ ε)
(

1
ε

∂
∂ξ

+
∂

∂x0

)

(y0+ εy1+ ε2y2+ ...)

+(y0+ εy1+ ε2y2+ ...) = 0. (29)

Equating coefficients of each power ofε to zero of
equation (29), we have

©(1/ε) :
∂ 2y0

∂ξ 2 +
∂y0

∂ξ
= 0 (30)

©(ε0) :
∂ 2y1

∂ξ 2 +
∂y1

∂ξ
=−2

∂ 2y0

∂ξ ∂x0
− ∂y0

∂ξ
− ∂y0

∂x0
− y0

(31)

©(ε1) :
∂ 2y2

∂ξ 2 +
∂y2

∂ξ
= −2

∂ 2y1

∂ξ ∂x0
− ∂ 2y0

∂x2
0

− ∂y1

∂ξ
− ∂y1

∂x0

− ∂y0

∂x0
− y1 (32)

The general solution of (30) is

y0 = A(x0)+B(x0)e
−ξ . (33)

Substitute the value ofy0 from (33) in equation (31),
we obtain

∂ 2y1

∂ξ 2 +
∂y1

∂ξ
= −2(−B′e−ξ )+Be−ξ − (A′+B′e−ξ )

− (A+Be−ξ ) (34)

or
∂ 2y1

∂ξ 2 +
∂y1

∂ξ
= B′e−ξ − (A′+A). (35)

A particular solution of (35) is

y1p =−B′ξ e−ξ − (A′+A)ξ , (36)

which makesεy1, much bigger thany0 as ξ → ∞.
Hence, for a uniform expansion, the coefficients ofξ and
ξ exp(−ξ ) in (36) must vanish independently. The result
is

B′ = 0, A′+A = 0. (37)

The solution of (37) is

A = ae−x0, B = b (38)

wherea andb are arbitrary constants.
Putting the valuesA andB from (38) in equation (33)

gives
y0 = ae−x0 + be−ξ (39)

or, in terms of the original variable is

y0 = ae−x + be−x/ε . (40)

Substituting the value ofy0 in equation (6) gives

y = ae−x + be−x/ε + ... (41)

Imposing the boundary conditions from (28) in (41)
yields

a+ b = 0 and ae−1+ be−1/ε = 1. (42)

Solving the equation (42) for a andb, we obtain

a =− 1

(e−1/ε − e−1)
and b =

1

(e−1/ε − e−1)
(43)

Putting these values in (41), we obtain the final
solution

y =− e−x

(e−1/ε − e−1)
+

e−x/ε

(e−1/ε − e−1)
(44)
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y =
(e−x/ε − e−x)

(e−1/ε − e−1)
(45)

Equation (45) is the exact solution of equation (27)
which is given in [8]

Example 2:Consider the following homogeneous
singular perturbation problem

εy′′(x)− y′(x)− (1+ ε)y(x) = 0; x ∈ [0,1] (46)

with

y(0) = 1+exp(−(1+ε)/ε) and y(1) = 1+1/e (47)

which has a boundary layer atx = 1 because the
coefficient ofy′ is negative i.e., the boundary layer will be
situated at the right end of the underlying interval. For the
solution near x = 1, we introduce the two scales,
ξ = (x−1)/ε the inner scale and the outer scalex0 = x.

The derivatives can be defined in terms of these scales
as

d
dx

=−1
ε

∂
∂ξ

+
∂

∂x0
(48)

d2

dx2 =
1
ε2

∂ 2

∂ξ 2 −
2
ε

∂ 2

∂ξ ∂x0
+

∂ 2

∂x2
0

(49)

Putting (48), (49) and (6) into the original equation (46) it
becomes

ε
(

1
ε2

∂ 2

∂ξ 2 −
2
ε

∂ 2

∂ξ ∂x0
+

∂ 2

∂x2
0

)

(y0+ εy1+ ε2y2+ ...)

−
(

−1
ε

∂
∂ξ

+
∂

∂x0

)

(y0+ εy1+ ε2y2+ ...)

−(1+ ε)(y0+ εy1+ ε2y2+ ...) = 0.(50)

Equating coefficients of each power ofε to zero of
(50), we have

©(1/ε) :
∂ 2y0

∂ξ 2 +
∂y0

∂ξ
= 0 (51)

©(ε0) :
∂ 2y1

∂ξ 2 +
∂y1

∂ξ
= 2

∂ 2y0

∂ξ ∂x0
+

∂y0

∂x0
+ y0 (52)

©(ε) :
∂ 2y2

∂ξ 2 +
∂y2

∂ξ
= 2

∂ 2y1

∂ξ ∂x0
− ∂ 2y0

∂x2
0

+
∂y1

∂x0
+ y1+ y0

(53)
The general solution of equation (51) is

y0 = A(x0)+B(x0)e
−ξ (54)

Substituting the value ofy0 from (54) in equation (52),
we obtain

∂ 2y1

∂ξ 2 +
∂y1

∂ξ
=−2B′e−ξ +A′+B′e−ξ +A+Be−ξ (55)

or

∂ 2y1

∂ξ 2 +
∂y1

∂ξ
= (−B′+B)e−ξ +(A′+A) (56)

A particular solution of (56) is

y1p = (B′−B)ξ e−ξ +(A′+A)ξ (57)

which makesεy1, much bigger thany0 as ξ → ∞ .
Hence, for a uniform expansion, the coefficients ofξ and
ξ exp(−ξ ) in equation (57) must vanish independently.
Then the result is

B′−B = 0, A′+A = 0 (58)

The solution of (58) is

A = ae−x0, B = bex0, (59)

wherea andb are arbitrary constants.
Putting the valuesA andB from (59) in (54) and we

get
y = ae−x0 +(bex0)e−ξ (60)

or, in terms of the original variable is

y0 = ae−x + bexe(x−1)/ε (61)

Putting the value ofy0 in equation (6), we get

y = ae−x + bexe(x−1)/ε + ... (62)

Imposing the boundary conditions from (47) then
equation (62) yields

a+be−1/ε = 1+exp

(

− (1+ ε)
ε

)

and a+be2 = e+1

(63)
Solving these equations we obtain

a = 1 and b = 1/e (64)

Putting these values in (62) and considering first two
terms, we obtain

y = e−x +
1
e

ex(x−1)/ε (65)

or
y = e−x + e(1+ε)(x−1)/ε (66)

Equation (66) represents the exact solution of
equation (46) which is given in [8], [23]-[25]. In these
papers authors applied different numerical methods for
solving second order singular perturbed two point
boundary value problems with the boundary layers and
obtained the numerical solution, but our proposed
multiple scales method gives directly exact solution to
these problems.
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Example 3: Let us consider the following initial value
problem [6]

ε3/2y′′′+(ε1/2+ ε + ε3/2)y′′+(1+ ε1/2+ ε)y′+ y = 0
(67)

with initial conditions

y(0) = 3, y′(0) =−1− ε−1/2− ε−1 and (68)

y′′(0) = 1+ ε−1+ ε−2

The coefficient ofy′ is positive, the boundary layer
will be situated at the left-hand edge of the domain i.e.
nearx = 0. Pretending we do not know how to solve it,
we resort to conventional singular perturbation methods.
It turns out that the conventional perturbation calculation
is very tedious and rather challenging. But our proposed
multiple scales method successfully finds the approximate
solution without any matching by starting only with the
thinnest or innermost boundary layer by rescalingx = εξ
and expandingy(x) in terms ofε.

Substituting (3), (4), (5) and (6) into the equation (67)
we have;

ε3/2
(

1
ε3

∂ 3

∂ξ 3 +
∂ 3

∂x3
0

+
3
ε2

∂ 3

∂ξ 2∂x0
+

3
ε

∂ 3

∂ξ ∂x2
0

)

×(y0+ εy1+ ...)

+(ε1/2+ ε + ε3/2)

(

1
ε2

∂ 2

∂ξ 2 +
2
ε

∂ 2

∂ξ ∂x0
+

∂ 2

∂x2
0

)

×(y0+ εy1+ ...)

+(1+ ε1/2+ ε)
(

1
ε

∂
∂ξ

+
∂

∂x0

)

×(y0+ εy1+ ...)

+(y0+ εy1+ ...) = 0. (69)

Equating the coefficients of each power ofε to zero of
(69), we get

©(1/ε3/2) :
∂ 3y0

∂ξ 3 +
∂ 2y0

∂ξ 2 = 0 (70)

©(1/ε1/2) :
∂ 3y1

∂ξ 3 +
∂ 2y1

∂ξ 2

=−3
∂ 3y0

∂ξ 2∂x0
−2

∂ 2y0

∂ξ ∂x0
− ∂ 2y0

∂ξ 2 − ∂y0

∂ξ
(71)

©(ε1/2) :
∂ 3y2

∂ξ 3 +
∂ 2y2

∂ξ 2 = −3
∂ 3y0

∂ξ 2∂x0
−3

∂ 3y0

∂ξ ∂x2
0

− 2
∂ 2y1

∂ξ ∂x0
−2

∂ 2y0

∂ξ ∂x0
− ∂ 2y0

∂x2
0

− ∂y1

∂ξ
− ∂y0

∂x0
. (72)

The general solution of equation (70) is

y0 = A(x0)+B(x0)ξ +C(x0)e
−ξ , (73)

where A,B and C are undetermined at this level of
approximation. They are determined at the next level of
approximation by imposing the solvability conditions.

Substituting the value ofy0 from (73) in equation (71),
we obtain

∂ 3y1

∂ξ 3 +
∂ 2y1

∂ξ 2 =−3C′e−ξ −2(B′−C′e−ξ )−Ce−ξ −B+Ce−ξ

(74)
or

∂ 3y1

∂ξ 3 +
∂ 2y1

∂ξ 2 =−C′e−ξ − (2B′+B) (75)

A particular solution of (75) is

y1p =−C′ξ e−ξ − (2B′+B)
2

ξ 2 (76)

which makesεy1, much bigger thany0 as ξ → ∞ .
Hence, for a uniform expansion, the coefficients of
ξ exp(−ξ ) andξ 2 in (76) must vanish independently.

The results are

2B′+B = 0, C′ = 0 (77)

The solutions of (77) are

B = b0e−x0/2, C = c0, (78)

whereb0 andc0 are arbitrary constants.
Putting the values ofB andC from (78) in equation

(73), which gives

y0 = A+ b0e−x0/2ξ + c0e−ξ (79)

or, in terms of the original variable

y0 = A+
x
ε

b0e−x/2+ c0e−x/ε (80)

Substitutingy0 in (6) we have

y = A+
x
ε

b0e−x/2+ c0e−x/ε + ... (81)

Imposing the boundary conditions (68) in (81), which
yields

A+ c0 = 3, b0− c0 =−(1+ ε1/2+ ε) and (82)

−εb0+ c0 = (1+ ε + ε2)

Solving equation (82) for A, b0 andc0 we obtain

A=
2−3ε+ ε

√
ε

(1− ε)
, b0=

ε2−
√

ε
(1− ε)

and c0=
1− ε

√
ε

(1− ε)
(83)

Then, putting these values in (81) and then equation
(81) becomes

y =

(

2−3ε+ ε
√

ε
(1− ε)

)

+
x
ε

(

ε2−
√

ε
(1− ε)

)

e−x/2

+

(

1− ε
√

ε
(1− ε)

)

e−x/ε , (84)
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Fig. 1: ε = 0.3
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Fig. 2: ε = 0.4

then

y =
1

(1− ε)

{

(2−3ε + ε
√

ε)+
(ε2−

√
ε)x

ε
e−x/2

+(1− ε
√

ε)e−x/ε
}

. (85)

The equation (85) represents the final approximate
solution of equation (67). Numerical simulations are
performed varyingε as it is shown in figure 1-4. The
figures indicate that the solution of (85) is very close to
the exact solution given in [6].

Figure1-4 of the numerical solution (85) obtained by
Multiple scales (MS) method with the exact solution given
in [6].
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Fig. 3: ε = 0.6

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

x

y

 

 
MS
Exact

Fig. 4: ε = 0.8

4 Conclusion

We present a numerical method for solving second and
third order singularly perturbed problems with the
boundary layer at one end (left or right) by Multiple
scales method. The original second and third order
ordinary differential equations i.e. boundary value
problems are transformed to partial differential equations.
This method is very easy for implementation. Numerical
results of standard examples chosen from the references
are presented in support of the proposed theory. Using the
method of Multiple scales, a single expansion is sufficient
and requires no matching between the expansions. In
references [8], [23]-[25] authors applied different
numerical techniques to obtain the approximate solution
of second order singularly perturbed boundary layer

c© 2016 NSP
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problems while in this article exact solution has been
obtained by our proposed method.
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