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ABSTRACT 

We present a framework for imitation of percussion performances 

with parameter-based learning for accurate reproduction. We 

constructed a robotic setup involving pull-solenoids attached to drum 

sticks which communicate with a computer through a 

microcontroller. The imitation framework allows for parameter 

adaptation to different mechanical constructions by learning the 

capabilities of the overall system being used. For the rhythmic 

vocabulary, we have considered regular stroke, flam and drag styles. 

A learning and calibration system was developed to perform grace 

notes for the drag rudiment as well as single strokes and the flam 

rudiment. A second pre-performance process was introduced to 

minimize the latency difference between individual drum sticks. We 

also developed an off-line onset detection method to recognize onsets 

from the microphone input. Once these pre-performance steps are 

taken, our setup will then listen to a human drummer’s performance, 

analyze for onsets, loudness, and rudiment pattern, and then play 

back using the learned parameters for the particular system. We 

conducted three different evaluations of our constructed system. 
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1. INTRODUCTION 
Computer assisted musical applications have become indispensible in 

the lives of many performers. These applications are either in the 

form of software that responds to and interacts with the user through 

a display and speakers, or they can actually employ 

electromechanical devices to accomplish tasks that the former type 

cannot. We are interested in studying computer assisted music 

performance systems, actual percussion systems in particular, within 

this rapidly growing interdisciplinary field. Reasons for utilizing 

physical systems instead of audio output from a computer are that 

these systems can produce spatial sounds due to their sound radiation 

pattern, are perceived as having better presence when they are in the 

same room as the listener and usually have higher dynamic range 

compared to CD quality reproduction systems. Another advantage of 

these systems is that they can repeat drumming patterns with high 

accuracy enabling one to study the effects of different performance 

parameters such as tempo and loudness for the same pattern. Robotic 

percussion systems also make possible a more realistic rendition of 

the drumming sound compared to mixing isolated recorded sounds.  

 Our approach entails the analysis and imitation of human 

performances in order to gain an understanding toward building 

better real-time performance systems. With many drum machines on 

the market, metronomic performance is usually easy to achieve but 

there are discernible qualities present in musicians’ performances that 

need to be captured to develop more compelling systems. Similar 

shortcomings are present in non-parametric systems and sound 

reproduction equipment in that they cannot respond to changing 

dynamics of a performance and hence their use in real performances 

remain limited. Our long term goal is to study these two aspects by 

first analyzing human performances and imitating them through 

mechanical actuation, and second by building an adaptive system that 

has the capability of remaining in pace with a performance.  

 In this work we have focused on the first part of this long-term 

goal. We are interested in studying percussion performance on a 

snare drum and we present an imitation framework that can cater to 

different mechanical constructions. The framework involves a 

learning stage by which relevant parameters are optimized for the 

given physical configuration of the electromechanical player. We 

have constructed two actuator controlled drum sticks which operate 

on the snare drum. In the reminder of the paper we describe the 

refinement to the control mechanism of these kinds of systems 

motivated by the shortcomings of simple trigger-based control 

methods.    

 Professional human performers are able to seamlessly track tempo, 

perform various patterns, and modify their individual strokes based 

on a variety of different factors. Aside from a basic style where drum 

sticks hit the drum head according to a simple rhythmic pattern, there 

are several basic skills a drum player usually employs. These can be 

classified into four parts: roll, diddle, flam and drag rudiments, each 

of which contains several variations. In this work, we are interested in 

classifying these rudiments to fit actuation capabilities of robotic 

drumming systems. For example, we have explored the ways a drag 

on a snare drum could be played to sound most like a human. We 

assume that mixtures such as the ratamacue can be reduced to a drag 

and stokes, and similarly the paradiddle and flam rudiments can be 

reduced to combinations of regular strokes. We have excluded roll 

variants from our study.  

 The ability to replicate actual drumming depends largely on the 

mechanical setup of the machine performer. Our system uses heavy 

duty pull-solenoids attached to drumsticks, which, when turned on, 

bring the drumstick down to hit the snare drum with the necessary 

speed. Large solenoids are needed to achieve loud sounds and good 

dynamic range. Several problems in computer controlled 

performance include the limited precision of force control that is 

available, the force being unidirectional, and inertia. At the same 

time, we are trying to test the feasibility of our system without 

making it overly complicated by employing positional feedback from 

the drumstick. Our goal for this paper is to integrate flam and drag 

rudiments into a playback performance system which otherwise 

tracks and recognizes regular stroke patterns autonomously. 

2. RELATED WORK 
Problems such as tempo tracking, onset detection, and pattern 

analysis have been researched extensively and continue to be 

researched. Researchers Hochenbaum and Kapur have discussed 

various options for onset detection [7]. They ran an experiment to 

differentiate onsets between performer’s individual hands using 

accelerometers against a simple audio analysis similar to that of our 

experiment. Similarly, Han et al. discussed various other methods to 

find onsets directly from an audio input, using the Fourier Transform 

and Spectral Flux analysis [6]. Their research ultimately used the 

Spectral Flux analysis designed by Dixon [4]. Dixon explored five 

different onset detection methods, including Spectral Flux, Phase 

Deviation, Complex Domain, Weighted Phase Deviation, and 

Rectified Complex Domain. Many of these techniques share similar 
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approaches to that of Bello, et al. [1], who developed onset detection 

systems that cater to a variety of different audio qualities. At the core 

of all of these concepts lie three components: post-processing, 

thresholding, and peak-picking. The use of phase and energy for 

onset detection is a complex process according to Bello [2]. Here, the 

researchers discuss phase-based onset detection as well as detection 

in the complex domain. Input signals have also been analyzed by 

Marchini and Purwins, who developed a system that recognizes 

rhythmic patterns and tracks the tempo of percussive audio, and 

replay variations using those parameters [8]. 

 Derbinsky and Essl discuss many features of tempo tracking 

needed for their Mobile Percussion Collaboration project [3]. Uhle 

and Herre search for the tempo of a percussive performance through 

bar length estimation, from which they extract the tempo of the 

performance [10]. They use a combination of onset and tatum 

estimation along with periodicity estimation to approximate bar 

length and thus the time signal.  

 Researchers Murphy et al. elaborated on the challenges and 

possible solutions on creating a more efficient drum system through 

the use of calibration. They employed various search techniques in an 

attempt to create a system which produces an approximately linear 

force output based on a linear input. They used three different search 

methods, including a pattern search which would decrease step size 

the closer the calibration was to optimal. Their conclusion was that 

this pattern search was the most efficient among the searches they 

had considered [9]. 

 The playback of a percussive performance relies on pattern 

recognition in addition to simply onset recognition and imitation. 

Gillet and Richard researched the patterns of drum loops specifically 

and approaches to categorize them [5]. They enact Hidden Markov 

Models and Support Vector Machines upon the drum audio entities 

in a database and determine what instrument or combination of 

instruments the audio file being analyzed contains. 

3. THE SYSTEM 
Control systems and the physical actuators that they control are 

usually co-developed making them difficult to replace or tune the 

mechanical components. This creates challenges in maintaining the 

quality of the performance when the actuators need to be replaced, 

components are changed, springs are replaced and even when the 

system is transported and set up. One way to retain the quality of the 

performance is through an automatic recalibration when the need 

arises. Below we present the details of a framework for percussion 

performance that allows for component replacements and tuning as 

well as changes in the relative positions of components and musical 

instruments.  

3.1 Interactive Imitation Framework 
The imitation framework employs an audio analysis subsystem, an 

actuation control subsystem and physical actuators as shown in 

Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1. Components of the imitation framework. 

 There are three modes of operation: 1) Calibration and learning of 

performance parameters 2) Analysis and pattern recognition 3) 

Performance through imitation or database access. For example, 

auto-calibration using mode 1 can be employed for a particular setup 

configuration of the actuator subsystem with choice of springs, 

height, position and angle of the drum. This mode uses the analysis - 

actuation control - actuator subsystem loop. Mode 2 is specific to the 

analysis of the incoming sound from the microphone. Mode 3 is 

employed for the rendition of the drumming pattern produced by the 

analysis subsystem and optionally to render drum patterns from 

symbolic score-like representations.  

3.2 Actuation Control & Actuation 
We have constructed a two drumstick/snare system that uses heavy 

duty solenoids. Each drumstick is attached to a solenoid via a 

fulcrum dividing the drum stick with a particular leverage ratio. The 

rear tip of the drumstick is connected to the frame via a spring or 

elastic band which keeps the tip of the drum stick away from the 

drum head by providing force in the opposing direction of the 

solenoid actuation. Both solenoids are controlled with an Arduino 

microcontroller connected to a computer running MATLAB. The 

actuation system can be seen in Figure 2. 

 

 

Figure 2. Drum stick/snare system constructed for this 

study. 

 The electrical signals, controlled by the Arduino, are sent to the 

solenoid which pulls the drumstick rapidly to hit the snare drum. 

Each solenoid’s pull-strength is controlled using pulse-width 

modulation (PWM) from the Arduino. The modulated output is 

connected to a MOSFET transistor that in turn drives the solenoid. 

This facilitates time varying force control on the solenoid during 

operation. The solenoids are connected to independent power 

supplies so that a current surge for one solenoid does not affect the 

performance of the other. 

3.3 Onsets & Analysis 
A necessary component of a performance system is the ability to 

detect and predict the onsets of a performance – whether it is the 

original human performance or machine rendered performance. In 

our single snare drum setup, audio is input through a microphone into 

our processing system. The onset detection algorithm attempts to 

detect all events for which a drum stick hits the drum. This algorithm 

detects onsets based on the change of energies in a range of 

frequencies in spectral domain. In our implementation, the sampling 

rate is 22050 Hz. Heavily overlapped, Hanning-windowed 256 point 

FFTs are calculated for the input audio – hop length is 1.1 msecs. 

Only the FFT bins with center frequencies lower than 1.7 kHz. are 

retained. This cut-off frequency has been empirically determined and 

it corresponds to the range of frequencies that capture a significant 

portion of the energies necessary for onset detection. For each FFT 

output (frame), the amplitude spectrum is squared and summed over 

the frequency range to give the frame-by-frame energies in sequence 

b. These points are then smoothed using a 40 point Gaussian window 

to form sequence c. The resulting sequence of points is then 

differenced by subtracting the element at i from element at i+1 to 

obtain the final sequence d. Sequence d is then analyzed for peaks 

that exceed a certain threshold so that only prominent, non-noise 

peaks are marked. Another condition for a peak to be marked is for it 

to have significant energy in the corresponding audio at that point in 

time. The energies are estimated with an energy function that returns 

the sum of the squares of the input signal for a window of length 50 

msecs. starting at the registration point. These are used as intensity 

estimates or a measure of how fast the stick has hit the drum head 
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which are correlated with the loudness of the particular event that led 

to the onset. Figure 3 shows an example of onset detection for three 

flams in rapid succession. The circles on the peaks of sequence d in 

the bottom plot represent the onset times. Note that the height of the 

peak indicates the confidence or clarity of the onset rather than the 

intensity, which is calculated separately with the energy function. 

 
Figure 3. Example of onset analysis for an input with three 

consecutive flams. Spectrum (top), sequence b (middle), and 

sequences c, d and onsets shown as circles (bottom).  

 After all onsets in a given performance have been detected, the 

algorithm must make the distinction between drags, flams and 

strokes and label them accordingly. To do this, it examines the 

relationship between the onsets and tests for patterns in a particular 

order. For each onset, conditions for a drag are tested first. Drags, 

containing 2 grace notes and one regular stroke, are detected by a 

group of 3 onsets within a specific proximity to each other. An 

additional condition for drag detection is that the average of the 

energies of the two grace notes be lower than a percentage of the 

energy of the stroke that follows them – 50 percent has worked well. 

Next, if an onset does not pass the drag test it is checked against 

conditions for a flam which are treated the same way, except in a set 

of two and with a smaller time proximity. Finally, single strokes are 

detected when single onsets exist separately from their adjacent 

onsets along the timeline. The output of this stage is a sequence of 

onset times, intensity estimates and rudiment labels. For playback, 

this data is sent to the performance portion of our program governed 

by the actuation control and actuation subsystems. 

 Knowing the type of rudiment and the initial onset time, the system 

re-interprets the data in a format compatible with our physical setup 

via Arduino. The methods by which the parameters are learned are 

explained in the next section. It is worth noting that the grace notes 

for a drag are notably distinct than the flam and the single strokes. 

Therefore, a separate code is executed for drags. Now converted into 

a symbolic representation, the pattern is stored for future use and 

timed signals can be sent to the actuation subsystem at a later time. 

These onsets are offset by a fixed amount of time to account for the 

latency between the signal output on the computer and the actual 

performance as calibrated previously.  

3.4 Drag & Stroke Calibration 
In absence of position feedback it is hard to produce precisely 

controlled force outputs from the solenoid; hence, dynamic force 

control is possible but needs to be critically determined. These issues 

usually plague solenoid-based setups. In our case, this is especially 

problematic in the performance of drag rudiments because the grace 

notes in a drag are significantly lighter and have inter-onset times that 

may be smaller than the solenoid’s full swing time. That is, since 

mainly the spring stiffness determines the recovery time of the drum 

stick it may not be possible to complete two full swings of the drum 

stick in the amount of time required to reproduce a drag (with the 

same stick). To counter this inefficiency, we have developed a 

calibration system which finds the optimal signal to send to the 

solenoid that will best imitate the sound of drag grace notes. We send 

a square wave (for force modulation – the PWM is at a much higher 

frequency) with varying parameters to the solenoid (via Arduino) and 

determine the effectiveness of the set of parameters through analysis 

of the sound produced by the actuation. We change the signal by 

altering three components:  the duty cycle (D), the period length (L) 

of the square wave, and the average current channeled to the solenoid 

(A) essentially given by the amplitude written to the Arduino.  

  Due to the manual nature of constructing these kinds of 

performance machines, every machine must be calibrated 

individually. The small differences in each machine’s construction 

can affect performance in a significant way. It is important to 

distinguish that each drum stick’s latency must also be calculated 

individually. The exact relationship between the solenoid, drum stick, 

and spring may vary from setup to setup, and the signal’s timing 

must account for this. We created a secondary calibration system 

which aims to find the exact latencies between two actuators such 

that it is possible to hit the drum with both sticks simultanously. The 

results of this calibration are then implemented in the performance of 

the system to increase the accuracy of the playback timing.  

3.4.1 Parameters for a Single Stroke 
The learning of parameters for regular stroke activation involves only 

loudness control in addition to the onset time. Our experiment mainly 

deals with the range of durations during which the full current is 

applied to control the speed of the hit. In other words, we are only 

controlling the duration of a single pulse applied to the solenoid. This 

duration is nonlinearly related to the intensity of the stroke. Hence, a 

mapping function is learned by individually activating the solenoids 

for a range of durations and measuring the energies with the same 

method described in the onset detection section. Once all values are 

recorded, we invert the function and interpolate to obtain the energy 

to amplitude mapping function f. This mapping function is used to 

convert the calculated energy (e) of the input stroke sound to the 

actuation amplitude level. A, for an imitation: A=f (e). The learning is 

done separately for each solenoid.  

3.4.2 Flams 
The flam rudiment can be thought of as two single strokes played 

with different drum sticks. In a flam, the first stick that hits the drum 

head is usually much quieter than the second and this can be reflected 

in the imitation through the stroke parameters. Unlike the drag that is 

described below, flams are played with two sticks in succession and 

therefore arbitrarily small time intervals between the hits can be 

achieved during actuation.    

3.4.3 Learning a Single Drag Rudiment 
In this section, we will outline the parameter learning method for a 

single drag and we will explain the generic drag calibration in the 

next section. The learning is based again on a parameter search. The 

input sound is analyzed for onset times and energy estimates. A 

parameter search is then performed by rendering the imitation and 

doing another analysis for onsets and energies on this rendition. The 

degree of fit is estimated by the following distance function that uses 

timing information as well as energy estimates:  

 N,Rcorrnr
K

dist
K

k

kk 


 
1

                  (1) 

Where rk is the rendered onset time, nk is the input onset time, R is the 

vector of energy estimates calculated from the rendition, N is the 

vector of energy estimates calculated from the input, β is a scaling 

parameter that controls the balance of timing  vs. energy sequence 

similarity, and corr is the correlation function that calculates the 

Pearson correlation coefficient between R and N. The parameter 

search tries to minimize the distance function by systematically 

applying parameters within the search space. Since the error surface 

is not smooth we could not employ hill-climbing type of methods for 

more efficient searching. Figure 4 shows the time signal and 

corresponding spectra of the original input and its imitation rendition 

for a set of parameters during the search process. 

Proceedings of the International Conference on New Interfaces for Musical Expression

485



 
Figure 4. An example of spectra and time signals of the 

input drag (top two) and the rendered drag (bottom two). 

3.4.4 Learning Generalized Drags 
The previous section explained how the parameters for a single drag 

rudiment could be learned. However, the parameters from this 

experiment cannot be used in a general imitation system. The drag 

needs to be further parameterized so that the rate of the grace notes as 

well as the loudness can be controlled. Similar to the stroke and 

single drag parameter learning, a three parameter search is conducted. 

For each point in the search space the corresponding inter-onset 

interval and the average energy estimates of the rendition are 

calculated. After inverting the mapping and applying interpolation, 

the resulting mapping function, g, produces a three-tuple in response 

to its arguments. The two inputs are the inter-onset time, t, of the 

grace notes and the energy, e of the grace notes: (D,L,A)=g(t,e) 

4. EVALUATION 
We conducted three types of evaluations. The first was a qualitative 

evaluation in which the drummer first played short rhythmic patterns 

and then we listened to the playback performances. This allowed for 

us to test the limits of the system and assess whether a reasonable 

amount of information was passing through the system end-to-end. 

While there were very few detection errors with slow rhythms, we 

realized that the onset detection could not keep up with very fast 

passages and started skipping some onsets.  

 The second evaluation was an automated comparative evaluation. 

Each test consisted of the drummer performing a short sequence of 

rudiments and then the system playing it back. Onset analysis was 

performed on the input and the playback audio and the mean absolute 

onset errors between corresponding events were recorded for each 

sequence. Since the performance by the drummer and the system 

rendition are back to back and not simultaneous, the onset times are 

calculated with respect to a time reference at the beginning of 

analysis recording, offset by the actuation latency as explained 

earlier.  The maximum absolute errors were also calculated for each 

sequence. The drummer performed 15 sequences with the following 

rudiments: single stroke four, single ratamacue, flam paradiddle, 

single drag, drag and flamacue, each with 3 repetitions and at varying 

tempi. The average of the mean absolute onset errors over all pieces 

was 6.7 msecs. and the max absolute error was 18.3 msecs.   

 The third evaluation was based on comparing the original and 

imitation sounds in the spectral domain. The product spectra with the 

same resolution used for onset analysis were displayed along with the 

individual spectra of the two sounds. This method serves more as 

visual tool where the analyst can see the alignment through 

reinforcement of overlapping energies in the product spectra, as a 

result, bypassing the onset detection stage for evaluation. Figure 5 

shows the visualization for a flam paradiddle routine. The spectra of 

the input and the output audio can be seen in the top two images. The 

third image shows the product of the two. The bottom image shows 

all three of them individually collapsed by summing over frequencies 

to obtain a single value for each time point. This provides a good 

form of visualization for evaluating the system’s imitation 

performance. 

      
   Figure 5. Visual evaluation using spectral displays. 

5. CONCLUSIONS AND FUTURE WORK 
We have presented a percussion imitation framework that can learn 

the necessary parameters to replicate a rhythmic pattern with 

controlled onsets, intensities and specific gestures. The finesse in 

obtaining parameters through learning which can most overcome the 

hindrances from using large solenoids, software processing lag and 

latency from a chain of digital circuitry has been discussed. The 

learning portion enables the system to be general and rather 

independent from the specific construction of the actuator setup. This 

makes the overall imitation system adaptive to changes in position, 

tuning, spring stiffness, drum stick type and other conditions.         

 Future work involves an extension to the current system to make it 

interactive. We are working on utilizing a two-dimensional control 

input to control high-level performance parameters such as tempo 

and dynamics. This will allow drummers to record their 

performances and experiment with performance parameters and 

styles on an actual drum.  
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