
Imitation Framework for Percussion

Özgür İzmirli

Connecticut College
New London, CT, 06320, USA

oizm@conncoll.edu

Jake Faris
Connecticut College

New London, CT, 06320, USA
jfaris@conncoll.edu

ABSTRACT

We present a framework for imitation of percussion performances

with parameter-based learning for accurate reproduction. We

constructed a robotic setup involving pull-solenoids attached to drum

sticks which communicate with a computer through a

microcontroller. The imitation framework allows for parameter

adaptation to different mechanical constructions by learning the

capabilities of the overall system being used. For the rhythmic

vocabulary, we have considered regular stroke, flam and drag styles.

A learning and calibration system was developed to perform grace

notes for the drag rudiment as well as single strokes and the flam

rudiment. A second pre-performance process was introduced to

minimize the latency difference between individual drum sticks. We

also developed an off-line onset detection method to recognize onsets

from the microphone input. Once these pre-performance steps are

taken, our setup will then listen to a human drummer’s performance,

analyze for onsets, loudness, and rudiment pattern, and then play

back using the learned parameters for the particular system. We

conducted three different evaluations of our constructed system.

Keywords

Imitation, robotic percussion, calibration

1. INTRODUCTION
Computer assisted musical applications have become indispensible in

the lives of many performers. These applications are either in the

form of software that responds to and interacts with the user through

a display and speakers, or they can actually employ

electromechanical devices to accomplish tasks that the former type

cannot. We are interested in studying computer assisted music

performance systems, actual percussion systems in particular, within

this rapidly growing interdisciplinary field. Reasons for utilizing

physical systems instead of audio output from a computer are that

these systems can produce spatial sounds due to their sound radiation

pattern, are perceived as having better presence when they are in the

same room as the listener and usually have higher dynamic range

compared to CD quality reproduction systems. Another advantage of

these systems is that they can repeat drumming patterns with high

accuracy enabling one to study the effects of different performance

parameters such as tempo and loudness for the same pattern. Robotic

percussion systems also make possible a more realistic rendition of

the drumming sound compared to mixing isolated recorded sounds.

 Our approach entails the analysis and imitation of human

performances in order to gain an understanding toward building

better real-time performance systems. With many drum machines on

the market, metronomic performance is usually easy to achieve but

there are discernible qualities present in musicians’ performances that

need to be captured to develop more compelling systems. Similar

shortcomings are present in non-parametric systems and sound

reproduction equipment in that they cannot respond to changing

dynamics of a performance and hence their use in real performances

remain limited. Our long term goal is to study these two aspects by

first analyzing human performances and imitating them through

mechanical actuation, and second by building an adaptive system that

has the capability of remaining in pace with a performance.

 In this work we have focused on the first part of this long-term

goal. We are interested in studying percussion performance on a

snare drum and we present an imitation framework that can cater to

different mechanical constructions. The framework involves a

learning stage by which relevant parameters are optimized for the

given physical configuration of the electromechanical player. We

have constructed two actuator controlled drum sticks which operate

on the snare drum. In the reminder of the paper we describe the

refinement to the control mechanism of these kinds of systems

motivated by the shortcomings of simple trigger-based control

methods.

 Professional human performers are able to seamlessly track tempo,

perform various patterns, and modify their individual strokes based

on a variety of different factors. Aside from a basic style where drum

sticks hit the drum head according to a simple rhythmic pattern, there

are several basic skills a drum player usually employs. These can be

classified into four parts: roll, diddle, flam and drag rudiments, each

of which contains several variations. In this work, we are interested in

classifying these rudiments to fit actuation capabilities of robotic

drumming systems. For example, we have explored the ways a drag

on a snare drum could be played to sound most like a human. We

assume that mixtures such as the ratamacue can be reduced to a drag

and stokes, and similarly the paradiddle and flam rudiments can be

reduced to combinations of regular strokes. We have excluded roll

variants from our study.

 The ability to replicate actual drumming depends largely on the

mechanical setup of the machine performer. Our system uses heavy

duty pull-solenoids attached to drumsticks, which, when turned on,

bring the drumstick down to hit the snare drum with the necessary

speed. Large solenoids are needed to achieve loud sounds and good

dynamic range. Several problems in computer controlled

performance include the limited precision of force control that is

available, the force being unidirectional, and inertia. At the same

time, we are trying to test the feasibility of our system without

making it overly complicated by employing positional feedback from

the drumstick. Our goal for this paper is to integrate flam and drag

rudiments into a playback performance system which otherwise

tracks and recognizes regular stroke patterns autonomously.

2. RELATED WORK
Problems such as tempo tracking, onset detection, and pattern

analysis have been researched extensively and continue to be

researched. Researchers Hochenbaum and Kapur have discussed

various options for onset detection [7]. They ran an experiment to

differentiate onsets between performer’s individual hands using

accelerometers against a simple audio analysis similar to that of our

experiment. Similarly, Han et al. discussed various other methods to

find onsets directly from an audio input, using the Fourier Transform

and Spectral Flux analysis [6]. Their research ultimately used the

Spectral Flux analysis designed by Dixon [4]. Dixon explored five

different onset detection methods, including Spectral Flux, Phase

Deviation, Complex Domain, Weighted Phase Deviation, and

Rectified Complex Domain. Many of these techniques share similar

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. To copy otherwise, to republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee.

NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.

Copyright remains with the author(s).

Proceedings of the International Conference on New Interfaces for Musical Expression

483

approaches to that of Bello, et al. [1], who developed onset detection

systems that cater to a variety of different audio qualities. At the core

of all of these concepts lie three components: post-processing,

thresholding, and peak-picking. The use of phase and energy for

onset detection is a complex process according to Bello [2]. Here, the

researchers discuss phase-based onset detection as well as detection

in the complex domain. Input signals have also been analyzed by

Marchini and Purwins, who developed a system that recognizes

rhythmic patterns and tracks the tempo of percussive audio, and

replay variations using those parameters [8].

 Derbinsky and Essl discuss many features of tempo tracking

needed for their Mobile Percussion Collaboration project [3]. Uhle

and Herre search for the tempo of a percussive performance through

bar length estimation, from which they extract the tempo of the

performance [10]. They use a combination of onset and tatum

estimation along with periodicity estimation to approximate bar

length and thus the time signal.

 Researchers Murphy et al. elaborated on the challenges and

possible solutions on creating a more efficient drum system through

the use of calibration. They employed various search techniques in an

attempt to create a system which produces an approximately linear

force output based on a linear input. They used three different search

methods, including a pattern search which would decrease step size

the closer the calibration was to optimal. Their conclusion was that

this pattern search was the most efficient among the searches they

had considered [9].

 The playback of a percussive performance relies on pattern

recognition in addition to simply onset recognition and imitation.

Gillet and Richard researched the patterns of drum loops specifically

and approaches to categorize them [5]. They enact Hidden Markov

Models and Support Vector Machines upon the drum audio entities

in a database and determine what instrument or combination of

instruments the audio file being analyzed contains.

3. THE SYSTEM
Control systems and the physical actuators that they control are

usually co-developed making them difficult to replace or tune the

mechanical components. This creates challenges in maintaining the

quality of the performance when the actuators need to be replaced,

components are changed, springs are replaced and even when the

system is transported and set up. One way to retain the quality of the

performance is through an automatic recalibration when the need

arises. Below we present the details of a framework for percussion

performance that allows for component replacements and tuning as

well as changes in the relative positions of components and musical

instruments.

3.1 Interactive Imitation Framework
The imitation framework employs an audio analysis subsystem, an

actuation control subsystem and physical actuators as shown in

Figure 1.

Figure 1. Components of the imitation framework.

 There are three modes of operation: 1) Calibration and learning of

performance parameters 2) Analysis and pattern recognition 3)

Performance through imitation or database access. For example,

auto-calibration using mode 1 can be employed for a particular setup

configuration of the actuator subsystem with choice of springs,

height, position and angle of the drum. This mode uses the analysis -

actuation control - actuator subsystem loop. Mode 2 is specific to the

analysis of the incoming sound from the microphone. Mode 3 is

employed for the rendition of the drumming pattern produced by the

analysis subsystem and optionally to render drum patterns from

symbolic score-like representations.

3.2 Actuation Control & Actuation
We have constructed a two drumstick/snare system that uses heavy

duty solenoids. Each drumstick is attached to a solenoid via a

fulcrum dividing the drum stick with a particular leverage ratio. The

rear tip of the drumstick is connected to the frame via a spring or

elastic band which keeps the tip of the drum stick away from the

drum head by providing force in the opposing direction of the

solenoid actuation. Both solenoids are controlled with an Arduino

microcontroller connected to a computer running MATLAB. The

actuation system can be seen in Figure 2.

Figure 2. Drum stick/snare system constructed for this

study.

 The electrical signals, controlled by the Arduino, are sent to the

solenoid which pulls the drumstick rapidly to hit the snare drum.

Each solenoid’s pull-strength is controlled using pulse-width

modulation (PWM) from the Arduino. The modulated output is

connected to a MOSFET transistor that in turn drives the solenoid.

This facilitates time varying force control on the solenoid during

operation. The solenoids are connected to independent power

supplies so that a current surge for one solenoid does not affect the

performance of the other.

3.3 Onsets & Analysis
A necessary component of a performance system is the ability to

detect and predict the onsets of a performance – whether it is the

original human performance or machine rendered performance. In

our single snare drum setup, audio is input through a microphone into

our processing system. The onset detection algorithm attempts to

detect all events for which a drum stick hits the drum. This algorithm

detects onsets based on the change of energies in a range of

frequencies in spectral domain. In our implementation, the sampling

rate is 22050 Hz. Heavily overlapped, Hanning-windowed 256 point

FFTs are calculated for the input audio – hop length is 1.1 msecs.

Only the FFT bins with center frequencies lower than 1.7 kHz. are

retained. This cut-off frequency has been empirically determined and

it corresponds to the range of frequencies that capture a significant

portion of the energies necessary for onset detection. For each FFT

output (frame), the amplitude spectrum is squared and summed over

the frequency range to give the frame-by-frame energies in sequence

b. These points are then smoothed using a 40 point Gaussian window

to form sequence c. The resulting sequence of points is then

differenced by subtracting the element at i from element at i+1 to

obtain the final sequence d. Sequence d is then analyzed for peaks

that exceed a certain threshold so that only prominent, non-noise

peaks are marked. Another condition for a peak to be marked is for it

to have significant energy in the corresponding audio at that point in

time. The energies are estimated with an energy function that returns

the sum of the squares of the input signal for a window of length 50

msecs. starting at the registration point. These are used as intensity

estimates or a measure of how fast the stick has hit the drum head

Actuator Subsystem
Analysis

Subsystem

Actuation Control

Subsystem

Recorded Onset

Patterns &

Parameter

Bank

Mic

Proceedings of the International Conference on New Interfaces for Musical Expression

484

which are correlated with the loudness of the particular event that led

to the onset. Figure 3 shows an example of onset detection for three

flams in rapid succession. The circles on the peaks of sequence d in

the bottom plot represent the onset times. Note that the height of the

peak indicates the confidence or clarity of the onset rather than the

intensity, which is calculated separately with the energy function.

Figure 3. Example of onset analysis for an input with three

consecutive flams. Spectrum (top), sequence b (middle), and

sequences c, d and onsets shown as circles (bottom).

 After all onsets in a given performance have been detected, the

algorithm must make the distinction between drags, flams and

strokes and label them accordingly. To do this, it examines the

relationship between the onsets and tests for patterns in a particular

order. For each onset, conditions for a drag are tested first. Drags,

containing 2 grace notes and one regular stroke, are detected by a

group of 3 onsets within a specific proximity to each other. An

additional condition for drag detection is that the average of the

energies of the two grace notes be lower than a percentage of the

energy of the stroke that follows them – 50 percent has worked well.

Next, if an onset does not pass the drag test it is checked against

conditions for a flam which are treated the same way, except in a set

of two and with a smaller time proximity. Finally, single strokes are

detected when single onsets exist separately from their adjacent

onsets along the timeline. The output of this stage is a sequence of

onset times, intensity estimates and rudiment labels. For playback,

this data is sent to the performance portion of our program governed

by the actuation control and actuation subsystems.

 Knowing the type of rudiment and the initial onset time, the system

re-interprets the data in a format compatible with our physical setup

via Arduino. The methods by which the parameters are learned are

explained in the next section. It is worth noting that the grace notes

for a drag are notably distinct than the flam and the single strokes.

Therefore, a separate code is executed for drags. Now converted into

a symbolic representation, the pattern is stored for future use and

timed signals can be sent to the actuation subsystem at a later time.

These onsets are offset by a fixed amount of time to account for the

latency between the signal output on the computer and the actual

performance as calibrated previously.

3.4 Drag & Stroke Calibration
In absence of position feedback it is hard to produce precisely

controlled force outputs from the solenoid; hence, dynamic force

control is possible but needs to be critically determined. These issues

usually plague solenoid-based setups. In our case, this is especially

problematic in the performance of drag rudiments because the grace

notes in a drag are significantly lighter and have inter-onset times that

may be smaller than the solenoid’s full swing time. That is, since

mainly the spring stiffness determines the recovery time of the drum

stick it may not be possible to complete two full swings of the drum

stick in the amount of time required to reproduce a drag (with the

same stick). To counter this inefficiency, we have developed a

calibration system which finds the optimal signal to send to the

solenoid that will best imitate the sound of drag grace notes. We send

a square wave (for force modulation – the PWM is at a much higher

frequency) with varying parameters to the solenoid (via Arduino) and

determine the effectiveness of the set of parameters through analysis

of the sound produced by the actuation. We change the signal by

altering three components: the duty cycle (D), the period length (L)

of the square wave, and the average current channeled to the solenoid

(A) essentially given by the amplitude written to the Arduino.

 Due to the manual nature of constructing these kinds of

performance machines, every machine must be calibrated

individually. The small differences in each machine’s construction

can affect performance in a significant way. It is important to

distinguish that each drum stick’s latency must also be calculated

individually. The exact relationship between the solenoid, drum stick,

and spring may vary from setup to setup, and the signal’s timing

must account for this. We created a secondary calibration system

which aims to find the exact latencies between two actuators such

that it is possible to hit the drum with both sticks simultanously. The

results of this calibration are then implemented in the performance of

the system to increase the accuracy of the playback timing.

3.4.1 Parameters for a Single Stroke
The learning of parameters for regular stroke activation involves only

loudness control in addition to the onset time. Our experiment mainly

deals with the range of durations during which the full current is

applied to control the speed of the hit. In other words, we are only

controlling the duration of a single pulse applied to the solenoid. This

duration is nonlinearly related to the intensity of the stroke. Hence, a

mapping function is learned by individually activating the solenoids

for a range of durations and measuring the energies with the same

method described in the onset detection section. Once all values are

recorded, we invert the function and interpolate to obtain the energy

to amplitude mapping function f. This mapping function is used to

convert the calculated energy (e) of the input stroke sound to the

actuation amplitude level. A, for an imitation: A=f (e). The learning is

done separately for each solenoid.

3.4.2 Flams
The flam rudiment can be thought of as two single strokes played

with different drum sticks. In a flam, the first stick that hits the drum

head is usually much quieter than the second and this can be reflected

in the imitation through the stroke parameters. Unlike the drag that is

described below, flams are played with two sticks in succession and

therefore arbitrarily small time intervals between the hits can be

achieved during actuation.

3.4.3 Learning a Single Drag Rudiment
In this section, we will outline the parameter learning method for a

single drag and we will explain the generic drag calibration in the

next section. The learning is based again on a parameter search. The

input sound is analyzed for onset times and energy estimates. A

parameter search is then performed by rendering the imitation and

doing another analysis for onsets and energies on this rendition. The

degree of fit is estimated by the following distance function that uses

timing information as well as energy estimates:

 N,Rcorrnr
K

dist
K

k

kk 


 
1

 (1)

Where rk is the rendered onset time, nk is the input onset time, R is the

vector of energy estimates calculated from the rendition, N is the

vector of energy estimates calculated from the input, β is a scaling

parameter that controls the balance of timing vs. energy sequence

similarity, and corr is the correlation function that calculates the

Pearson correlation coefficient between R and N. The parameter

search tries to minimize the distance function by systematically

applying parameters within the search space. Since the error surface

is not smooth we could not employ hill-climbing type of methods for

more efficient searching. Figure 4 shows the time signal and

corresponding spectra of the original input and its imitation rendition

for a set of parameters during the search process.

Proceedings of the International Conference on New Interfaces for Musical Expression

485

Figure 4. An example of spectra and time signals of the

input drag (top two) and the rendered drag (bottom two).

3.4.4 Learning Generalized Drags
The previous section explained how the parameters for a single drag

rudiment could be learned. However, the parameters from this

experiment cannot be used in a general imitation system. The drag

needs to be further parameterized so that the rate of the grace notes as

well as the loudness can be controlled. Similar to the stroke and

single drag parameter learning, a three parameter search is conducted.

For each point in the search space the corresponding inter-onset

interval and the average energy estimates of the rendition are

calculated. After inverting the mapping and applying interpolation,

the resulting mapping function, g, produces a three-tuple in response

to its arguments. The two inputs are the inter-onset time, t, of the

grace notes and the energy, e of the grace notes: (D,L,A)=g(t,e)

4. EVALUATION
We conducted three types of evaluations. The first was a qualitative

evaluation in which the drummer first played short rhythmic patterns

and then we listened to the playback performances. This allowed for

us to test the limits of the system and assess whether a reasonable

amount of information was passing through the system end-to-end.

While there were very few detection errors with slow rhythms, we

realized that the onset detection could not keep up with very fast

passages and started skipping some onsets.

 The second evaluation was an automated comparative evaluation.

Each test consisted of the drummer performing a short sequence of

rudiments and then the system playing it back. Onset analysis was

performed on the input and the playback audio and the mean absolute

onset errors between corresponding events were recorded for each

sequence. Since the performance by the drummer and the system

rendition are back to back and not simultaneous, the onset times are

calculated with respect to a time reference at the beginning of

analysis recording, offset by the actuation latency as explained

earlier. The maximum absolute errors were also calculated for each

sequence. The drummer performed 15 sequences with the following

rudiments: single stroke four, single ratamacue, flam paradiddle,

single drag, drag and flamacue, each with 3 repetitions and at varying

tempi. The average of the mean absolute onset errors over all pieces

was 6.7 msecs. and the max absolute error was 18.3 msecs.

 The third evaluation was based on comparing the original and

imitation sounds in the spectral domain. The product spectra with the

same resolution used for onset analysis were displayed along with the

individual spectra of the two sounds. This method serves more as

visual tool where the analyst can see the alignment through

reinforcement of overlapping energies in the product spectra, as a

result, bypassing the onset detection stage for evaluation. Figure 5

shows the visualization for a flam paradiddle routine. The spectra of

the input and the output audio can be seen in the top two images. The

third image shows the product of the two. The bottom image shows

all three of them individually collapsed by summing over frequencies

to obtain a single value for each time point. This provides a good

form of visualization for evaluating the system’s imitation

performance.

 Figure 5. Visual evaluation using spectral displays.

5. CONCLUSIONS AND FUTURE WORK
We have presented a percussion imitation framework that can learn

the necessary parameters to replicate a rhythmic pattern with

controlled onsets, intensities and specific gestures. The finesse in

obtaining parameters through learning which can most overcome the

hindrances from using large solenoids, software processing lag and

latency from a chain of digital circuitry has been discussed. The

learning portion enables the system to be general and rather

independent from the specific construction of the actuator setup. This

makes the overall imitation system adaptive to changes in position,

tuning, spring stiffness, drum stick type and other conditions.

 Future work involves an extension to the current system to make it

interactive. We are working on utilizing a two-dimensional control

input to control high-level performance parameters such as tempo

and dynamics. This will allow drummers to record their

performances and experiment with performance parameters and

styles on an actual drum.

6. REFERENCES
[1] Bello, J.P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M.

and Sandler, M. A Tutorial on Onset Detection in Music

Signals. IEEE Trans. on Speech and Audio Processing,

13(5):1035–1047, 2005.

[2] Bello, J.P., Duxbury, C., Davies, M. and Sandler, M. On the

Use of Phase and Energy for Musical Onset Detection in the

Complex Domain. IEEE Signal Processing Letters 11 (6), 553-

556, 2004.

[3] Derbinsky, N. and Essl, G. Exploring Reinforcement Learning

for Mobile Percussive Collaboration. Intl Conference on New

Interfaces for Musical Expression (NIME), Ann Arbor, 2012.

[4] Dixon, S. Onset Detection Revisited. Intl Conference on Digital

Audio Effects (DAFx), 2006.

[5] Gillet, O. and Richard, G. Automatic Transcription of Drum

Loops. Intl Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2004.

[6] Han, Y., Kwon, S., Lee, K. and Lee K. A Musical Performance

Evaluation System for Beginner Musician based on Real-time

Score Following. NIME Demo, 2013.

[7] Hochenbaum, J. and Kapur, A. Drum Stroke Computing:

Multimodal Signal Processing for Drum Stroke Identification

and Performance Metrics. NIME, 2012.

[8] Marchini, M. Unsupervised Generation of Percussion Sound

Sequences from a Sound Sample. MSc. Thesis, UPF, 2010.

[9] Murphy, J., Kapur, A. and Carnegie, D. Better Drumming

Through Calibration: Techniques for Pre-Performance Robotic

Percussion Optimization, NIME, 2012.

[10] Uhle, C. and Herre, J. Estimation of Tempo, Micro Time and

Time Signature from Percussive Music, DAFx, 2003.

Proceedings of the International Conference on New Interfaces for Musical Expression

486

