Proceedings of the International Conference on New Interfaces for Musical Expression

Simplified Expressive Mobile Development with NexusUI,
NexusUp and NexusDrop

Ben Taylor
Louisiana State University
1065 Digital Media Center

Baton Rouge, Louisiana
btayl61@Isu.edu

Yemin Oh
Louisiana State University
1065 Digital Media Center

Baton Rouge, Louisiana
yoh1@lsu.edu

ABSTRACT

Developing for mobile and multimodal platforms is more
important now than ever, as smartphones and tablets pro-
liferate and mobile device orchestras become commonplace.
We detail NexusUI, a JavaScript framework that enables
rapid prototyping and development of expressive multitouch
electronic instrument interfaces within a browser.

Extensions of this project assist in easily creating dy-
namic user interfaces. NexusUI contains several novel en-
capsulations of creative interface objects, each accessible
with one line of code. NexusUp assists in one-button du-
plication of Max interfaces into mobile-friendly web pages
that transmit to Max automatically via Open Sound Con-
trol [14]. NexusDrop enables drag-and-drop interface build-
ing and allows users to save and recall interfaces.

Finally, we provide an overview of several projects made
with NexusUI, including mobile instruments, art installa-
tions, sound diffusion tools, and iOS games, and describe
Nexus’ possibilities as an architecture for our future Mobile
App Orchestra.

Keywords

mobile music, web interface, multimodal, NIME, Web Au-
dio API, OSC, mobile games, mobile apps, websockets

1. INTRODUCTION

Mobile music performance is a growing community [7], driven
by development platforms for musical apps [5,6] as well as
commercial controllers like TouchOSC! and Mira?.

The web browser is established as a desirable platform
for single-build, multi-platform NIMEs that are compat-
ible across desktop and mobile devices, and that can be
easily distributed [13]. Advantages for building browser-
based interfaces have been enumerated [8,9], and several

"http://hexler.net/software/touchosc
2http://cycling74.com/products/mira

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIME’ 14, June 30 — July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

Jesse Allison
Louisiana State University
1065 Digital Media Center

Baton Rouge, Louisiana
jtallison@lsu.edu

257

Will Conlin
Louisiana State University
1065 Digital Media Center

Baton Rouge, Louisiana
wconlil@Isu.edu

Danny Holmes
Louisiana State University
1065 Digital Media Center

Baton Rouge, Louisiana
dholm13@Isu.edu

projects have explored the terrain of desktop-to-mobile in-
terface libraries, including massMobile for distributed per-
formance [13] and Interface.js* for Gibber [9].

While the aforementioned toolkits should be explored, we
present NexusUI as an alternative that expands on the sim-
plicity of TouchOSC but that retains the depth and flexibil-
ity of a mobile interface development platform. [2] Benefits
of NexusUI including ease-of-code, novel and non-standard
musical interface elements, and two paradigms for graphi-
cally creating interfaces — NexusUp and NexusDrop — which
allow for rapid prototyping and development of interfaces
by non-programmers.

As Atau Tanaka notes, the nature of an instrument is
both self-sufficient and open-ended [10]. Nexus continues
the reimagining of what open-ended could be: open to ges-
ture and touch, but also open to the audience, to other
phones, to the World Wide Web and its data.

Whether a musician turns to mobile instrument-making
for portability, gesturability, distributability, or accessibil-
ity, NexusUI and its extensions attempt to remove the bar-
riers for that musician to develop her mobile NIME.

2. NEXUS USER INTERFACE

In NEXUS: Collaborative Performance for the Masses, Han-
dling Instrument Interface Distribution through the Web,
we exposited a distributed performance platform using web
applications, called Nexus. [3] The user interface portion of
that project, NexusUI [1], has become a robust and easy-
to-use toolkit for quickly building flexible multimodal inter-
faces on mobile devices.

As a UI toolkit, NexusUI can simplify development of
many existing digital instrument forms, including iOS apps
using 1libPD [4], remote gestural controllers of Max patches
with mobile devices, and self-contained Web Audio projects
in the browser.

2.1 Implementation

At its core, NexusUI is a JavaScript library of interfaces
drawn on HTML5 <canvas> elements. A central JavaScript
framework, nexusUL.js, provides interface initialization, uni-
fied design templates, transmission protocols, multimodal
event listening, web interaction, and a library of common
functions that can be drawn upon within individual user
interface objects.
NexusUI makes use of the jQuery framework®, which should

Shttp://wuw.charlie-roberts.com/interface/
‘http://www.jquery.com/

Proceedings of the International Conference on New Interfaces for Musical Expression

NEXUS mobile audio interface elements

@ &
® U)

/dial 10

Figure 1: A NexusUI interface on a mobile phone.

be loaded prior to loading nexusULjs. Linking to jquery.js
and nexusULjs constitutes a full initialization of NexusUI.

2.1.1 Nexus Manager

Upon loading NexusUI, the core manager is instantiated as
the JavaScript object nz. It catalogs all Nexus objects on
the page, controls a central animation timer, and provides
the shared methods and properties for all objects in the
library. For example, the styling of Nexus is centralized
so that nz.colorize() can modify the color scheme of the
entire Ul, or nz.line Width can change the default thickness
of drawn lines throughout the UL

2.2 Interface Objects

NexusUI includes standard audio interaction modes such as
button, toggle, dial, slider, multislider, 2-dimensional
position slider, matrix with variable amplitudes for each
matrix point, number, message, keyboard, item select,
and comment.

Focusing specifically on mobile paradigms, a multitouch
version of the 2-dimensional slider is included which offers
five touchpoints that each output x/y data, resulting in con-
tinuous control over ten points of data. Also included is an
accelerometer tilt object which functions on iOS and An-
droid devices, and the Google Chrome browser. The tilt
object accesses x and y tilt, and “z” vertical force.

Several novel, non-standard music interaction paradigms
are also included. The colors interface provides RGB data
from a chosen pixel of a colorwheel in response to touch.
Joints outputs the connections of one node to any nearby
node, and relative distance between each node. Metroball
lets users add bouncing balls into the interface and control
them with tilt motion, outputting data on a ball each time
it collides with an edge. Finally, pixels, is a matrix that
you can draw into (in draw mode) or use as a sequencer (in
sequence mode).

As described in the Projects section below, camera in-
put and audio input have been incorporated into upcoming

NexusUI objects, using the video camera’s incoming pixel
matrix as a touch field, and letting incoming audio data be
utilized as part of your Nexus interface through the web.

2.2.1 Making an Interface

To make the library as accessible as possible, creating a
Nexus NIME has been kept as simple as possible. Interface
objects are created by adding a custom nzx attribute to any
HTML5 <canvas> element to specify which NexusUI object
to load. The HTML code for invoking a single NexusUI
button is:

<canvas nx="button"></canvas>

This button, by default, is of an average size (100 pix-
els), is accessible in JavaScript with the variable buttonl,
is both click and touch-compatible, and will transmit its
interaction data as an AJAX request to the hosting server.
These default settings can be customized upon initialization
or updated at any point afterward.

The following five lines of code show the complete body of
an HTML document with Nexus multitouch, tilt sensor, and
toggle, resulting in ten points of continuous touch control,
three axes of continuous motion control, and a toggle that
could turn audio on and off.

<body>
<canvas nx="multitouch"></canvas>
<canvas nx="tilt"></canvas>
<canvas nx="toggle"></canvas>
</body>

In developing Nexus, several methods are provided for
creating objects, including JavaScript and HTML paradigms,
however, the nz HT'ML attribute has been the method most
commonly chosen technique by users.

2.2.2 Configuring Objects

NexusUI is designed with a convention over configuration
approach, meaning objects are given logical and functional
default settings wherever possible, but are also customiz-
able to retain flexibility of development. This is evidenced
above in the default OSC name assigned to the button, /but-
tonl, which could be changed in JavaScript (.oscName) or
in HTML with an ID attribute to be something more de-
scriptive like /volume:

<canvas nx="button" id="volume" style="width:200px">
</canvas>

This code would also overwrite the default width of the
object, with the GUI adjusting automatically to its new
size.

Many objects have configurable interaction modes. For
example, Nexus multitouch can operate in normal (contin-
uous) mode, or matrix (discrete or “snap-to-grid” motion)
mode. A Nexus button has three modes of interaction:

e impulse transmits 1 on touch, nothing on release
e toggle transmits 1 on touch, 0 on release

e node transmits [1,X,Y] on touch/move, [0,X,Y] on
release

Animation and physics are configurable on enabled ob-
jects including position and dial, synced to a central nz
animation timing pulse.

Proceedings of the International Conference on New Interfaces for Musical Expression

2.3 Transmission Protocols

Configurability extends to the interface’s transmission of in-
teractions. Transmission protocols of AJAX, i0S, Android,
and local JavaScript callback are available.

By default, all NexusUI objects send AJAX requests back
to the hosting server to be handled. Examples are provided
in Ruby on Rails, node.js, and a default PHP relay script
which passes the data from any incoming requests to local-
host as User Datagram Protocol (UDP) OSC messages on
port 7475. For this default transmission to function, the
page must be hosted and accessed by a server as opposed
to simply viewing the file in a browser. This can be easily
achieved by using the built in Apache server in OS X or
installing a server like XAMPP® or MAMP® as a turnkey
solution.

NexusUI objects can be set to send locally to a JavaScript
callback function, passing the interaction data as an array
that can be used to affect any JavaScript or DOM element
on the page, including Web Audio or to control other Nexus
elements.

The final two transmission protocol modes are geared to-
wards embedding nexusUI interfaces into apps built on the
iOS and Android platforms. The iOS version uses custom
URL schemes to pass control data to the app. The naviga-
tion controller hosting the webView based Ul implements
the shouldStartLoad WithRequest and captures any page re-
quests headed to nezus://. In Android, this approach re-
sults in a delayed interaction, however one can directly tie
JavaScript functions in the UI to Java functions in the app
which allows for fast UI interactions.

Nexus objects’ transmission destinations can be set col-
lectively or individually, so that some objects could transmit
via AJAX, another could send to an app, and still others
could send to a JS callback function. Here is a JavaScript
example of the default transmission protocol being set to
iOS transmission, albeit with buttonl being dealt with lo-
cally to trigger the newNote() function within the browser.

nx.onload {
nx.sendsTo("ios")
buttonl.sendsTo("js")
buttonl.response = function(data) {
if (data == 1) {
newNote (data)
}
}
}

2.4 Extensibility

The library of NexusUI objects is highly centralized, with
all interface objects prototyped from a common template
that automatically manages gesture data for each interface
object, including multitouch positions, delta motion, and
default transmission protocols. This template provides easy
maintenance of the library, and makes it straightforward to
extend with new objects. Creation of new objects is also
simplified by utilizing the shared methods available in the
nexusUL.js framework.
The general structure of a NexusUI object is:

1. Declare the object constructor, with arguments of tar-
get canvas ID and object index:

function dial(target, uilndex) { ... }

Shttp://www.apachefriends.org
http://www.mamp.info

259

2. Define self and setup the template:

var self = this

this.uiIndex = uilndex

this.defaultSize = { width: 100, height:
getTemplate(self, target)

100 }

Define attributes unique to the object
Initialize any needed parameters
5. Create .draw() function

Create click/touch, move, and release functions to han-
dle unique aspects of interaction for this object.

7.

2.5 Advantages of NexusUI
NexusUI takes advantage of the pervasiveness of HTML5

Add animation or any other code unique to the UI.

and web enabled mobile devices for cross-platform distributabil-

ity via URL or QR code, and can be embedded into devel-
oper applications. Our convention over configuration ap-
proach makes NexusUI easy to get started with while re-
taining flexibility to customize more complex interfaces.

We add several interfaces to the NexusUI library that
have no equivalents in standard Ul libraries. Nexus is open-
source and extensible for development of more novel objects
using the <canvas> drawing surface, a feature that is less
accessible in many development platforms.

An additional advantage of NexusUI is its accessibility to
non-programmers via NexusUp and NexusDrop described
below.

3. INTERFACE BUILDERS

NexusUI’s interface building assistants, NexusUp and Nexus-
Drop, extend access to the NexusUI platform and enable
rapid prototyping of control interfaces for music, games,
robotics, or any other project that can use OSC.

3.1 NexusUp

NexusUp is a one-click method for turning existing Max
patches into distributable mobile interfaces with built-in
OSC communication. NexusUp duplicates a Max presentation-
mode interface as an HTML web interface built with com-
patible NexusUI objects (Figure 2).

3.1.1 Max bpatcher

NexusUp is encapsulated as a bpatcher that scans a Max
patch’s presentation mode layout and generates a mirror
HTML document using Nexus objects. The Nexus page
then sends AJAX messages to a PHP script which for-
wards the messages via OSC into the patch. The NexusUp
bpatcher contains a udpreceive connected to a JavaScript
file in Max which updates each object in the patch to new
values received from the web interface.

3.1.2 Support

Currently, NexusUp supports many core Max interface ob-
jects, including number, slider, dial, button, toggle, mes-
sage, comment, multislider, and kslider. Some Max inter-
faces that have no equivalent are translated into nexusUI
objects that function in a similar fashion, so that a filter-
graph in Max is translated to a 2-D x/y position touch
interface, and a gain or live.gain in Max becomes a stan-
dard slider in Nexus. Objects like comment and message
duplicate their text values from the Max interface.

Proceedings of the International Conference on New Interfaces for Musical Expression

Max 6

liva.dial

5 \ o0
ikl
JCI

T

Nexus (HTML)

One-Click
NexusUp
Transfer

Figure 2: Example NexusUp transfer from Max 6 to a Nexus HTML page.

3.1.3 Setup

To enable NexusUp, a user adds the NexusUI library to
the directory of their Max patch and then places the whole
project within a web server that has PHP enabled. Once
Ul objects are added to the presentation mode of the patch,
the NexusUp button can be pressed which scans the page
and creates an HTML file alongside the patch. This HTML
file can then be loaded in any browser to control the patch.

3.1.4 Goals

Different modalities for creating and using NexusUls are
useful for different situations. NexusUp was built to sim-
plify Max integration with NexusUI, make an option for
Max users that avoids the extra step of writing HTML code,
and to invite Max users to quickly create a Ul for mobile
performance. Another approach to quickly creating user
interfaces is NexusDrop.

3.2 NexusDrop

NexusDrop, a drag-and-drop interface for adding and re-
moving Nexus objects from a webpage, makes NexusUT avail-
able to non-programmers and aims to make creating web
based interfaces a flexible and seamless process. This has
advantages over NexusUp, because users can add and delete
objects on-the-fly, and are not restricted to pre-existing Max
interfaces. It is also an opportunity for audiences to exper-
iment with creating their own interfaces in a distributed
performance setting.

3.2.1 Implementation

NexusDrop uses an edit/perform mode paradigm similar to
Max and Pure Data. In edit mode, the webpage provides
a list of Nexus objects, and users can click and drag any
of those objects onto their interface page, in any number
and arrangement. Figure 3 shows NexusDrop in edit mode,
with a toggle, tilt, and slider created by click-and-drag. By
default, these objects have OSC names /objectN and send
their data to 127.0.0.1 on port 7475, just like NexusUI. The
OSC names and destination IP and port can be customized
in real-time on the webpage in edit mode. Each object can
send to a unique IP, if desired, opening up custom on-the-
fly network rerouting within a mobile ensemble an accessible
practice.

3.2.2 Reusing Interfaces

Once an interface is made, it can be saved locally using
HTMLS5 localstorage, or uploaded to our central NexusDrop
UI database, accessible for use by anyone on the web. An
interface could also be exported as an HTML file, to be

260

editing is on
button
comment

dial

joints

keyboard

matrix

Figure 3: NexusDrop menu of draggable items
(cropped) with three created objects and their de-
fault OSC names.

edited to include Web Audio. NexusDrop is in development
to have built-in Web Audio API integration.

4. PROJECTS WITH NEXUSUI

NexusUI has been used in a diverse array of projects in
our music and art community, including mobile apps, Web
Audio projects, electronic chamber ensemble compositions,
games, sound diffusion tools, and sound art installations.

4.1 Mobile Apps
4.1.1 nxPetals

nxPetals is an iPad app using one multitouch object and
one tilt sensor. The multitouch object is in matrox mode
(10 x 10) and is used to choose up to five frequencies for
a Pure Data synthesizer, while the tilt sensor is used as a
volume pedal (y-axis) and panner (x-axis). The instrument
plays sweeping, slow-attack chords that can be moved in
space. nzPetals is a standalone iOS app using libPD for
audio generation. Nexus communicates with libPD via the
browser’s URL.

4.1.2 nxChimes

nxChimes, another app using lipPD, has no visible inter-
face and is explored solely with motion. The instrument is
played by moving through the three-axes of accelerometer
space and triggering sounds when crossing certain thresh-
olds. With a hidden tilt sensor and no indication of what
points trigger sound, nzChimes is intended to be an inter-
pretation of John Cage’s Inlets, exploring an invisible and
uncontrollable sound source, triggering music unknowingly.

4.2 Web Audio
4.2.1 SawCircle

Proceedings of the International Conference on New Interfaces for Musical Expression

iPad 7:41PM @} 100% Eh4

)

Figure 4: nxzPetals shows the multitouch object in
matrix mode, with numbers denoting overtones

SawCircle is a distributed performance by Trey Duplantis
using Web Audio in mobile devices. A QR code is dis-
tributed to an audience, most recently a Mardi Gras parade,
which loads a NexusUI button interface on their phones.
The button triggers polyrhythmic sawtooth waves in just-
intonation intervals and irrational tuplets. The composition
reimagines a drum circle as a distributed performance of
harmonic sawtooth pulses, using a traditional drum circle
as a reference point to foster creativity, a goal of distributed
performance [11].

4.3 Laptop/Mobile Ensemble
4.3.1 VOX

Voz is an electronic chamber piece for two vocal and two
tablet performers by William Conlin. The tablets send OSC
messages to laptops from NexusUI, controlling four filters
and four delays in Max. Tablet performers use both discrete
and continuous control of live audio processing of the vocal
performers.

Vox was fully composed in TouchOSC before the NexusUI
interface was developed. Upon changing the tablet interface
to NexusUI there was no need to change the nature of the
composition. The composer found that NexusOSC had sev-
eral strengths: as a web-based interface it was cross-tablet
compatible; NexusUI’s networking infrastructure reduced
the setup time for performance; and scripting allowed for
easy and fast custom styling of instructions. He noted that
it was easy to make the new interface almost identical to
the previous TouchOSC interface, and more flexible to cus-
tomize once constructed.

4.3.2 Imogen

A similar process to Vor was done with a composition Imo-
gen by Lindsey Hartman, a granular remix of Imogen Heap’s
song Hide and Seek performed by a laptop orchestra. Orig-
inally using four MIDI controllers for four performers, the

261

interface was ported to an iPad interface of NexusUTI sliders
and buttons.

The composer found advantages of NexusUI to be its re-
liability compared to MIDI controllers whose drivers some-
times faulted, and its flexibility, notably her ability to rear-
range the Nexus sliders and buttons with HTML to fit the
composition (for example, aligning 4 sliders next to each
other to be played by 4 fingers of one hand). However, the
composer ultimately chose to stick with MIDI controllers
because she found the iPad interface vulnerable to acciden-
tal touches and wrong notes. We are researching solutions
to this critique, including laser-cutting tangible overlays for
some Nexus interfaces.

4.4 Game Design
4.4.1 MoonBall

Nexus was used in the artistic game design of an iOS app
MoonBall, which incites musical composition through rule-
based game dynamics. Moonball is built on the Nexus inter-
face engine for its interaction, animation, and built-in meth-
ods, and uses Nexus’ transmission protocol to send data to
libPD inside the app.

4.5 Spatialization and Ambisonics

Figure 5: Sending sound around a speaker system
in Environmental Variables:Construction

4.5.1 Environmental Variables:Construction

NexusUI is being explored as a performative spatialization
tool for massive loudspeaker orchestras and sound theaters.
Jesse Allison’s Environmental Variables: Construction, uses

a distributed mobile interface to allow an audience to send
sound directionally to nearby speakers, enabled by the NexusUI
interface sending OSC to a Chuck audio server. The piece
was performed collectively with an audience of over 50 mem-
bers.

4.6 Installation

4.6.1 Humming Mississippi

The sound art installation Humming Mississippi uses NexusUI
to integrate web audience participation with the physical
artwork. In the piece, transducers resonate planks of wood
milled to the depths of a section of the Mississippi River

Proceedings of the International Conference on New Interfaces for Musical Expression

(Figure 6). A nearby QR code lets viewers load a custom
NexusUI interface that simultaneously creates spectrum-
based sounds in Web Audio and actuates the transducers
in the physical wood sculpture.

Figure 6: Humming Mississippi installed at the
Shaw Center for the Arts, 2013

4.6.2 Graham-O-Phone

Finally, NexusUI also experiments with new HTML5 ge-
tUserMedia as a control interface, accessible by the upcom-
ing NexusUI camera object. This object will make a live
video stream accessible for various modes of data, including
its color data or as an audio sequencer. The camera object
has already been used for an online video synth, called the
Graham-O-Phone, which turns video input into an audio
sequencer. It allows a performer to zoom in on a region of
space, pixelate it, and use the color data of those pixels in
sequence as data to control audio made with Gibberish.

5. FUTURE DIRECTIONS

NexusUI holds significant opportunities for future develop-
ment and use. The ease of developing and distributing mo-
bile interfaces has encouraged us to develop the Louisiana
Mobile App Orchestra (LMAO). NexusUI will be used to
control audio generation, performative spatialization, and
audience interaction. Notably, the NexusUI joints object
has been used as an equal-power sound diffuser around a
72-channel sound theater, allowing live performance con-
trol of individual nodes of sound in space with multimodal
input from mobile devices.

Key goals in the future development of NexusUI are to
more rigorously take advantage of its networked nature, and
to critically evaluate the possibilities of a browser-based in-
terface, including the practice of in-browser performance.
[12] There is a great opportunity to integrate NexusUI with
Application Programming Interfaces (APIs) from other ser-
vices to retrieve live data from social media, sports, games,
or news, and to encapsulate those data streams in easy-
to-create NexusUI objects. Imagine using a single line of
code, or a NexusDrop draggable interface, to create an in-
terface that could receive social media images (Instagram
or Flickr), tweets, and text messages from your audience
and to perform with touch, color, or text data from those
sources on a touch device. We see Nexus as a burgeon-
ing open-source platform for the development of new, un-
usual, networked touch-interface maps that break from the
paradigm of sliders and buttons, and that can enable musi-
cians to approach mobile devices more creatively.

6. ACKNOWLEDGMENTS

262

The authors would like to acknowledge the support of the
Louisiana State University Center for Computation & Tech-
nology, Cultural Computing focus area, and the School of
Music. We would also like to acknowledge the support of
the Board of Regents for Mobile Initiatives.

7. REFERENCES

[1] Nexus User Interface - http://nexusosc.com.
[2] J. Allison. Nexus,
https://github.com/jesseallison/nexus.
[3] J. Allison, Y. Oh, and B. Taylor. Nexus:
Collaborative performance for the masses, handling
instrument interface distribution through the web. In
Proceedings of the New Interfaces for Musical
Ezxpression conference, 2013.
P. Brinkmann, P. Kirn, R. Lawler, C. McCormick,
M. Roth, and H.-C. Steiner. Embedding pure data
with libpd. In Proc Pure Data Convention 2011, 2011.
N. J. Bryan, J. Herrera, J. Oh, and G. Wang. Momu:
A mobile music toolkit. In Proceedings of the
International Conference on New Interfaces for
Musical Ezpression (NIME), Sydney, Australia, 2010.
G. Essl and A. Miiller. Designing mobile musical
instruments and environments with urmus. In New
Interfaces for Musical Expression, pages 76-81, 2010.
L. Gaye, L. E. Holmquist, F. Behrendt, and
A. Tanaka. Mobile music technology: report on an
emerging community. In Proceedings of the 2006
conference on New interfaces for musical expression,
NIME ’06, pages 22—25, Paris, France, 2006. IRCAM -
Centre Pompidou.
T. Melamed and B. Clayton. A comparative
evaluation of HTML5 as a pervasive media platform.
In T. Phan, R. Montanari, and P. Zerfos, editors,
Mobile Computing, Applications, and Services,
volume 35 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and
Telecommunications Engineering, pages 307-325.
Springer Berlin Heidelberg, 2010.
C. Roberts, G. Wakefield, and M. Wright. The web
browser as synthesizer and interface. In Proceedings of
the New Interfaces for Musical Expression conference,
2013.
A. Tanaka. Mapping out instruments, affordances,
and mobiles. In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 15-18. New Interfaces for Musical Expression,
2010.
A. Tanaka, N. Tokui, and A. Momeni. Facilitating
collective musical creativity. In Proceedings of the
18th annual ACM international conference on
Multimedia, MULTIMEDIA ’05, pages 191-198, New
York, NY, USA, 2005. ACM.
B. Taylor and J. Allison. Plum st.: Live audiovisual
storytelling with remote browsers. Proceedings of the
New Interfaces for Musical Expression conference,
2013.
F. J. G. S. Weitzner, N. and Y. Chen. massmobile —
an audience participation framework. In Proceedings
of the New Interfaces for Musical Expression
Conference, 2012.
M. Wright. Open sound control-a new protocol for
communicationg with sound synthesizers. In
Proceedings of the 1997 International Computer
Music Conference, pages 101-104, 1997.

(4]

[5]

(6]

(8]

(10]

(1]

(12]

(13]

(14]

