
A Simple Architecture
for Server-based (Indoor) Audio Walks

ABSTRACT
This paper proposes a simple architecture for creating (indoor)
audio walks by using a server running Max/MSP together with
the external object fhnw.audiowalk.state and smartphone
clients running either under Android or iOS using LibPd.
Server and smartphone clients communicate over WLAN by
exchanging OSC messages. Server and client have been
designed in a way that allows artists with only little
programming skills to create position-based audio walks.

Keywords
Max/MSP, audio walk, audio guide, state machine, game
engine, LibPd, Pd

1. INTRODUCTION
The server is based on the fhnw.audiowalk.state object, a
programmable state machine providing functionality for simple
gaming applications. It is configured by using an easy scripting
language, which allows the creation of any number of virtual
clients, state transitions and messages bound to each transition.
The server sends and receives messages to/from smartphone
clients via wireless networks using the Open Sound Control
(OSC) protocol. The smartphone client passes those messages
directly to LibPd, which is responsible for audio playback and
optional data processing. The first application implementing the
fhnw.audiowalk.state server and client was the indoor audio
game/walk LautLots [1], which had its debut in September
2013 at the German Railway Station in Basel, Switzerland.

2. RELATED WORK
While the position tracking system is not part of this paper,
please refer to [1] and [2] in order to learn about the solutions
used in the LautLots project. For other publications about
position tracking systems, which could be used in combination
with the described server and client, please refer to [3] and [4]
and references mentioned in those papers. Examples of
commercial solutions for creating (mainly) GPS-based
(outdoor) audio walks are given in [5], [6] and [7].

3. NETWORK AND COMMUNICATION
An audio walk consists of one or more localities or rooms,
where each locality has a unique ID and is identified by its own
WLAN SSID. Each client has a unique ID as well.

All communication between Max/MSP and the mobile clients
is done using the OSC protocol. OSC is a very simple
messaging protocol that usually relies on UDP. Each OSC
message includes an address path, a type tag, a list of
arguments of different data types and an optional time tag.
The communication schema we use is shown in Figure 1.

Figure 1. The Communication Schema

The server should be configured with a static IP address, which
is known to the clients. After startup, as soon as the client
connects to a locality’s WLAN, the /registermobile message is
sent to the server. Once a client has successfully registered
itself, the server knows its corresponding IP address and OSC
port. Subsequently, messages are routed from the virtual client
defined in fhnw.audiowalk.state to the actual smartphone client.
Whenever the client moves to a different WLAN, it registers
itself again, announcing that it has moved on to another
locality.
If an external position tracking system is used, it sends /position
messages to the server, notifying each client’s position. This
enables fhnw.audiowalk.state to deliver events to the client
according to its position. If desired, /position messages can also
be forwarded to the client.
Events delivered by the fhnw.audiowalk.state server are usually
passed on to Pd. The /loadPatch message orders the client to
load a given Pd patch stored on the smartphone. The /pdaction
message carries a generic Pd symbol whose function depends
on how the Pd patch interprets it. The /playSoundFile message
makes Pd play a given audio file, which is stored on the
smartphone.
An example from the Pd patch is shown in Figure 2.

Figure 2. Pd sub-patch for the /playSoundFile message

Thomas Resch

Research and Development, University of Music Basel
University of Applied Sciences Northwestern

Switzerland
admin@noteformax.net

Matthias Krebs

Institute of Mobile and Distributed Systems
University of Applied Sciences Northwestern

Switzerland
matthias.krebs@fhnw.ch

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

Proceedings of the International Conference on New Interfaces for Musical Expression

269

4. SERVER
4.1 Requirements and setup
The server requires the software Max/MSP and the external
object fhnw.audiowalk.state, available at [8]. The minimal
setup within Max/MSP is shown in Figure 3.

Figure 3. Minimal setup within Max/MSP

4.2 Usage
4.2.1 Creating clients and state transitions
Clients are created by sending the message newClient
[clientName] to fhnw.audiowalk.state, where [clientName] can
either be a symbol or an integer.

newClient client1

Every client has several instance variables, most important of
all currentState and currentPosition. Clients also keep track of
their lastState, lastPosition, orientation, lastOrientation,
orientationChanged and rotation.
Transitions are created by sending the message
nextState [conditions][flags][messageReceiver]
[message][wait] to fhnw.audiowalk.state:

nextState 1 currentState 0 position 1. 1. 1. 1. sender message
"play X"

In spoken words this means: If any client is currently in state 0
and arrives at position x = 1., y = 1., width = 1. and height = 1,
the message "play X" is send to the corresponding client. This
is achieved by using the keyword sender as message receiver,
as an alternative one could use the keyword all or specify a
client name.

4.2.2 Controlling clients
The message position [clientName][x][y] sets the current
position. orientation [clientName][orientation] sets the current
orientation:

position client1 1.5 10.
orientation client1 180.

The message process [clientName][anything] allows to send
gestures or other kinds of interaction to fhnw.audiowalk.state.
By default "yes", "no", "comply" and "noComply" are
implemented and are counted in corresponding variables which
can be used as a condition:

nextState 6 numberOfNo 5 sender message "5 times no!"
process client1 no

Alternatively it is possible to create a transition condition with
an arbitrary string:

nextState 100 anyStringYouLike
process client1 anyStringYouLike

4.2.3 Timing conditions
Using the conditions maxOveralltime and maxTime, a time
limit can be set either for a certain state or a global timeout
independent of a state.

nextState 100 currentState 50 maxTime 20. sender message
"play Y" wait 10.

In this example a client will automatically move on from state
50 to state 100 after 20 seconds. The wait message prohibits a
client from moving on to the next state for a certain amount of
time, even if the client fulfills the conditions for a transition.

nextState 1000 maxOverallTime 600. sender message "play Y"

Here, all clients will move on to state 1000 after 600 seconds,
independent from their current state.

4.2.4 Flags
While the example below could be realized more easily without
using any flags, simply by giving a different nextState
argument for the yes and no conditions, it demonstrates their
usage:

nextState 11 currentState 10 no
nextState 11 currentState 10 yes setFlag 1
nextState 12 currentState 11 flag 1
nextState 13 currentState 11 !flag1
nextState -1 currentState 12 flag 1 unsetFlag 1

The construct nextState -1 will not result in any state transition
and might create a deadlock. It should always be bound to a
flag condition, which at the same time is then set or unset so it
can happen only once as shown above.

4.3 Implementation Details
fhnw.audiowalk.state is implemented in C as an external object
for Max/MSP and compiles for OS X and Windows. While
fhnw.audiowalk.state only provides the backend, an individual
graphical interface can be added using common Max/MSP
objects. A simple position simulation can be found within the
fhnw.audiowalk.state help file [8]. File in- and output is not
implemented, a script is either created by sending nextState
messages or rather by using a Max/MSP coll object containing
the nextState messages as shown in the help file.

Figure 4. Attaching fhnw.audiowalk.state to a coll object

After sending the start message to fhnw.audiowalk.state, both
the scheduler, with a default rate of 100 Hz, and the process
message will force the testing of all client variables against all
possible state transitions. This is done by iterating through a
linked list, which represents the script in memory. Using a
scheduler, rather than testing the position and/or orientation
changes every time, makes the server workload independent
from rate and accuracy of the used tracking system.

Proceedings of the International Conference on New Interfaces for Musical Expression

270

5. CLIENT
A smartphone client prototype for fhnw.audiowalk.state is
implemented in the form of an Android app named FHNW
AudioWalk. We have chosen the Android platform for the
prototype because it is the least restrictive in terms of
development. There is a large number of devices to choose
from and all developer tools are freely available. Despite
Android apps being commonly implemented in Java, libraries
implemented in native code, such as LibPd, can be easily
integrated. Background processing and multi-tasking are
supported as well, which we take advantage of in the app’s
design.

5.1 The App Architecture
A minimal Android app consists of at least one activity, which
basically represents one screen containing user interface
elements and their underlying business logic. In addition,
Android provides services, which can be used for tasks running
in the background.
The basic structure of our app is depicted in Figure 5. It
features one basic activity for the main user interface, which
basically just displays log messages. A second activity is used
to configure parameters such as the client ID. All the
communication and data processing is performed in a
background service, which allows other apps to be shown on
top while fhnw.audiowalk.state keeps running in the
background. Using a service is the only way, because Android
has a very strict application life-cycle management that
instantly pauses apps that are no longer visible in the
foreground.

Figure 5. The Android App Architecture

A common problem concerning Android apps is that they
cannot actually be closed by the user. When the UI is put into
the background by opening a different app or by pushing the
Home button, the operating system decides when the app is to
be shut down and its memory resources released. This affects
our app in particular, because we have a service running in the
background which should not stop when the UI is closed. Yet
we would like to be able to close the app and stop the service
altogether. We work around the problem by providing an
“Exit” button in the UI that stops all service tasks and puts the
UI in the background. In case the UI is opened again before
being destroyed by the operating system, all service tasks are
automatically restarted.
A second problem related to application life-cycles is the fact
that apps, including services, are generally stopped as soon as
the smartphone display is switched off, thus saving battery life.
Fortunately, we can deal with this problem by acquiring a wake
lock when our service is started. A wake lock keeps the CPU

awake even when the display is off, allowing us to continue
exchanging messages and playing audio.

5.2 Data Management
All the data required for the audio walk, such as configuration
parameters, audio files and PD patches, is stored on the external
storage partition or an SD card. We have chosen this approach
because Android app packages are limited to 50 MB, and also
because we would like to be able to add or update data without
reinstalling the app. There is even the possibility of
downloading updated data directly from the app.
The localities, as well as the app configuration, are stored in
JSON format. This allows an easy distribution of the
configuration to all clients instead of manually configuring
each smartphone. Only client-specific parameters like the client
ID can be configured from within the app UI.
Pd patches and audio files are all stored in the same directory,
so they can easily be accessed from LibPd.

5.3 Integration of OSC and LibPd
The Android app uses the open-source library OscP5 [9] for
OSC communication. OscP5 is a library implemented in Java
and can therefore be used directly in an Android app. All data
types used in OSC are supported. The library provides the
OSCListener interface that can be implemented by a Java class
and attached to an OSC port. Incoming OSC messages are
therefore handled in an object-oriented fashion.
The integration of LibPd [10] is a more complex task, as it is a
C library. Fortunately, Android provides the native
development kit (NDK), which uses Java native interfaces
(JNI) in order to integrate C libraries with Java applications.
Part of LibPd for Android consists of Java classes, providing an
interface for apps. A service is provided for background
processing, in addition to the PdBase class, which offers easy-
to-use static methods to load patches, play audio files etc. The
Java part accesses the native backend through JNI.
We are using a pre-compiled version of LibPd which has
already been adapted to Android, which can be downloaded
from Github [11].

5.4 Message Processing
The app encapsulates the OSC messages used by
fhnw.audiowalk.state in individual classes. Outgoing messages
are named tracking events, whereas incoming messages are
action events. Tracking events are passed to an event dispatcher
running in a separate thread, thus ensuring that the messages
are sent in correct order. The event dispatcher hands over the
messages to the OSC library. Action events received by the
OSC library are queued in an event receiver and then processed
in a separate thread as well.
In general, incoming OSC messages are directly passed on to
LibPd. The primary job of LibPd is to interpret these messages
and play a new audio file or load a new Pd patch. LibPd can
also receive arbitrary symbols, which are processed depending
on the Pd patch implementation.
Instead of just interpreting OSC messages, LibPd can also
perform local data processing. For example, sensor data
gathered by the Android app can be passed on to LibPd and
used to trigger events. Different sensors are supported, such as
the accelerometer and the gyroscope (if available). The
advantage of doing all the processing within LibPd is that no
modifications to the app are necessary. Instead, just a new Pd
patch has to be copied onto the smartphone.

6. RESULTS
The test bed for implementation was the LautLots project [1].
The setup included two different localities with position
tracking, five Samsung Galaxy SIII smartphones used as

Proceedings of the International Conference on New Interfaces for Musical Expression

271

mobile clients and a configuration of fhnw.audiowalk.state with
ca. 700 state transitions.
Using an unsorted linked list as data structure for
fhnw.audiowalk.state requires O(n) time for the linear search
for a matching state transition. A much more optimized
solution would be an array holding each currentState at its own
index, with a linked list attached in case there is more than one
transition with the same currentState condition. However, with
a maximal CPU usage of roughly 2% on a 2.53GHz Intel Core
i5, the workload of fhnw.audiowalk.state is negligible.
Using UDP in combination with OSC is efficient and easy to
handle, but has the one disadvantage of lacking any
acknowledgment packets that determine whether data transfer
has been successful. During our tests, we had one locality with
very good WLAN reception, which caused no problems
concerning UDP communication. On the other hand, the second
locality required multiple WLAN access points and repeaters
due to its size. Wireless networks are more vulnerable to packet
loss compared to wired networks, because other radio signals
can cause disturbance. We encountered occasional packet loss,
which resulted in smartphone clients not being registered in
some cases. To mitigate this problem, important messages such
as /registermobile are repeated a few times, which drastically
reduces the risk of failing to detect events. This causes only
little overhead to network communication and workload,
because registration messages are not very frequent.
Audio playback and data processing with LibPd on Android
worked mostly as expected, we only noticed some audio
stuttering in rare cases. This was most likely due to the fact that
multiple computing threads were running in addition to
handling OSC messages and Pd. While the Android system is
multi-tasking-friendly in general, many concurrent tasks may
cause difficulties with real-time applications like audio
processing. The small delay between triggering an event
through gestures or the position and the corresponding audio
playback was mostly related to the size of the WLAN and the
current Android workload. Since the latency requirements for
LautLots where not very strict, this was not much of an issue
and was not seriously measured.

7. CONCLUSION
The introduced software combination of server and client is
easy to configure and program. The training period for the
artists who used the fhnw.audiowalk.state object was only a
couple of hours, although, due to the lack of resources, no
graphical user interface could be provided for writing the
scripts. The artists were still able to create the whole audio
walk sequence (almost) without any help. Adding a user-
friendly interface would lower the entry level even more. While
the language is not computationally universal - only features
requested by the artists were implemented - missing
functionality, for example loop constructs, could be added to
the source code without problems. By using the LibPd library
for data processing, we have proven that it is possible to add
functionality without actually modifying the application’s Java
and C source code.

8. ACKNOWLEDGMENTS
Thanks to Sibylle Hauert, Daniel Reichmuth, Prof. Dr.
Christoph Stamm and Dr. Michael Kunkel for their patience
and support during the development.

9. REFERENCES
[1] FHNW (n.y.), Large Scale Indoortracking | Eine

strategische Initiative der FHNW [online]. URL:
http://blogs.fhnw.ch/indoortracking [accessed 2014, April
23].

[2] Matthias Krebs, Cristoph Stamm, Thomas Resch (2013):
"Indoor Tracking – Technik und Kunst in engem
Zusammenspiel". In: FHNW (ed): FOKUS REPORT.
Brugg-Windisch: FHNW, p. 21-30.

[3] Zaafir Barahim, M. Razvi Doomun, Nazrana Joomun
(2012). "Low Cost Bluetooth Mobile Positioning for
Location-based Application" In: Proceedings of 3rd
IEEE/IFIP International Conference in Central Asia on
Internet (ICI2007). Piscataway: IEEE Press, p. 1-4.

[4] Anthony LaMarca, Yatin Chawathe, Sunny Consolvo,
Jeffrey Hightower, Ian Smith, James Scott, Tim Sohn,
James Howard, Jeff Hughes, Fred Potter, Jason Tabert,
Pauline Powledge, Gaetano Borriello, Bill Schilit (2005):
"Place Lab: Device Position Using Radio Beacons in the
Wild". In: Hans-W. Gellerson, Roy Want, Albrecht
Schmidt (Hrsg.): Pervasive Computing. Heidelberg:
Springer-Verlag GmbH, p. 116-133.

[5] Authentic Tours Limited (n.y.), myTours [online]. URL:
http://www.mytoursapp.com [accessed 2014, April 23].

[6] Espro Acousticguide Group (n.y.), acousticguide [online].
URL: http://www.acoustiguide.com [accessed 2014, April
23].

[7] Toozla (n.y.), toozla [online]. URL:
http://www.toozla.com/ [accessed 2014, April 23].

[8] Matthias Krebs, Thomas Resch (2014): Github repository
for Large Scale Indoortracking [online]. URL:
https://github.com/fhnw-imvs/fhnw-audiowalk/ [accessed
2014, April 23].

[9] Andreas Schlegel (n.y.), Andreas Schlegel-oscP5 [online].
URL: http://www.sojamo.de/libraries/oscP5/ [accessed
2014, April 25].

[10] Create Digital Music (n.y.), libpd [online]. URL:
http://libpd.cc/ [accessed 2014, April 25].

[11] Peter Brinkmann, Naim Falandino, Scott Fitzgerald, Peter
Kirn, Hans-Christoph Steiner, (n.y.), Github repository for
LibPd for Android [online]. URL:
https://github.com/libpd/pd-for-android/ [accessed 2014,
April 25].

10. Appendices
For detailed information about Max/MSP please refer to
www.cycling74.com.

Proceedings of the International Conference on New Interfaces for Musical Expression

272

