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ABSTRACT

Echo State Networks (ESNs), a form of recurrent neural net-
work developed in the field of Reservoir Computing, show
significant potential for use as a tool in the design of map-
pings for digital musical instruments. They have, however,
seldom been used in this area, so this paper explores their
possible applications. This project contributes a new open
source library, which was developed to allow ESNs to run in
the Pure Data dataflow environment. Several use cases were
explored, focusing on addressing current issues in mapping
research. ESNs were found to work successfully in scenar-
ios of pattern classification, multiparametric control, explo-
rative mapping and the design of nonlinearities and uncon-
trol. Un-trained behaviours are proposed, as augmentations
to the conventional reservoir system that allow the player
to introduce potentially interesting non-linearities and un-
control into the reservoir. Interactive evolution style con-
trols are proposed as strategies to help design these be-
haviours, which are otherwise dependent on arbitrary values
and coarse global controls. A study on sound classification
showed that ESNs could reliably differentiate between two
drum sounds, and also generalise to other similar input. Fol-
lowing evaluation of the use cases, heuristics are proposed
to aid the use of ESNs in computer music scenarios.

Keywords

mapping, echo state networks, machine learning, software
tools

1. INTRODUCTION
1.1 Motivations

The goal of this study is to explore the potential of ESNs
as mapping tools, and in turn address wider issues in map-
ping research, with the aim of adding to the toolset which
musicians and digital luthiers can use to create expressive
mappings. Of particular interest, are ESNs’ possibilities for
further research in the design of non-linear mappings, multi-
parametric control, exploratory design and gestural control.

ESNs offer some interesting possibilities to computer mu-
sicians, their key property being that they are operate using
time series; training data is constructed from sets of corre-
sponding input and output sequences, and a trained ESN
can be run alongside any other signal processing unit, both
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at control rate and audio rate. ESNs exhibit short-term
memory, and can be trained to operate on temporal aspects
of their input, as opposed to conventional neural networks
which operate instantaneously on data. Furthermore, and
as shall be explained later in this paper, ESNs are versatile
and can be adapted to offer extra features which are po-
tentially useful for mapping design. They also offer several
challenges in use, concerning the design of training data,
and the choice of network parameters and sub-algorithms.
Section 2 serves as an introduction to the workings of these
networks.

Jorda[18] proposes that nonlinearity is essential in a musi-
cal instrument, and can create the path to virtuosity for the
player, allowing expressive control and expert gestures[1].
Furthermore, unpredictability can be desirable in creative
systems[9]. Non-linearity and unpredictability are sources
of uncontrol; they cause the behaviour of an instrument to
move away from (and probably return to) the direct influ-
ence of the player. Uncontrol can be embodied in an instru-
ment in a number of ways; in the sound synthesis engine,
in the physical design and materials, and also in mappings.
By implementing nonlinearity at the mapping stage, it can
be modularised and separated from other elements of the
system; eliminating this dependency can be an advantage
to the designer. ESNs’ signal processing abilities can range
from linear to highly nonlinear behaviours, both instanta-
neously and temporally, making these systems interesting
candidates for research into uncontrol. The ESN approach
bears similarity to projects which have employed physically
modelled dynamical systems as nonlinear mapping engines,
such as the mass-spring systems by Momemi and Henry [20]
and Johnson et. al. [17]. As universal approximators of dy-
namical systems [15], ESNs may have the power to model
this class of system and more.

Hunt and Kirk [12] also explored nonlinearity, through
the paradigm of multiparametric mappings. They proposed
that complex networks of multiparametric control could em-
ulate the expressivity of real-world mappings such as in
acoustic instruments. Following from this, [19] used ESNs
as multiparametric mapping tools for a malleable interface.
The conclusions of this study showed that ESNs have fur-
ther potential in this area that warrants exploration.

1.2 Related Work

In the array of mapping tools available to the digital musical
instrument designer, machine learning based systems show
a significant presence and have a long history in NIME, both
with conventional tools and in more esoteric designs. This
can be seen in systems ranging from earlier projects such
as Fels’ and Hinton’s Glove-Talk [7] to more recent designs
such as Fiebrink’s Wekinator [8], Caramiaux’s Gesture Vari-
ation Follower [3] and Gillian et. al’s SEC [10]. Machine
learning mapping tools offer the advantages of allowing the
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musician to train by example, and to create complex black-
box mapping systems that would be awkward or impossible
to design manually. These systems also allow composition
through manipulation of parameters and processes specific
to the machine learning algorithms.

Reservoir computing[23] systems have yet to be fully ex-
plored in the context of mapping. Reservoir computing
(RC) describes classes of recurrent neural network which fol-
low an architecture typically consisting of a high-dimensional
dynamical system that is perturbed by its inputs, and mon-
itored by a simple readout layer which is trained by a fast
and relatively straight-forward algorithm such as least squares
regression. The two most common classes of RC network
are liquid state machines and echo state networks[13], and
this paper focuses on the latter.

ESNs have a history of use in computer music. Holzmann
and Hauser[11] ran a series of successful experiments using
ESNs in audio signal processing, for modelling nonlinear
processes and for audio prediction. Jaeger and Eck [16]
used ESNs for cyclic melody generation, and Tidemann and
Demiris[22] showed that ESNs could be used for generative
drumming. Echo State Networks have yet to be trialled
for gesture recognition, however Jaeger demonstrates their
potential for dynamical pattern detection in [14].

The body of research on ESNs points to them having in-
teresting possibilities as mapping tools that could work in
a wide range of scenarios, but they have seldom been ex-
plored in this context. This paper is a study of ESNs and
their potential uses in mapping and musical instrument de-
sign. It begins with a short introduction to the topology
and parameterisation of these networks. A new Pure Data
(PD) external is then presented, an implementation of ESNs
specialised for use in PD’s dataflow environment. Several
use cases studies are explored, demonstrating and evaluat-
ing possible functions for this system. These case studies
are then evaluated to show a general picture of ESNs as
mapping tools, and finally heuristics are proposed to guide
and aid the use of the toolset.

2. ECHO STATE NETWORKS

This section gives an overview of ESNs; for more in-depth
treatments beyond the scope of this paper, see [23, 15].

Figure 1: An Example ESN

Figure 1 shows a simplified example of ESN topology.
The interconnected nodes n; are the reservoir. A set of
inputs is connected to the reservoir nodes, and these nodes
are connected to one or more output nodes in a readout
layer. The network is updated as follows:

x[k 4+ 1] = fF(Wresx[k] + Winulk] + Weyy[k]) (1)

x[k] is the network state at the current time step, u[k]
is the current input matrix, W, is the matrix of input
weights, W,.s denotes the reservoir weights and x[k] is
a vector of activation levels. Wy, describes the feedback

294

weights between the output and the reservoir, and y[k] is
the value of the readout layer. f is a smoothing function,
commonly either a linear mapping, tanh or the sigmoid
function, f(z) =1/(1 + exp(—x)).

ESNs are trained with a set of equal length sequences,
one for each input and output node, describing the input
and desired output of the system. The key to the success
of ESNs is the method of training; only the output weights
are modified during this process. All other weights, in the
input, reservoir and feedback matrices, are initialised with
(typically) random constants. The range and scale of these
initial values can be adjusted to change the global behaviour
of the reservoir, in order to give the training phase a better
chance of success. The output layer is adjusted to exploit
the dynamics of the reservoir and achieve the desired be-
haviour. Only one layer of weights is trained, so training
is a relatively straightforward linear problem that can be
solved quickly using linear regression.

To function effectively, ESNs should possess the Echo
State Property (ESP), meaning that the network has a
slowly fading memory of its inputs. The presence of the
ESP is dependent on the spectral radius of the network,
a global scaling factor of the reservoir weights. This vari-
able controls the richness of the dynamics and the non-linear
modelling power of the network, at a trade off with its mem-
ory capacity [2].

Table 1 summarises the key parameters that describe
ESNs.

Parameter Description

Layer sizes The number of nodes in the input,

reservoir and readout layers.

The minimum and maximum values
for the random distribution of weight
values, for the input, reservoir, readout
and feedback weights.

Weight ranges

Connectivity The percentage of weights that are

connected on each layer.

Spectral  ra- | The scaling factor for the reservoir
dius weights. This should generally be less
than one, but for musical purposes we
may use a higher value.

Activation Functions used in the calculation of
functions reservoir node activations and outputs.
Washout An initial number of frames that are

ignored during training, to allow the
dynamics of the reservoir to settle.

Training algo- | The process used to solve the weights

rithm on the readout layer.
Simulation al- | The algorithm used to update the
gorithm reservoir. The PD external offers the

standard ESN algorithm, and one us-
ing leaky integration to slow down

reservoir dynamics.

Table 1: Key Parameters for Echo State Networks

3. ECHO STATE NETWORKS IN PD

Pure Data [21] has been shown as a useful environment
for neural network mapping [4]; it also provides libraries of
mapping tools (SMLib, mapping) and a graphical environ-
ment for collecting and processing training data. A PD ex-
ternal was created, building on Fecho, an open source C++
ESN library. The external allows for full training and sim-
ulation within the PD environment, and is pictured in fig-
ure 2. The external offers facilities including three types of
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Figure 2: A PD External

training algorithm (least squares, pseudo inverse and ridge
regression), two classes of simulation (standard and leaky
integration), three types of activation function (linear, hy-
perbolic tangent and sigmoid) for the reservoir and readout
layers, and configuration of weight ranges for the reservoir,
readout and feedback connections. It was designed to inte-
grate fully into the Pure Data environment. The external
runs at control rate, and can be trained using data stored in
PD tables and arrays. During exploration of the use cases
in this paper, further non-standard features were added,
and these shall be described in the relevant sections of the
paper. Two additional tools were built to facilitate train-
ing and monitoring. A new abstraction, multiTable, collects
multichannel time series data for constructing training sets.
A new object, csvlog, collects network output in comma
separated variable files, for analysis in other software ap-
plications. The system is freely available and open source
under an MIT license !.

4. EXPLORATIONS

This section presents a set of small case studies which ex-
plore the use of ESNs in a range of mapping scenarios.

4.1 Nonlinear Mapping and Uncontrol

There are a number of ways to introduce nonlinear be-
haviour into a trained network: scaling of the spectral radius
of the network, scaling and biasing the input signal, scaling
the feedback weights, and injecting noise into the network.
The modulation of these parameters in realtime is not a

!Available for download from https://github.com/
chriskiefer/Fecho
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conventional practice with ESNs, and has been added as an
augmentation to the Fecho library.

Figure 3 demonstrates an example of this use case. A
100 node reservoir, with spectral radius 0.9, was trained to
approximate the nonlinear function

f(x) =sin(z+x PIx0.5),0<z <1 (2)

The readout trained successfully with NRMSE 0.0128963.
Figure 3a shows an example of input and the corresponding
output from this network. The reservoir was scaled by a
factor of 1.19, which introduced nonlinear behaviour into
the reservoir as demonstrated in figure 3b; as the input
rises, an oscillation occurs in the output. Figure 3c shows
the scale factor at 2.06, where the system is driven into
a highly unpredictable state, and can be seen to be self-
oscillating.

This type of mapping has the possibility to create inter-
esting musical interaction, furthermore the reservoir scaling
can be explicitly mapped to modulate the level of nonlin-
earity in a system. For example, the rate of change in the
input can be monitored with a high pass filter, and mapped
to reservoir scaling so that an increase in energy by the
player drives the system into nonlinear zones.

This behaviour can be classified as un-trained behaviour,
as it is introduced independently of the training stage. The
challenge here is the specification of the un-trained behaviour,
which will largely depend on the course global parameters
that guide the initial randomisation of the reservoir weights,
and the data the reservoir was trained with. While this be-
haviour is difficult to specify, there are strategies which can
aid the user in the development of useful mappings, falling
under the banner of explorative mapping design.
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Figure 3: Introducing uncontrol by scaling the reservoir

4.2 Explorative Mapping Design

ESNs offer a variety of ways in which un-trained behaviours
can be shaped, through variation of global network param-
eters, and through fine tuning of weights. The PD external
exposes these parameters for the user to interact with, how-
ever, especially in the case of tuning weights, the parameter
space can be large and nonlinear, and therefore difficult to
explore intuitively. To aid navigation through this param-
eter space, a PD abstraction was designed to allow inter-
active evolution[5] of network parameters. Figure 4 shows
the interface for this abstraction, which allows the user to
randomly mutate arrays of numbers and send them back to
the ESN external. This can be used to vary and explore
the input, output, feedback and reservoir weights. PD can
also be used to visualise the reservoir activations, which can
help to isolate issues with parameter choice.

larraySearch
$0-data dump
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—t, .N-"‘.M*v
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Figure 4: Parameter Space Search

To explore this facility, a task was devised where an ESN
was trained to create the continuous synthesis controls for
drum sounds. ESNs have an impulse response; a spike of
noise will cause a fading response as the network dynamics
settle after being perturbed. A mapping was set up where
outputs of an ESN controlled the synthesis parameters of
a drum synthesiser. As input, a velocity sensitive key was
mapped to create an impulse to send to the network. The
exploration tools were used to find a suitable mappings be-
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tween the key and the drum sound. Figure 5 shows a sample
of eight of the envelopes that were produced from fine tun-
ing of the weights in this way. The system is capable of
a variety of outputs, and interesting results were obtained
from fine tuning the balance between feedback strength and
output weights. While these control streams could be de-
signed manually, the particular value of generating them in
this way is that the ESN represents a model which can be
modulated in realtime to vary the output. Furthermore,
the system can be designed to behave in a nonlinear man-
ner for different inputs. Figure 6 shows normalised outputs
from an ESN perturbed by an impulse scaled to (a) 0.1 and
(b) 5.0. The outputs have subtle differences, showing the
nonlinear response to simple input variation.

Figure 5: Percussive Envelopes from Output Weight Explo-
ration

— input scaled by 0.1 — input scaled by 5.0

E) E)

Figure 6: Percussive Envelopes with Scaled Inputs

4.3 Pattern Recognition

An experiment was set up to test the ESNs power of pattern
recognition, using audio patterns as input. A training set
was constructed as follows: two drum samples, a kick and
a snare, were loaded into PD sample players, and a signal
chain was constructed where the audio was analysed using
a 64 point FFT, with the results recorded into 32 vectors.
As this was a classification task, a bias of 2.5 was added
to the FFT outputs, to push the reservoir into non-linear
zones of behaviour. Two output vectors were set up for the
teacher signal, and set as follows: with no sample playing,
both were set to 0, when sample A playing, vector 1 was set
to 0.5, and with sample B playing, vector 2 was set to 0.5. A
training set was recorded, consisting of 4 independent repe-
titions of each sample, lasting a total of 10000 audio frames.
Following from [14], gaussian noise was passed through the
signal chain when samples were not playing. A reservoir
was set up with 32 inputs, 400 reservoir nodes, and 2 out-
puts, with a tanh reservoir activation function, and linear
readout. The simulation was run using leaky integration,
with a leak rate of 0.001. The reservoir and input layers
had 30% connectivity, and no feedback was used between
output and reservoir. A spectral radius of 1.1 was chosen.
After training, it could be observed that the two outputs
showed opposite polarities, depending on the sample being
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played. A moving average filter simplified this output, show
clearly separable responses for the 3 states (silence, sample
A and sample B) (see figure 7). This result was consistent
over 200 repetitions of the samples. The trained network
also showed that it could generalise to untrained data in
similar classes of sound. Following this, a test was carried
out with two similar kick drum sounds, which the trained
ESN could also consistently differentiate between. While
the limitations of this small study are acknowledged and a
deeper treatment of the results is outside the scope of this
paper, the results show an encouraging outcome for further
research, using a greater number of classes and systematic
measurement of similarity between training samples.

| output 1 output 2 — output 1 (smoothed) — output 2 (smoothed)

JIN I "n‘ g V4 TN

Figure 7: Recognition of Drum Samples

4.4 Multiparametric Control

This experiment explored the ESN as a trainable mapping
processor for controlling 32 parameters of a synthesis engine
with a two parameter joystick on a gamepad. Two 32 point
arrays were hand-drawn in PD, and a training set was built
that associated the array data with different positions of the
joystick. 10000 frames of training data were recorded, and
used to train a 400 node ESN. The ESN used a tanh reser-
voir activation and a linear readout, with 30% connectivity
on each layer. No feedback was used. The spectral radius
was 0.3, and a washout of 500 frames was used in training.
The reservoir used the standard simulation algorithm, and
ridge regression was used for training.

A recording of input and corresponding output of the
trained network is shown in figure 8. The result was a net-
work which interpolated between the two training arrays
according to the position of the joystick, providing a musi-
cally interesting mapping system. The network responded
to training successfully, and at key joystick positions, it
recreated the exact data from the original arrays. To en-
hance the mapping, the second joystick on the gamepad was
mapped to reservoir scaling, allowing variable nonlinearity
to be introduced into the system.

S. DISCUSSION

PD is a promising environment for the design and use of
ESNs; it provides useful facilities for creating training sets,
including hand drawn data in graphical arrays, procedurally
generated mappings, and the ability to record sensor data
from a range of sources such as cameras, game controllers
and Arduinos. PD’s environment also helps with training by
providing realtime monitoring and visualisation of network
states, helping the user to understand how the network is
functioning. As Jaeger states[15], monitoring internal states
can be very helpful for creating successful networks, and it
also helps the user to find an intuitive understanding of how
ESNs operate. Furthermore, observation of realtime output
signals can be invaluable. The pattern classification use case
is a strong example of this; the trained network did not suc-
cessfully recreate the teacher signal, however observation of
the outputs showed that the result still consistently classi-
fied the inputs; further post-processing of the output signals
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Figure 8: Recording from a 2 to 32 Parameter Mapping

using moving average filters clarified this further. This also
highlights a wider issue with ESNs, that training can be a
complex process; there is a wide choice of parameters with
which to create and train a network, and the way in which
the training sequence is put together can have a significant
effect on the result, for example the addition of gaussian
noise in the pattern classification experiment. Training is
also aided by an understanding of the inner workings of the
algorithm, and achieving a good result can require some
expertise and involve an extended process of experimenta-
tion. This situation can be helped by providing guidelines
for solving common problems (see section 6), and by pro-
viding additional interactive tools to support training.

Outside of the training process, ESNs offer a variety of
options for processing input. Almost any part of the process
can be modulated by external signals to achieve interesting
creative results. The process of perturbing a dynamical sys-
tem with external input can give compelling, unpredictable
and strangely lifelike behaviours for music and interaction.
The main challenge is in specifying these behaviours; the ex-
plorative approach proposed here aid the discovery of inter-
esting mappings, but there are still many more possibilities
to enhance the tools provided by this system.

6. CONCLUSIONS

The use cases shown in this paper demonstrate that the
Echo State Network shows promise as a useful and flexi-
ble tool for mapping in digital musical instrument design.
Good results were achieved in scenarios of pattern classifica-
tion, multiparametric control, explorative mapping and the
design of nonlinearities and uncontrol. The use cases also
highlight several areas where difficulties may occur when
using this system. Jaeger[15] offers some very useful ‘tricks
of the trade’ for effective training and general use of ESNs.
Following the studies in this paper, some more ‘tricks’ can
be added to this list, for the specific context of designing
musical mappings.

6.1 Heuristics for Mapping with ESNs

1. Push inputs through the ESN at a constant sample
rate. If used with controls that only update when
changed (e.g. the PD sliders), slower dynamics in the
reservoir may mean that the output is inconsistent.

Uncontrol can be introduced into a network by scaling
the spectral radius, scaling and biasing the input and
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feedback weights, and adding noise to the activation
function.

3. Interactive evolution strategies can aid the design of
un-trained behaviours of the reservoir.

4. For classification functions, adding input bias can im-
prove the results, by pushing the reservoir into non-
linear zones of operation.

5. ESNs are easier to train if appropriately tuned or pre-
processed information is provided in the input stage.
For example, frequency analysis of a time series may
give better results than the time series itself.

6. Following from this, post-processing is also helpful at
the output stage. For example, smoothing the output
of a classifier may improve the classification rate.

7. To reiterate Jaeger’s guidelines, it’s best to avoid sym-
metry in the input. This is especially important when
working with audio or control signals; try adding a
bias to symmetrical input.

7. FUTURE WORK

The purpose of this study has been to establish efficacy
and outline potential use cases for ESNs within the field of
mapping design. The next stage in this research address
issues surrounding wider use by computer musicians, fo-
cusing on HCI aspects; usability of the software, and user
experience. In terms of development of the ESN exter-
nal, it would be compelling to investigate the efficacy of
ESN topology algorithms such as scale-free small world net-
works[6] for mapping tasks, and to expand the explorative
mapping tools. The uncontrol study leads to questions con-
cerning the classes of uncontrol behaviour which the ESN
can model, and how these behaviours can be represented
in the training process and in the modulation of network
parameters. The study highlights the design of nonlinear
mappings and uncontrol features as an interesting area in
mapping research, in which ESNs may be able to contribute
significantly.
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