Proceedings of the International Conference on New Interfaces for Musical Expression

The Composing Hand: Musical Creation with Leap Motion
and the BigBang Rubette

Daniel Tormoen
School of Music
University of Minnesota
Minneapolis, MN 55455
tormo020@umn.edu

ABSTRACT

This paper introduces an extension of the Rubato Com-
poser software’s BigBang rubette module for gestural com-
position. The extension enables composers and improvis-
ers to operate BigBang using the Leap Motion controller,
which uses two cameras to detect hand motions in three-
dimensional space. The low latency and high precision of
the device make it a good fit for BigBang’s functionality,
which is based on immediate visual and auditive feedback.
With the new extensions, users can define an infinite variety
of musical objects, such as oscillators, pitches, chord pro-
gressions, or frequency modulators, in real-time and trans-
form them in order to generate more complex musical struc-
tures on any level of abstraction.

Keywords

hand gesture, meta-composition, improvisation, rubato com-
poser, Leap Motion

1. INTRODUCTION

When used for music composition or performance, imme-
diate gestural interfaces using spacial sensors, such as the
Kaoss pad, the Kinect, the Wii remote, or Leap Motion are
often used to control one or a few parameters or objects at a
time, basically imitating slider motion multidimensionally,
which is usually called one-to-one mapping [19]. The early
musical example applications that use the Leap Motion de-
vice are instances of precisely this, for instance GECO [4].
While such use of gestural control can lead to convincing
and natural results, there are clear limitations. Musicians
think on a more abstract level and expect to control mu-
sical structures on a higher level. In recent years, several
publications have discussed ways to gesturally control mu-
sic on a more abstract level, e.g. [13, 3, 11]. All of them
show how difficult it is to find an intuitive and direct way
to map gestures to higher structures. With a one-to-many
relationship, it can be difficult for users to hear and un-
derstand the results of their gestures. Compared to other
gestural interfaces available, the Leap Motion controller has
the potential to reinvent gestural music creation as its low
latency, high precision, and numerous accessible parameters
meet the high expectations of musicians [19, 20], and allow
for a more direct type of interaction with musical structures,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIME’ 14, June 30 — July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

Florian Thalmann
School of Music
University of Minnesota
Minneapolis, MN 55455
thalm007@umn.edu

207

Guerino Mazzola
School of Music
University of Minnesota
Minneapolis, MN 55455
mazzola@umn.edu

even on a higher level.

In this paper we present a solution to the above prob-
lem by extending the BigBang rubette module, a gestu-
ral composition and performance module for the Rubato
Composer software originally controlled with a mouse or
multitouch trackpad, in order to support the Leap Mo-
tion device. In our method we interpret the usable space
above Leap Motion as a three-dimensional coordinate sys-
tem where each fingertip is either interpreted as a musi-
cal object such as a note, oscillator, or modulator, or as
an active agent within a transformation. The BigBang ru-
bette’s gestural concept, which ensures that every transfor-
mation is visualized and sonified gesturally while it is being
performed, thereby evokes a sense of immediacy and em-
bodiment that brings new possibilities to computer-assisted
composition. After a brief introduction to Rubato Com-
poser and the BigBang rubette module, we discuss how the
rubette’s basic functionality can be made accessible using
Leap Motion. Later on, we introduce further more advanced
applications arising with the rubette’s possibility of tracing
and gesturalizing the compositional process.

2. THE SOFTWARE
2.1 Rubato Composer, Forms, and Denotators

Rubato Composer is a Java software environment and frame-
work [9] that is based on recent achievements in mathemat-
ical music theory. Specifically, it implements the versatile
formalism of forms and denotators which roughly corre-
sponds to the formalism of classes and objects in object-
oriented programming but is realized in a purely mathe-
matical way based on topos theory. Forms are general-
ized mathematical spaces commonly based on the category
Mod® of presheaves over modules and defined by combining
the logical-structural types Limit, Colimit, and Power,
which correspond to limits, colimits, and powersets. These
combined structures are ultimately based basic spaces anal-
ogous to primitive datatypes, referred to as Simple. De-
notators, in turn, are points in the space of a form. They
are the basic data type used for the representation of mu-
sical and non-musical objects in Rubato Composer. Ru-
bette modules in the software typically operate on such de-
notators by applying transformations, so-called morphisms
within a form or between forms, or evaluating them using
address changes. For details, refer to [6, 9].

2.2 The BigBang Rubette

The BigBang rubette component [14, 15, 8] applies insights
from transformational theory [5, 7], music informatics, and
cognitive embodiment science by implementing a system of
communication between the three musico-ontological levels
of embodiment (facts, processes, and gestures) [16]. Tra-
ditionally, a composition is seen as a definite fact, a static
result of the composition process. In BigBang it is rein-

Proceedings of the International Conference on New Interfaces for Musical Expression

Pitch

(—100.0

3 --;-E-F

100.0 Onset

Figure 1: A factual representation of a composition
in BigBang. Each of the rectangles represents a
specific object, having a number of freely assignable
visual characteristics such as size, position, or color.

terpreted as a dynamic process consisting of an initial stage
followed by a series of operations and transformations. This
process, in turn, is enabled to be created and visualized on
a gestural level. The composition can thus typically be rep-
resented on any of the three levels. As a number of multi-
dimensional points (denotators) in a coordinate system (ac-
cording to the form) on the factual level, a directed graph
of operations and transformations on the processual level,
and a dynamically moving and evolving system on a ges-
tural level. BigBang implements standardized translation
procedures that mediate between these representations and
arbitrarily translate gestural into processual compositions,
processual into factual ones, and vice versa.

More precisely, BigBang enables composers to draw, ma-
nipulate, and transform arbitrary objects represented as de-
notators in an intuitive and gestural way and thereby au-
tomatically keeps track of the underlying creative process.
It implements a powerful visualization strategy that con-
sists in a generalization of the piano roll view, which can
be recombined arbitrarily and which works for any arbi-
trary data type, as discussed in the next section (Figure 1).
In the course of composition, any step of generation, opera-
tion, and transformation performed on a gestural input level
is recorded on a processual level and visualized in form of
a transformational diagram, a directed graph representing
the entire compositional process (shown in Figure 2). Fur-
thermore, composers cannot only interact with their music
on an immediate gestural level, but also oversee their own
compositional process on a more abstract level, and even
interact with this process by manipulating the diagram in
the spirit of Boulezian analyse créatrice [1]. If they decide
to revise earlier compositional decisions, those can directly
be altered, removed from the process, or even inserted at
another logical location.

2.3 Some Examples of Forms

Traditionally, the BigBang rubette was meant to be used
to create and manipulate Score-based denotators, which
roughly correspond to midi-data, extended to include hier-
archical objects and timbre. The basic Score form is defined
as

Score : .Power(Note),

Note : Limit(Onset, Pitch, Loudness, Duration, V oice)

which means that a score consists of a set of notes, each
of them being a point in a five-dimensional space. Each of
the dimensions of this space is a Simple form, for instance
Pitch : .Simple(Q).

Recently, however, BigBang was generalized to accept

208

Figure 2: A graph of a composition process of a
SoundSpectrum including all five geometric transfor-
mations (Translation, Rotation, Scaling, Shearing,
Reflection) as well as the drawing operation (Add
Partial).

and handle any data type modeled as a form. In recent pa-
pers we introduced some new examples of how these data
types can look like and discussed their capabilities within
BigBang [18, 17]. Significant among these in the context of
this paper were forms that did not have time-based coordi-
nates, for instance

SoundSpectrum : .Power(Partial),
Partial : .Limit(Loudness, Pitch).

or

FMSet : . Power(FMNode),
FMNode : .Limit(Partial, FM Set),

which allow for the generation of continuously sounding
sound spectra and frequency-modulation-based synthesis.
The gestural capabilities of Leap Motion is especially valu-
able in combination with such data types.

3. LEAP MOTION AND BASIC BIGBANG

Originally, the BigBang rubette was conceived to be oper-
ated with a mouse, where drawing, geometric transforma-
tions, and more complex transformations could be executed
by clicking and dragging. Later on, it was made compatible
with multitouch interfaces [15], which brought significant
improvement in gestural intuitiveness and immediacy. The
current paper presents a further step towards a more em-
bodied and versatile way of interacting with BigBang.

3.1 Why Leap Motion?

There are a few reasons the Leap Motion controller in par-
ticular is well-suited for music performance. First, it pro-
vides a visual performance. It allows for the manipulation
of software instruments and sounds in a way where the au-
dience can feel engaged in the performance. The intuitive
response to movement means that the Leap Motion is easy
to use for the performer, and the audience can hear the rela-
tionship between the movements the performer makes and
the sounds produced.

The Leap Motion is also highly accurate and precise for its
minimal latency. It has a very high framerate which makes
the response to fast movements very smooth. The process-
ing time required for each frame is between 4 to 10 ms,
within the upper bound set by [20]. Other comparable sen-
sors such as the Kinect have a much higher latency, around

Proceedings of the International Conference on New Interfaces for Musical Expression

Figure 3: The default visualization of the data from
the Leap Motion from the Leap Motion software.
The orientation of the palm, the location of each
finger tip, and the direction in which each finger is
pointing is all that is used to construct the visual-
ization.

100 ms. 4 ms is comparable to sitting approximately 1.5 me-
ters from a speaker while 100 ms is the delay experienced
34 meters from a speaker. These are strictly the processing
times associated with the sensor’s algorithms and do not
include the time for software sound production which can
further exacerbate a high processing latency. The latency
associated with the Kinect’s algorithms as well as it’s lower
framerate and accuracy make it an inferior choice in music
performances, e.g. [13].

The Leap Motion achieves this favorable latency at the
cost of a much more limited view of its environment (Figure
3). Unlike the Kinect, the Leap Motion does not produce
a point cloud of the whole scene within its view. It instead
describes specific features. It finds each individual finger of
each hand, the direction in which the finger is pointing, the
finger tip, and the location and orientation of the palm of
each hand. The exact algorithm used is not publicly avail-
able, but Leap Motion has publicly verified their method.
These highly responsive and precise parameters are espe-
cially suitable for live control of continuous computer music
parameters. Compared to other earlier devices, for instance
described in [10], the Leap Motion yields the gestural mo-
tion of 12 three-dimensional vectors as well as 12 three-
dimensional points, if two full hands are used. Even though
the interdependency of these vectors — the fingers of a hand
have physically limited degrees of freedom — seems a dis-
advantage at first, there are musical constructs that mirror
the structure and it can be directly mapped to it, as briefly
mentioned in Section 4.2. In this paper, we only use the lo-
cational parameters of fingers and hands, but we will soon
extend our work to using the direction vectors.

3.2 Drawing with Leap Motion

The most basic operation in a compositional process is to
add musical objects, or in the case of the BigBang rubette,
denotators. When using the Leap Motion we treat each
finger tip as a denotator and map the (z,y, z) location of
each finger using a linear scaling into the coordinate system
represented currently displayed by the BigBang rubette.
Whenever the fingers move around the corresponding de-
notators are adjusted, which provides an immediate visual
and auditive feedback. From there, we have the option to

209

((((((

uuuuuuuuuuu

ssssss

Figure 4: An FMSet denotator consisting of a car-
rier and five modulators defined by the fingertips of
the user.

capture the currently defined denotators and keep adding
new ones using the same method. If we use all three dimen-
sions of the Leap Motion space, capturing is only possible
with an external trigger (such as a MIDI trigger). To avoid
the use of an external trigger the user can decide to use only
two dimensions for drawing (preferably z X y) and the third
dimension for capturing, whenever a certain threshold, a
plane perpendicular to the z-axis at z = 0, is crossed.

Figure 4 shows a situation where the modulators of a
carrier in frequency modulation synthesis are defined using
Leap Motion. Their arrangement directly corresponds to
the fingertips in space, as can be verified visually. Compared
to drawing with a mouse or another device, this method
has significant advantages. The user can quickly compose
complex musical structures while being able to smoothly
preview each step until satisfied. Furthermore, the user can
also easily edit musical objects added earlier in the process
in the same continuous way which has many musical ap-
plications, some of them described in Section 4. The high
precision of the Leap Motion makes this method is just as
accurate as using a mouse or trackpad.

3.3 Basic Transformations Using Leap Motion

Since denotators are mathematical objects we can manipu-
late them using arbitrary morphisms. BigBang provides a
set of simple geometric transformations: translation, rota-
tion, scaling, shearing, and reflection. As discussed in [14],
any affine transformation can be represented as a series of
two-dimensional geometric transformations. In this section
we describe how we define a gesture for each of these basic
transformations. Each of these gestures imitates input that
is possible with a mouse, but later we will discuss methods
that go beyond simple 2D input to full 3D input.

To be able to precisely define the transformations we need
a method to determine the beginning and end of a gesture.
Analogous to the second drawing method described in the
previous section, we found that the best solution is to have
a vertical plane above the Leap Motion at z = 0 that needs
to be crossed in order to actively transform the score. On
the side of the plane closer to the composer, the composer
can use swipe left or swipe right gestures to navigate be-
tween different types of transformations without affecting
the score.

3.3.1 Translation

Translation is simply shifting points along the x and/or y
axis. Omnce the composer’s hand crosses the plane above
the Leap Motion the frontmost point defines the transla-

Proceedings of the International Conference on New Interfaces for Musical Expression

tion transformation. The x and y values of the denotators
move linearly with the x and y location of the finger in the
Leap Motion space. The usable space above the Leap Mo-
tion is mapped to the size of the space shown in the BigBang
rubette. This allows for arbitrary precision because we can
zoom in and move around in the BigBang rubette to manip-
ulate a very small area or zoom out for larger translations.

3.3.2 Rotation, Scaling, and Shearing

Rotation, Scaling and Shearing all require two fingers to
perform the transformation. We found the best method is
to use the two front-most fingers. The locations of the two
finger points and the center of the two fingers are necessary
for each of these transformations. For each of these trans-
formations the center point can change in the Leap Motion
coordinates, but it stays fixed within the BigBang rubette
score. This makes the gestures easier to perform and more
precise. Each of these operations requires that center of the
operation is at the origin so we have to translate the center
to the origin and then translate back as seen in equation 1
where T is the translation from the origin to the center of
the transformation, d is a denotator, and S is the rotation,
scale, or skew matrix.

T7'STd=d (1)

For the rotation gesture we use the change in the angle
between the two fingers to determine how much to rotate
around the center point in the BigBang rubette. For this
transformation we find one of the limitations of a vision-
based system for gestures. When one’s fingers are rotating,
at some point one finger can occlude the other making the
view from the Leap Motion appear to have only one finger.
To overcome this problem we had to extrapolate the ex-
pected data to ensure rotations are still possible even with
occlusions. When one finger is lost we fix the center of the
rotation in the Leap Motion space rather than allowing it
to move. We then guess that the second finger is on the
opposite side of the center from the finger we can see. We
proceed updating the angle with guesses for the second fin-
ger until it is found once again. Using this method we can
perform a smooth 360° rotation even though the second
finger is not in the view of the Leap Motion for part of the
rotation.

We can calculate the scale transformation S by comparing
the original offsets of the fingers to the current offset. In
equation 2, z; and y; are the initial locations of the fingers
and z; and y; are the current locations.

/ ’
Lo—Tq

e I
S=| o zmm (2)
Y2—Y1
0 0 1

Shearing is calculated by comparing comparing the orig-
inal location of a finger relative to the current location. In
equation 3 x and y are the original location of a finger rel-
ative to the center and 2’ and g’ are the current location.

1 z’
Yy -y
0

T

H= (3)

— 0
1 0
0 1
3.4 Arbitrary Affine Transformations

Arbitrary affine transformations are very difficult to input
using a mouse. If we do not include translation we need
two pairs of points to define the transformation in two di-
mensions, two points before the transformation and the cor-
responding two points after the transformation. Solving a

210

system of equations that includes translations requires the
use of a homogeneous coordinate system and three pairs
of points. In equation 4 we show the transformation T we
need to solve for. (z;,y;) represents each of the three start-
ing points and (7, ;) are the corresponding ending points.
We need to solve for the transformation matrix T.

t11 ti2 t13 Tr1 T2 X3 z xh xh
ta1 ta2 23 Y1 Y2 Y3 = Yoy s
0 0 1 1 1 1 1 1 1

Assuming we have non-singular matrices, we can solve for
T by inverting X as in equation 5.

T=XxX" (5)

There are some potential problems with collinear points
using equation 5 which we will discuss in section 3.4.2.
There are also a few problems with applying this method of
finding arbitrary affine transformations directly to the Leap
Motion. First, we could potentially use any number of fin-
gers. For the device to be easy to use as a composition and
performance tool we need to handle any number of fingers
intuitively and make transitions seamless. In order to do
this we found that a method of chaining transformations
together is most effective as shown in equation 6. At each
step we receive a list of all fingers that the Leap Motion
was able to find in the scene. At each step we compare
this list to the previous frame to determine which fingers
were present in the previous frame, or in other words are a
“match”. A transformation matrix that describes the change
between the two frames is found and multiplied to the cu-
mulative transformation matrix for the whole gesture. T, is
the cumulative transformation for the first n steps.

ToTie1 ... ToTh = T (6)

Depending on how many matches are found the way the
next step in the transformation is found changes. When
only one finger is found the functionality is the same as the
translation gesture in section 3.3.1. When two matches are
found the functionality is similar to the rotation transfor-
mation described in section 3.3.2 except the center of the
transformation in the BigBang rubette is not fixed. The
denotators can be translated linearly with the movement of
the center of the two found fingers. When there are three
matches we can solve for an arbitrary affine transformation
directly as shown in equation 4.

3.4.1 Overdetermined Transformations

When there are more than three matches the system of
equations is overdetermined and may not have an exact so-
lution. Instead we have to come up with a good guess. The
simplest way to get a good estimate of a transformation is to
use a brute-force method to minimize the error. Assuming
we have a guess of the transformation 7', we can evaluate
the error e as shown in equation 7.

> ITp: — pill (7)

In most cases this method is fast enough to be used in real
time, but the time complexity as the number of matched fin-
gers is ©(n®) as this is a simple n choose k problem with
k fixed at 3. There are methods to ensure that even when
many matches are found that performance is still very good.
RANSAC (Random Sample Consensus) [2] randomly picks
a set of three matched points that are assumed to be in-
liers. The affine transformation is then calculated using

= €

Proceedings of the International Conference on New Interfaces for Musical Expression

these matches. All other points are tested using the error
method shown in equation 7 to see if the transformation is
a good estimate of the rest of the data. Then the process is
repeated with a new random sample. The number of iter-
ations is set based on the performance requirements of the
system or set by a certain error threshold. After all itera-
tions have completed the best estimated transformation is
used.

Another possible extension to the RANSAC method is to
use least-median of squares linear regression [12] to find a
local minima for affine transformation using the error func-
tion in equation 7. The globally optimal solution may not
actually match up exactly with any set of 3 matches. By
choosing the best set of 3 matches and then using the least-
median of squares to find a local minimum the solution
should be closer to the global minimum. Although this
method is not guaranteed to converge on a globally optimal
solution, it will produce a smoother chain of transforma-
tions when there are many matches.

3.4.2 Handling Collinear points

Solving equation 5 requires that the set of points we are us-
ing are non-collinear. As the points approach being collinear,
solving for the affine transformation can become numeri-
cally unstable, or make being precise difficult for the com-
poser. There are a few solutions to this problem. First we
can modify our approach of chaining transformations to-
gether so that instead of updating the starting points of the
match at each step, we keep starting points for as long as
all of the same fingers are matched. Each transformation
can describe multiple frames from the Leap Motion. This
is can solve the problem in some cases, but in many cases
occlusions can cause fingers to be lost, forcing a new trans-
formation to occur in the chain. Another solution is when 3
points are close to collinear we remove one match and only
use the remaining matches. When there are more than 3
matches, we simply skip the iteration of RANSAC that is a
set of near-collinear points. This method has the potential
drawback that it may not always produce a smooth motion
when the composer’s fingers are near collinear.

3.5 Extending to 3D Coordinate Systems

So far the methods we have described for creating different
transformations are all based on a 2D coordinate system
for denotators. Fach of these methods can be extended
to 3D with a few small changes. First, crossing a plane
above the Leap Motion to start manipulating the score is
no longer an effective on/off trigger. This trigger limits
how we can manipulate the score along the z-axis. The
best alternative is to use a trigger external to the Leap
Motion such as a MIDI foot pedal so we can maintain precise
gestures and make the best use of the active space the Leap
Motion covers. This allows us to start and end a gesture in
any area that the Leap Motion covers, is easy to use, and is
simple to implement.

Solving for 3D affine transformations also requires some
changes. First we now need 4 matches to solve for an arbi-
trary 3D affine transformation rather than 3. Each trans-
formation matrix is a 4 X 4 matrix so we can still use a
homogeneous coordinate system. Each of the cases must
change to accommodate. For 1 match the translation is now
in 3D rather than 2D. For 2 matches the translation and ro-
tation is now in 3D. For 3 matches we do not have enough
parameters to solve for an arbitrary 3D affine transforma-
tion. Instead we generate a fourth point that will allow us
to solve for a 3D affine transformation directly. This point is
calculated by finding the vector that is perpendicular to the
plane defined by the 3 matched points. Equations 8 and 9

211

show how to generate a fourth point. By using this equation
on both the starting and corresponding end points a trans-
formation can be found with only 3 non-collinear matches.

v o= (pz*pl)x(m*pl) (8)
P p1+ﬁ 9)

In 9 the normalization step can be left out to allow the
points to be scaled along the basis vector v proportionally
to the average of the scaling along the basis p» — p1 and
P3 — 1

When there are 4 matches the affine transformation can
be solved for directly. Finally when there are more than 4
matches a brute force or RANSAC method can be used.

4. ADVANCED USES OF LEAP MOTION
AND BIGBANG

Using the Leap Motion to define, move around, and trans-
form arbitrary denotator objects in BigBang adds highly
intuitive and direct possibilities for musical improvisation
and composition. However, these are just the basic func-
tions of the BigBang rubette. When combined with the
more complex operations available in BigBang, there are
unique possibilities.

4.1 Dynamic Motives
4.1.1 Transformations

The transformation graph generated by the BigBang ru-
bette (described in Section 2.2) not only keeps track of all
operations and transformations in order of execution, but
also allows users to edit and adjust earlier transformations
while observing later states of the composition. Previously,
the add operation which adds denotators to the composi-
tion could merely be edited by drawing additional objects
with the mouse. The gestural immediacy of Leap Motion
now allows users to edit an earlier set of denotators by re-
defining them gesturally, basically holding a denotator with
each of their fingers, while all subsequent transformations
and operations are applied to these redefined objects. This
allows us to for instance gesturally define a preliminary set
of denotators, then produce several copies by translating,
rotating and scaling them, and finally go back and edit the
objects added in the first step. This regenerates all copies
based on the currently defined input set.

4.1.2 Wallpapers

Even more powerful is the use of the wallpaper function
(see [14, 9]), which systematically creates patterns of copies
of an original motif, by applying a number of transforma-
tions repeatedly to it. When the step where the wallpa-
per motif is drawn is reedited with Leap Motion, the motif
can virtually be grabbed by the user and moved around
upon which the entire wallpaper moves accordingly. Fig-
ure 5 shows an example of such a wallpaper, where the
motif has a recognizable hand shape defined by the user.

4.1.3 Gesturalized Processes

A third possibility is to use the BigBang rubette’s gestu-
ralizing function which animates the entire evolution of the
compositional process gesturally (see Section 2.2). Even
during the process of gesturalization, the input set of de-
notators can be varied, which enables the user for instance
to define a process of a gradually evolving complex sound
structure, the germinal motif of which is itself changing.
Note that any of these examples in this section can be cre-
ated using any user-defined form, which means that the de-

Proceedings of the International Conference on New Interfaces for Musical Expression

Input active

Form
FMSet: power Select
X YA WRGB H SV
Loudnessz [
Pitch Q /me[c|

Pan R ™

satellte Level

Sibling number

ptions

Object| FMNode

Level [0

{500

{-a00 -

t-s00

Figure 5: A wallpaper with a motif defined by the
fingers of a hand.

notators defined gesturally with Leap Motion can represent
any objects, for instance oscillators, modulators, pitches in
a chord, or sound events in a loop.

4.2 Dynamic Sound Synthesis

Instead of defining motifs in a composition or improvisation
as suggested in the previous section, the denotators defined
in real time with Leap Motion can also be interpreted as
designed sounds, directly mapped to the keys of a keyboard
controller. While the user is playing the keyboard, the po-
sitions of the fingers over the Leap Motion can be directly
mapped to carrier oscillators or frequency modulators (as
shown in Figure 4) and each hand movement changes their
parameters. Such a hierarchical modulator structure is es-
pecially interesting for Leap Motion control, since the palms
of the hands can define the carriers while the fingers define
the hierarchically dependent modulators. In a similar way,
the user can create sounds and transform them gesturally in
any of the geometrical transformation modes. This way, in-
stead of changing simple parameters in a linear way as with
commonly available synthesizer interfaces, multiple param-
eters can be changed in a complex way, such as for instance
manipulating both frequency and amplitude of hundreds of
oscillators around a defined sound center.

4.3 Playing Instruments with Leap Motion

A final example for an application of Leap Motion in con-
junction with BigBang uses the new real-time midi out func-
tion of BigBang. Objects generated with BigBang may also
be played back on instruments with a midi interface, such as
a midi grand piano. The most straightforward application
of this is to move the hands in a space roughly correspond-
ing to the real instrument space, such as pitch as an x-axis
and loudness a y-axis with a piano. However, the improviser
may also choose to act on an abstract level not directly re-
lated to the instrument. One finger may stand for an entire
chord or pattern to be played and moving it around may
change the pattern. This way, the improviser gains higher-
level control over the instrument, while keeping the gestural
intuitiveness commonly associated with instrument-playing.

5. REFERENCES

[1] P. Boulez. Jalons. Bourgeois, Paris, 1989.

[2] M. A. Fischler and R. C. Bolles. Random sample
consensus: A paradigm for model fitting with
applications to image analysis and automated
cartography. Commun. ACM, 24(6):381-395, June
1981.

212

[3] J. Frangoise, N. Schnell, and F. Bevilacqua. A
multimodal probabilistic model for gesture—based
control of sound synthesis. In Proceedings of the 21st
ACM international conference on Multimedia, pages
705-708. ACM, 2013.

Geco. multi-dimensional midi expression through
hand gestures. http://www.uwyn.com/geco.

D. Lewin. Generalized Musical Intervals and
Transformations. Oxford University Press, New York,
NY, 1987/2007.

G. Mazzola. The Topos of Music. Geometric Logic of
Concept, Theory, and Performance. Birkhiuser,
Basel, 2002.

G. Mazzola and M. Andreatta. From a categorical
point of view: K-nets as limit denotators. Perspectives
of New Music, 44(2), 2006.

G. Mazzola and F. Thalmann. Musical composition
and gestural diagrams. In C. Agon et al., editors,
Mathematics and Computation in Music - MCM
2011, Heidelberg, 2011. Springer.

G. Milmeister. The Rubato Composer Music Software:
Component-Based Implementation of a Functorial
Concept Architecture. Springer, Berlin/Heidelberg,
2009.

E. R. Miranda and M. M. Wanderley. New digital
musical instruments: control and interaction beyond
the keyboard, volume 21 of Computer music and
digital audio series. A-R Editions, Middleton, 2006.
T. J. Mitchell. Soundgrasp: A gestural interface for
the performance of live music. In Proc. NIMFE, volume
2011, 2011.

P. J. Rousseeuw. Least median of squares regression.
Journal of the American Statistical Association,
79(388):pp. 871-880, 1984.

S. Sentiirk, S. W. Lee, A. Sastry, A. Daruwalla, and
G. Weinberg. Crossole: A gestural interface for
composition, improvisation and performance using
kinect. In Proc. NIME, volume 2012, 2012.

F. Thalmann and G. Mazzola. The bigbang rubette:
Gestural music composition with rubato composer. In
Proceedings of the International Computer Music
Conference, Belfast, 2008. International Computer
Music Association.

F. Thalmann and G. Mazzola. Affine musical
transformations using multi-touch gestures. Ninad,
24:58-69, 2010.

F. Thalmann and G. Mazzola. Poietical music scores:
Facts, processes, and gestures. In Proceedings of the
Second International Symposium on Music and Sonic
Art, Baden-Baden, 2011. MuSA.

F. Thalmann and G. Mazzola. Using the creative
process for sound design based on generic sound
forms. In MUME 2013 proceedings, Boston, 2013.
AAAT Press.

F. Thalmann and G. Mazzola. Visualization and
transformation in a general musical and
music-theoretical spaces. In Proceedings of the Music
Encoding Conference 2013, Mainz, 2013. MEIL.

M. M. Wanderley. Gestural control of music. In
International Workshop Human Supervision and
Control in Engineering and Music, pages 632—644,
2001.

D. Wessel and M. Wright. Problems and prospects for
intimate musical control of computers. Computer
Music Journal, 26(3):11-22, 2002.

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

