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ABSTRACT

In this paper, the Rayleigh-Rayleigh (RR) distribution is presented. The RR distribution
is a new model which is constructed based on infinite mixture distribution and some
properties are described. The model is applied to the motor insurance claims of 3 voluntary
plans and compared to the current models that are derived from exponential and some
traditional models. The maximum likelihood estimation (MLE) is the parameter
estimation. The various measurements of model fitting are the Kolmogorov—-Smirnov test
(K-S test), the Anderson—Darling test (AD test), Akaike information criterion (AIC) and
Bayesian information criterion (BIC). We have found that the RR distribution is more
suitable for the data than some current distributions such as Weibull, Gamma, Exponential
and Rayleigh.

KEYWORDS

AIC, BIC, Exponential-Exponential (EE) distribution, Exponentiated Exponential-
Exponential (EEE) distribution, Gamma-Exponential distribution (GED) distribution,
Generalized Pareto distribution (GPD).

1. INTRODUCTION

The Rayleigh and Exponential distributions are usually implemented for model
construction. They are easily applied for model fitting, since there is only one parameter
for its model. However, many modelers always modify or create new distributions based
on them to be heavy-tailed or better fit than the traditional models can handle.

The Rayleigh distribution is applicable to many areas of science, such as noise theory,
lethality and radar return. It is a good model for approximation in engineering practice. The
proof of Rayleigh distribution and its generalizations are explained by Beckmann (1964).
In 1967, Archer described some properties of the Rayleigh distribution random variables
and their sums and products. Karim et al. (2011) presented Rayleigh mixture distributions
based on weight functions. These are a mixture of Rayleigh distribution with sampling of
Chi-square, t and F distributions. The method of moment is use for the estimation of
parameters. Muhammad (2014) created a two parameter generalization Inverse Rayleigh
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distribution. The data sets, both simulation and real data, are better fitted by the model than
the modified inverse Rayleigh, inverse Rayleigh and inverse Exponential distributions. The
real data consist of 72 exceedances for the years 1958-1984 which correspond to the
exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon
Territory, Canada. In 2017, Akarawak et al. introduced the Gamma-Rayleigh distribution
that is a new member of the Gamma-X family of generalized distributions. It is applied to
the two sets of survival data which are secondary data on the time needed for patients to
recover from typhoid fever and the time to drop out from an insurance policy. The
distribution mostly produced fits and was competitive among the Gamma, Rayleigh,
Weibull and Lognormal distributions with maximum likelihood estimation (MLE).

Exponential distribution has a fundamental role in describing the area of reliability
theory and is commonly used to model the waiting time for how long one is required for a
successful or failed event to occur. The parameter of its distribution is sometimes called
the failure rate or intensity of the exponential. It is suitable for small sized data. There are
many new distributions which are constructed from Exponential distribution. For example,
Kareema et al. (2013) introduced Exponential Pareto Distribution for which some proofs
are described. Mahmoud (2014) constructed and proved the Exponentiated Inverted
Weibull Distribution. This model is applied to aggregated loss for reinsurance premium
pricing. Zahida Perveen et al. (2016) presented the size-biased double Weighted
Exponential distribution and found that it fits the ball bearing data records better than the
size-biased Rayleigh and size-biased Maxwell distributions using the Anderson-Darling
(AD) and Cramer-von Mises tests. Dankunprasert (2017) presented Gamma-Exponential
distribution (GED) and Exponential-Exponential distribution (EED) constructed from an
infinite mixture model for severity claims of motor insurance. Recently, Dankunprasert et
al. (2021) explained the derivative of inverse Pareto distribution (IPD) and GED which are
derived from different constructions but formed by the same distribution. Some properties
and tail behavior of IPD are presented. This is a good competitor with the generalized
Pareto distribution (GPD) for the modeling of tail distribution, by using the Kolmogorov—
Smirnov test (K-S test), Anderson—Darling test (AD test), Akaike information criterion
(AIC) and Bayesian information criterion (BIC), for both simulation data and Danish fire
data.

In this paper, we are interested in a construction of the models using infinite mixture
distributions. This new model is presented by Rayleigh-Rayleigh (RR) distribution and
compared with the model derivative from Exponential and Rayleigh distributions
consisting of GED and EED. We have shown that GED can be derived from Exponential-
Exponential distribution based on exponentiated distribution in an alternative method for
model construction. Thus, the GED is abbreviated as EEE distribution in this paper. Some
properties of RR distribution and EED or EE distribution are described. Some traditional
distributions of Exponential (Exp), Rayleigh (R), Lognormal (LN), Gamma (Gam),
Weibull (Wei) and generalized Pareto distribution (GPD) are compared for model fitting.
The models are applied to 3 data sets of motor insurance claims from a voluntary plan. The
various measurements of model fitting are the K-S test, AD test, AIC and BIC. Their results
are analyzed for model selection.
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2. MODEL
2.1 Construction of New Models

2.1.1 Infinite Mixture Models

Suppose a random variable X is a conditional distribution given by A. We denote its
probability density function (pdf) by f(x|1). The continuous weighting function is treated
as a pdf for 4, say g(4). Accordingly, the joint pdf is f(x|1)g(4) and the compound pdf
can be thought of as the marginal (unconditional) pdf of X,

hG) = [ fr gD,

where fy (x|4) is the pdf of X with parameter A and g, (1) is the pdf of A. The distribution
function can be determined from

X
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where Fy(x|A) is the cumulative density function (cdf) of X with parameter A and g, (1)
is the pdf of A.

2.1.2 Rayleigh-Rayleigh Distribution
Suppose a random variable X follows the Rayleigh distribution. Denote its cdf by
F(x|o) where

x?%0?

F(xla)=1—exp<— );J>O,x20.

The Rayleigh distribution will be used as the mixing distribution. The pdf of the
Rayleigh distribution is
2t2
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The unconditional cdf of X is
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Hence,
2
F(X) Zm;t>0,x20.
The pdf is given by
2
= . > 0.
fx) o t2)2't >0,x=>0

2.2 Exponentiated Exponential-Exponential Distribution

The Exponentiated Exponential-Exponential (EEE) distribution is the same distribution
as the Gamma-Exponential distribution (GED) and the inverse Pareto distribution (IPD),
but it was derived from a different method. Dankunprasert, S. (2017) constructed the GED
for severity claims of motor insurance by using infinite mixture distribution. In this paper,
the EEE distribution is derived from the Exponentiated model by using Exponential-
Exponential (EE) distribution. The Exponentiated distribution is proposed by Gupta et al.
(1998) for time failure data. Its model is specified as below.

Given a random variable X with the baseline distribution function of F(x), the class of
Exponentiated distribution is defined as

Go(x) = [F(0)]™
where « is a positive real number. It has been called the Lehman alternative where «a is a
positive integer.

The EEE distribution is built from EE distribution by the Exponentiated model which
is in the following form:

Suppose a random variable X follows an Exponential-Exponential distribution. Denote
its cdf by F(x|b) where

b
=1-—": > 0.
F(x|b) =1 P> ;b>0,x=>0
The cdf of the EEE distribution is easily described as

X a
G, (x) = m] :bh>0,a>0x 0.

The pdf is given by
bax®™1

Gy pyes b>0a>0x=0

ga(x) =

3. PROPERTIES

This section presents some properties of the distributions of Rayleigh-Rayleigh (RR),
Exponential-Exponential (EE) and Exponentiated Exponential-Exponential (EEE) such as
survival, hazard functions, value-at-risk (VaR), expected value and limited expected value.
Some proof of the property for heavy tailed distributions are also explained.
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3.1 Rayleigh-Rayleigh Distribution
Survival function

t2
SO =y
Hazard function
2x
h(x) = PRt
VaR
tZ
T[D = p—l _ 1'
Expected value
mt
ElX| =—.
X1 =

Since E[X?] cannot be found because of upper limited of integrate, we will consider
the limit of expectation in second order to be the variance. The limited loss random variable
X A is defined as

XAu=

The kth limited expectation can be written as

E[(X Aw)¥] = fx"f(x)dx +uk[1 - Fw)]

Therefore, the second order of limited expectation of X on Rayleigh-Rayleigh
distribution is in the form of

u

E[(X Au)?] = fxzf(x)dx +u?[1 - F@)]

fu 2xt? x?

x dx+u?|1l ————

o (o]
W+ tHIn(x?2 +t2) —u?QIn(e) +1) —2t2In(t) + u
< x2 + t2 )

E[(X Au)?] =

Theorem 1:
Let X be arandom variable. A heavy tailed distribution has a tail that is heavier than an
Exponential distribution. Then RR has a heavy tail.
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Proof:
Consider the survival function of RR, Sgz (x), compared with survival function of Exp,
Sexp(x). Then, the limit of the ratio will be the same, as can be seen by an application of

L'Hopital's rule:

m Srr(%) - lim Srr(x) R —frr(x) - lim frr(X)
x*mSExp(x) x> I;*xp(x) X _fExp(x) x_’°°fExp(x)
2xt?
. (xZ+t2)Z  2xt’exp(dx)

T 0% lexp(—Ax) | xom A(x2 + t2)2

Since exponential goes to infinity faster than polynomials, the limit is infinity. So,
the RR has a heavier tail than the Exponential. Therefore, the RR is a heavy tailed
distribution.

3.2 Exponential-Exponential Distribution
Since this model has not been described with any references to its properties, we explain
some of the properties in this section.

Survival function

b
x+b
Hazard function

Sx) =

1
hGd) =73

VaR

p
- b I:—:l.
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Expected value
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E[X] = fx-f(x)dx

—00
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b
- [ e
0

[ (—b)
=J.b- 7 du ;u=x+banddu =dx
b

=b[limna—-mnb-1]
a—oo
Since we cannot find the expected value because of the upper limit of integration, we
will consider the limit of expectation for the first and second order to become the expected
value and variance.
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The first order of limited expectation of X
u

E[(X Auw)] = fxf(x)dx +ul[l - F(u)]

— 00
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:fx.(x-fb)zdx-i-u[l_(l_u-ll)-b)]

u—>n ub
=bJ- du + ;whereu = x + b and du = dx
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The second order of limited expectation of X
u

E[(X Auw)?] = fxzf(x)dx +u?[1 - F)]
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u —2ub+b2 u?b
= du + ;whereu = x + b and du = dx
u+b

u+b u+b
b2 ub
=b J ldu—J —du+J —zdu+
u u+b

u(u +b) = b(u+b) ln( Z b)]

Theorem 2:
Let X be a random variable. The probability distribution function is an Exponential-
Exponential (EE) distribution such that

b
S > 0.
F0) =y b>0x20
Then EE has a heavy tail.
Proof:
The hazard rate function for the EE is
b
h(x)—f(x) G+bh2_ b (x+bh) 1
©S(x) b~ (x+b)2 b  (x+b)
(x+b)
Since
1
h(x)=—-——=<0.

(x + b)?
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Using classification based on the hazard rate function, then h(x) is decreasing. EE with
decreasing hazard rate function has a heavy tail.

3.3 Exponentiated Exponential-Exponential Distribution

Dankunprasert et al. (2021) described some properties of GED or Exponentiated
Exponential-Exponential (EEE) distribution without limited expectation. Thus, we present
the limited expectation for the first and second order of EEE distribution in addition.

Survival function
a

5(x)=1—(xib) .

Hazard function
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The first order of limited expectation of X
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The second order of limited expectation of X
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4. MATERIAL AND METHODS
The following are the models, parameter estimation, measurements of model fitting and
some descriptive statistics of data sets.

4.1 The Models

The loss distributions are selected for comparison which are composed of the
distributions Rayleigh-Rayleigh (RR), Exponential-Exponential (EE), Exponentiated
Exponential-Exponential (EEE), Exponential (Exp), Rayleigh (R), Lognormal (LN),
Gamma (Gam), Weibull (Wei) and generalized Pareto distribution (GPD).
4.2 Parameter Estimation and Measurement of Model Fitting

4.2.1 Parameter Estimation
The method of maximum likelihood estimation (MLE) provides an estimator of RR by
means of the following procedure:

The pdf of infinite mixture Rayleigh-Rayleigh distribution
2xt?
f(x)=m ;t>0,x2>0.
A random sample X, X, .., X, are n independent observation on a random
variable X.

The likelihood function can be written as follows:

intz
LG+ ey

and the natural Iog—likelihood function is in the form
low L = Zl 2x;t?
o8 Bl + 22

Taking the partial derivatives of the natural log-likelihood function with respect to the
parameters is as follows:

L 1og L(t) = 2 4ti !
dat %9 © ,_1(xi2+t2)'

We estimate £ for t by %log L(t) =0.

2n 4tz": 1,
t ,l(xi2+t2)_'
i=

Solves the equations numerically for the estimated parameters by the fixed point
iteration method.

Thus,
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4.2.2 Measurement of Model Fitting
There are four measurements for model fitting and their formulae are the following:

4.2.2.1 The Kolmogorov-Smirnov Test
The K-S test statistic is defined by

D = sup|F,(x) — Fx(x)|.

where F,(x) is empirical cdf of X with sample size n and Fy(x) is the theoretical
cumulative distribution of the distribution being tested.

4.2.2.2 Anderson-Darling Test (AD Test)
Anderson-Darling test

1 n
AD = —n-— 52(2i — D)[log F(x;) + log{1 — F (i)}

where F is the theoretical cumulative distribution of the distribution being tested and n is
the number of data points, the number of observations, or equivalently, the sample size.

4.2.2.3 The Akaike Information Criterion (AIC)
AIC =2k — 21log(L(8)),

where k is the number of parameters estimated and log L(8) is the natural log-likelihood
function.

4.2.2.4 Bayesian Information Criterion (BIC)
BIC = -2 log(L(G)) + klog(n),

where log L(0) is the natural log-likelihood function and n is the number of observations.

5. APPLICATION

In this section, we apply the new model, RR and current models to the actual claim data
for comparison.

5.1 Data

We consider the motor insurance claim according to 3 voluntary plans. The claim data
payment of the year 2009 belongs to non-life insurance in Thailand which are named as
Plan-A, Plan-B and Plan-C. The claim amount is the individual data in Thai Baht. The
number of claim policies (n) of Plan-A, Plan-B and Plan-C are 42, 1,296 and 2,894,
respectively. Some descriptive statistics are shown to be information about the dataset in
Table 1.

We have seen that the observed claim amount of all plans are the right skewed
distributions. The skewness of Plan A, B and C are 4.50, 10.67 and 32.60, respectively,
which are illustrated by the histograms of claim amount with logarithmic scales as in the
Figure 1.
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Table 1
Some Descriptive Statistics of Motor Insurance Claims
Plan
Item
A B C
Mean 7,405.02 17,662.45 14,638.17
Median 4,600 7,297 4,403
Skewness 4.50 10.67 32.60
Kurtosis 23 181 1,317
Standard deviation 11,349 41,332 90,606
Coefficient of variation 1.53 2.34 6.19
?j i
Nl l — — el —
@) (b)
()

Figure 1: Histograms of log(claim) for (a) Plan-A (b) Plan-B and (c) Plan-C

325
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5.2 Results
The 3 Tables show the estimated parameters, K-S test, AD test, AIC and BIC statistics.
The results at a significant level @ = 0.05 of model fitting for each data set are as follows.

Table 2: Plan-A (n=42)

The claims data can be fitted by the distribution of RR, LN, EEE and Wei by the K-S
and AD test. Based on the lowest value of the AIC and BIC, the RR distribution is the best
fit for the data, following the distributions of LN, EEE, GPD, Exp, Wei, Gam, EE and R,
respectively. The EE is the least suitable for the data.

Figure 2 shows the pdf of the distribution of RR, LN and EEE, respectively.

Figures 3 and 4 show the cdf of the distributions and P-P plots of the distributions of
RR, LN and EEE versus the empirical distribution, respectively. They show that the fitted
cdf for RR distribution is closer to the empirical cdf than the fits of the distributions of LN
and EEE. The RR distribution is also good fit to the large claim amount for the dataset of
Plan-A.

Table 3: Plan-B (n=1,296)

The claims data cannot be fitted by any models with the K-S or AD test. Based on the
lowest value of the AIC and BIC, the LN distribution is the best fit for the data, followed
by the distributions of EEE, GPD, RR, EE, Wei, Gam, Exp and R, respectively. The RR
distribution fits to the data better than the EE distribution. The distributions of RR and EE
are more suitable for the data than Wei, Gam, Exp and R.

Figure 5 shows the pdf of the distribution of LN, EEE and GPD, respectively. Figures
6 and 7 show the cdf of distributions and P-P plots of the distributions of LN, EEE and
GPD versus the empirical distribution, respectively. Their figures demonstrate to confirm
which the LN distribution is better fit than the distributions of EE and GPD.

Table 4: Plan-C (n=2,894)

The claims data cannot be fitted to any models with the K-S and AD tests. Based
on the lowest value of the AIC and BIC, the EEE distribution is the best fit for the
data, followed by the distributions of LN, RR, GPD, EE, Wei, Gam, Exp and R,
respectively. The RR distribution fits to the data better than EE and some current
distributions, except for EEE and LN. The EE distribution is more suitable for the data than
Wei, Gam, Exp and R.

Figure 8 shows the pdf of the distribution of EEE, LN and RR, respectively. Figures 9
and 10 show the cdf of distributions and P-P plots of the distributions of EEE, LN and RR
versus the empirical distribution, respectively. Similar to the dataset of Plan-B, the EEE
distribution is the best fit and suitable for the Plan-C dataset.
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Table 2
Motor Insurance Data of Plan-A (n=42)
Estimated Measurements of Model Fitting
Distributions
Parameters K-S test AD test AlC BIC
D = 0.0961 | AD = 0.2658
RR t=4.3939 817.8218 | 819.5595
X 10 p — value p — value
= 0.8329 = 0.9612
D = 02396 | AD = 3.3038
EE b= 44661 841.1190 | 842.8567
X 10 p — value p — value
= 0.01607 = 0.0194
b = 482180 | D = 0.1440 | AD = 1.2939
EEE » — value » — value 826.6241 | 830.0994
@ = 66.1336 = 0.3486 = 0.2342
D = 02289 | AD = 2.6899
Exp A=11536 835.4222 | 837.1598
x 10 p —value p — value
= 0.0245 = 0.0397
D =0.5476 | AD =29.7411
R o =9.5019 917.2448 | 918.9825
X 10 p — value p — value
< 0.01 < 0.01
u=84227157| D = 0.1033 | AD = 0.4244
LN — S value | 8216733 | 825.1486
0= 08981225 _ (7609 = 0.8234
a=09212 D = 02191 | AD = 2.5981
Gam = 10627 > — value » — value 838.1186 | 841.5939
x107* = 0.0355 = 0.0443
a=09716 D = 01791 | AD = 1.7678
Wei b= 72844 » — value » — value 836.3515 | 839.8268
x 103 = 0.1351 = 0.1240
b =x51'g§85 D = 02151 | AD = 1.7659
GPD » — value » — value 832.3463 | 835.8217
s = 02096 = 0.0410 = 0.1243
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Table 3
Motor Insurance Data of Plan-B (n=1,296)
Estimated Measurements of Model Fitting
Distributions P t
arameters K-S test AD test AIC BIC
D =0.0875 | AD = 33.4740
RR t=74389 27526.2502 | 27531.4173
x 10 p — value p — value
< 0.01 <0.01
D =0.1215 | AD = 37.0350
EE b =76240 27620.5172 | 27625.6842
x 10 p — value p — value
<0.01 < 0.01
b :X 11613379 D =0.0381 | AD = 4.4783
EEE — value b — value 27364.9162 | 27375.2503
@=47260 | _ 0462 < 0.01
D =0.1961 AD > 38
Exp A =56617 27941.6769 | 27946.8439
x 10 p — value p — value
< 0.01 < 0.01
D = 0.6321 AD > 38
R o =3.1772 33000.1921 | 33095.3591
x 10 p — value p — value
< 0.01 < 0.01
u=28967189 | D = 0.0466 | AD = 3.3749
LN »— value »— value 27354.8190 | 27365.1530
o = 1.180438 < 0.01 =0.0177
a =0.7388 D = 0.1473 AD > 38
Gam = 41826 »— value »— value 27855.4500 | 27865.7900
x1075 < 0.01 < 0.01
a=0.7752 D =0.1160 | AD = 33.0300
Wei Y WYy Ee—— S value | 27723.1490 | 277334831
x 10* < 0.01 < 0.01
b 2)((3183685 D = 0.0978 | AD = 15.2370
GPD »— value »— value 27486.1322 | 27496.4663
s = 04360 < 0.01 <0.01
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Figure 7: The P-P Plot (a) LN (b) EEE and (c) GPD
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Table 4
Motor Insurance data of Plan-C (n=2,894)
Estimated Measurements of Model Fitting
Distributions P
arameters K-S test AD test AlC BIC
D =0.0781 AD =53.1680
RR t= 4'7223 58688.0303 | 58694.0007
x10 p — value p — value
< 0.01 < 0.01
D =0.1443 AD =108.9600
EE b= 4'8267 59131.0029 | 59136.9733
x 10 p — value p — value
< 0.01 < 0.01
b= 5{'012811 D =0.0494 AD =16.9220
EEE : — S value | 584093105 | 584212513
@ = 6.6460 < 0.01 < 0.01
D =0.2837 AD > 109
Exp A= 6'8_3515 61304.9500 | 61310.9200
x10 p — value p —value
< 0.01 < 0.01
D = 0.84204 AD > 109
R 7 = 64888 84614.3927 | 84620.3631
x10 p — value p —value
< 0.01 < 0.01
u = 8.5423 D =0.0677 AD =21.7310
LN p— value » — value 58542.1449 | 58554.0857
o =11648 < 0.01 < 0.01
a = 0.5904 D =0.1957 AD > 109
Gam 7 = 20330 »— value » — value 60641.2200 | 60653.1600
x 1075 < 0.01 < 0.01
a = 0.6922 D =0.1544 AD > 109
Wei b =94792 » — value » — value 59826.8415 | 59838.7823
x 103 < 0.01 < 0.01
b= 51'?]394 D =0.1232 AD =59.8190
GPD X p— value » — value 58863.9813 | 58875.9221
s = 04887 < 0.01 < 0.01
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6. CONCLUSION

For all data, the Rayleigh-Rayleigh distribution is a better fit than the distributions of
Exponential-Exponential and Rayleigh. The distributions of Rayleigh-Rayleigh and
Exponential-Exponential are more suitable for the data than some traditional distributions

such as Weibull, Gamma, Exponential and Rayleigh.
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