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ABSTRACT 
 

 In this paper, the Rayleigh-Rayleigh (RR) distribution is presented. The RR distribution 

is a new model which is constructed based on infinite mixture distribution and some 

properties are described. The model is applied to the motor insurance claims of 3 voluntary 

plans and compared to the current models that are derived from exponential and some 

traditional models. The maximum likelihood estimation (MLE) is the parameter 

estimation. The various measurements of model fitting are the Kolmogorov–Smirnov test 

(K–S test), the Anderson–Darling test (AD test), Akaike information criterion (AIC) and 

Bayesian information criterion (BIC). We have found that the RR distribution is more 

suitable for the data than some current distributions such as Weibull, Gamma, Exponential 

and Rayleigh. 
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 AIC, BIC, Exponential-Exponential (EE) distribution, Exponentiated Exponential-

Exponential (EEE) distribution, Gamma-Exponential distribution (GED) distribution, 

Generalized Pareto distribution (GPD).  

 

1. INTRODUCTION 
 

 The Rayleigh and Exponential distributions are usually implemented for model 

construction. They are easily applied for model fitting, since there is only one parameter 

for its model. However, many modelers always modify or create new distributions based 

on them to be heavy-tailed or better fit than the traditional models can handle. 
 

 The Rayleigh distribution is applicable to many areas of science, such as noise theory, 

lethality and radar return. It is a good model for approximation in engineering practice. The 

proof of Rayleigh distribution and its generalizations are explained by Beckmann (1964). 

In 1967, Archer described some properties of the Rayleigh distribution random variables 

and their sums and products. Karim et al. (2011) presented Rayleigh mixture distributions 

based on weight functions. These are a mixture of Rayleigh distribution with sampling of 

Chi-square, t and F distributions. The method of moment is use for the estimation of 

parameters. Muhammad (2014) created a two parameter generalization Inverse Rayleigh 
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distribution. The data sets, both simulation and real data, are better fitted by the model than 

the modified inverse Rayleigh, inverse Rayleigh and inverse Exponential distributions. The 

real data consist of 72 exceedances for the years 1958–1984 which correspond to the 

exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon 

Territory, Canada. In 2017, Akarawak et al. introduced the Gamma-Rayleigh distribution 

that is a new member of the Gamma-X family of generalized distributions. It is applied to 

the two sets of survival data which are secondary data on the time needed for patients to 

recover from typhoid fever and the time to drop out from an insurance policy. The 

distribution mostly produced fits and was competitive among the Gamma, Rayleigh, 

Weibull and Lognormal distributions with maximum likelihood estimation (MLE). 
 

 Exponential distribution has a fundamental role in describing the area of reliability 

theory and is commonly used to model the waiting time for how long one is required for a 

successful or failed event to occur. The parameter of its distribution is sometimes called 

the failure rate or intensity of the exponential. It is suitable for small sized data. There are 

many new distributions which are constructed from Exponential distribution. For example, 

Kareema et al. (2013) introduced Exponential Pareto Distribution for which some proofs 

are described. Mahmoud (2014) constructed and proved the Exponentiated Inverted 

Weibull Distribution. This model is applied to aggregated loss for reinsurance premium 

pricing. Zahida Perveen et al. (2016) presented the size-biased double Weighted 

Exponential distribution and found that it fits the ball bearing data records better than the 

size-biased Rayleigh and size-biased Maxwell distributions using the Anderson-Darling 

(AD) and Cramer-von Mises tests. Dankunprasert (2017) presented Gamma-Exponential 

distribution (GED) and Exponential-Exponential distribution (EED) constructed from an 

infinite mixture model for severity claims of motor insurance. Recently, Dankunprasert et 

al. (2021) explained the derivative of inverse Pareto distribution (IPD) and GED which are 

derived from different constructions but formed by the same distribution. Some properties 

and tail behavior of IPD are presented. This is a good competitor with the generalized 

Pareto distribution (GPD) for the modeling of tail distribution, by using the Kolmogorov–

Smirnov test (K-S test), Anderson–Darling test (AD test), Akaike information criterion 

(AIC) and Bayesian information criterion (BIC), for both simulation data and Danish fire 

data. 
 

 In this paper, we are interested in a construction of the models using infinite mixture 

distributions. This new model is presented by Rayleigh-Rayleigh (RR) distribution and 

compared with the model derivative from Exponential and Rayleigh distributions 

consisting of GED and EED. We have shown that GED can be derived from Exponential-

Exponential distribution based on exponentiated distribution in an alternative method for 

model construction. Thus, the GED is abbreviated as EEE distribution in this paper. Some 

properties of RR distribution and EED or EE distribution are described. Some traditional 

distributions of Exponential (Exp), Rayleigh (R), Lognormal (LN), Gamma (Gam), 

Weibull (Wei) and generalized Pareto distribution (GPD) are compared for model fitting. 

The models are applied to 3 data sets of motor insurance claims from a voluntary plan. The 

various measurements of model fitting are the K-S test, AD test, AIC and BIC. Their results 

are analyzed for model selection. 
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2. MODEL 
 

2.1 Construction of New Models  
 

2.1.1 Infinite Mixture Models  

 Suppose a random variable 𝑋 is a conditional distribution given by 𝜆. We denote its 

probability density function (pdf) by 𝑓(𝑥|𝜆). The continuous weighting function is treated 

as a pdf for 𝜆, say 𝑔(𝜆). Accordingly, the joint pdf is 𝑓(𝑥|𝜆)𝑔(𝜆) and the compound pdf 

can be thought of as the marginal (unconditional) pdf of 𝑋, 
 

ℎ(𝑥) = ∫ 𝑓𝑋(𝑥|𝜆)𝑔Λ(𝜆)𝑑𝜆. 

 

where 𝑓𝑋(𝑥|𝜆) is the pdf of 𝑋 with parameter 𝜆 and 𝑔Λ(𝜆) is the pdf of Λ. The distribution 

function can be determined from  
 

𝐻(𝑥)   = ∫ ∫ 𝑓𝑋(𝑦|𝜆)𝑔Λ(𝜆)𝑑𝜆 𝑑𝑦

𝑥

−∞

 

= ∫ ∫ 𝑓𝑋(𝑦|𝜆)𝑔Λ(𝜆) 𝑑𝑦 𝑑𝜆

𝑥

−∞

 

= ∫ 𝐹𝑋(𝑥|𝜆)𝑔 (𝜆)𝑑𝜆.   

 

where 𝐹𝑋(𝑥|𝜆) is the cumulative density function (cdf) of 𝑋 with parameter 𝜆 and 𝑔Λ(𝜆) 

is the pdf of Λ.  
 

2.1.2 Rayleigh-Rayleigh Distribution 

 Suppose a random variable 𝑋  follows the Rayleigh distribution. Denote its cdf by 

𝐹(𝑥|𝜎) where 
 

𝐹(𝑥|𝜎) = 1 − exp (−
𝑥2𝜎2

2
) ; 𝜎 > 0, 𝑥 ≥ 0. 

 

 The Rayleigh distribution will be used as the mixing distribution. The pdf of the 

Rayleigh distribution is  
 

𝑔(𝜎) = 𝜎𝑡2 exp (−
𝜎2𝑡2

2
) ;  𝑡 > 0, 𝜎 ≥ 0. 

 

The unconditional cdf of 𝑋 is 
 

𝐹(𝑥)   = ∫ [{1 − exp (−
𝑥2𝜎2

2
)} ∙ {𝜎𝑡2 exp (−

𝜎2𝑡2

2
)}]

∞

0

 𝑑𝜎 

 

= ∫ 𝜎𝑡2 exp (−
𝜎2𝑡2

2
)

∞

0

 𝑑𝜎 − ∫ 𝜎𝑡2 exp (−
𝑥2𝜎2

2
−

𝜎2𝑡2

2
) 

∞

0

𝑑𝜎 

=
𝑥2

𝑥2 + 𝑡2
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Hence, 
 

𝐹(𝑥) =
𝑥2

𝑥2 + 𝑡2
; 𝑡 > 0, 𝑥 ≥ 0. 

 

The pdf is given by 
 

𝑓(𝑥) =
2𝑥𝑡2

(𝑥2 + 𝑡2)2
; 𝑡 > 0, 𝑥 ≥ 0. 

 

2.2 Exponentiated Exponential-Exponential Distribution 

 The Exponentiated Exponential-Exponential (EEE) distribution is the same distribution 

as the Gamma-Exponential distribution (GED) and the inverse Pareto distribution (IPD), 

but it was derived from a different method. Dankunprasert, S. (2017) constructed the GED 

for severity claims of motor insurance by using infinite mixture distribution. In this paper, 

the EEE distribution is derived from the Exponentiated model by using Exponential-

Exponential (EE) distribution. The Exponentiated distribution is proposed by Gupta et al. 

(1998) for time failure data. Its model is specified as below.  
 

 Given a random variable 𝑋 with the baseline distribution function of 𝐹(𝑥), the class of 

Exponentiated distribution is defined as 
 

𝐺𝛼(𝑥) = [𝐹(𝑥)]𝛼 . 
 

where 𝛼 is a positive real number. It has been called the Lehman alternative where 𝛼 is a 

positive integer.  
 

 The EEE distribution is built from EE distribution by the Exponentiated model which 

is in the following form: 
 

 Suppose a random variable 𝑋 follows an Exponential-Exponential distribution. Denote 

its cdf by 𝐹(𝑥|𝑏) where 
 

𝐹(𝑥|𝑏) = 1 −
𝑏

𝑥 + 𝑏
 ; 𝑏 > 0, 𝑥 ≥ 0. 

 

The cdf of the EEE distribution is easily described as 
 

𝐺𝛼(𝑥) = [
𝑥

𝑥 + 𝑏
]

𝛼

;  𝑏 > 0, 𝛼 > 0, 𝑥 ≥ 0. 
 

The pdf is given by 

𝑔𝛼(𝑥) =
𝑏𝛼𝑥𝛼−1

(𝑥 + 𝑏)𝛼+1
;  𝑏 > 0, 𝛼 > 0, 𝑥 ≥ 0. 

 

3.  PROPERTIES 
 

 This section presents some properties of the distributions of Rayleigh-Rayleigh (RR), 

Exponential-Exponential (EE) and Exponentiated Exponential-Exponential (EEE) such as 

survival, hazard functions, value-at-risk (VaR), expected value and limited expected value. 

Some proof of the property for heavy tailed distributions are also explained.  
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3.1 Rayleigh-Rayleigh Distribution 

 Survival function 
 

𝑆(𝑥) =
𝑡2

𝑥2 + 𝑡2
. 

 

Hazard function 
 

ℎ(𝑥) =
2𝑥

𝑥2 + 𝑡2
. 

 

VaR 
 

𝜋𝑝 = √
𝑡2

𝑝−1 − 1
. 

 

Expected value  
 

𝐸[𝑋] =
𝜋𝑡

2
. 

 

 Since 𝐸[𝑋2] cannot be found because of upper limited of integrate, we will consider 

the limit of expectation in second order to be the variance. The limited loss random variable 

𝑋 ∧ 𝑢 is defined as 
 

𝑋 ∧ 𝑢 =

     ;    

      ;    

X X u

u X u




 

 

 

The 𝑘th limited expectation can be written as  
 

𝐸[(𝑋 ∧ 𝑢)𝑘] = ∫ 𝑥𝑘𝑓(𝑥)𝑑𝑥 + 𝑢𝑘[1 − 𝐹(𝑢)]

𝑢

−∞

 

 

 Therefore, the second order of limited expectation of 𝑋  on Rayleigh-Rayleigh 

distribution is in the form of  
 

𝐸[(𝑋 ∧ 𝑢)2] = ∫ 𝑥2𝑓(𝑥)𝑑𝑥 + 𝑢2[1 − 𝐹(𝑢)]

𝑢

0

 

= ∫ 𝑥2 (
2𝑥𝑡2

(𝑥2 + 𝑡2)2
) 𝑑𝑥 + 𝑢2 [1 −

𝑥2

𝑥2 + 𝑡2
]

𝑢

0

 

 

𝐸[(𝑋 ∧ 𝑢)2] = 𝑡2 (
(𝑢2 + 𝑡2) ln(𝑥2 + 𝑡2) − 𝑢2(2 ln(𝑡) + 1) − 2𝑡2 ln(𝑡) + 𝑢2

𝑥2 + 𝑡2
). 

 

Theorem 1:  

 Let 𝑋 be a random variable. A heavy tailed distribution has a tail that is heavier than an 

Exponential distribution. Then RR has a heavy tail. 
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Proof:  

 Consider the survival function of RR, 𝑆𝑅𝑅(𝑥), compared with survival function of Exp, 

𝑆𝐸𝑥𝑝(𝑥). Then, the limit of the ratio will be the same, as can be seen by an application of 

L'Hôpital's rule: 
 

lim
𝑥→∞

𝑆𝑅𝑅(𝑥)

𝑆𝐸𝑥𝑝(𝑥)
=  lim

𝑥→∞

𝑆𝑅𝑅
′ (𝑥)

𝑆𝐸𝑥𝑝
′ (𝑥)

=  lim
𝑥→∞

−𝑓𝑅𝑅(𝑥)

−𝑓𝐸𝑥𝑝(𝑥)
=  lim

𝑥→∞

𝑓𝑅𝑅(𝑥)

𝑓𝐸𝑥𝑝(𝑥)
 

=  lim
𝑥→∞

2𝑥𝑡2

(𝑥2 + 𝑡2)2

𝜆 exp (−𝜆𝑥)
= lim

𝑥→∞

2𝑥𝑡2exp (𝜆𝑥)

𝜆(𝑥2 + 𝑡2)2 
. 

 

 Since exponential goes to infinity faster than polynomials, the limit is infinity. So,  

the RR has a heavier tail than the Exponential. Therefore, the RR is a heavy tailed 

distribution.   
 

3.2 Exponential-Exponential Distribution 

 Since this model has not been described with any references to its properties, we explain 

some of the properties in this section.  
 

Survival function 
 

𝑆(𝑥) =
𝑏

𝑥 + 𝑏
. 

 

Hazard function 
 

ℎ(𝑥) =
1

𝑥 + 𝑏
. 

 

VaR 
 

𝜋𝑝 = 𝑏 [
𝑝

1 − 𝑝
]. 

 

Expected value  
 

𝐸[𝑋] = ∫ 𝑥 ∙ 𝑓(𝑥)𝑑𝑥

∞

−∞

 

=  ∫ 𝑥

∞

0

∙
𝑏

(𝑥 + 𝑏)2
 𝑑𝑥 

=  ∫ 𝑏

∞

𝑏

∙
(𝑢 − 𝑏)

𝑢2
 𝑑𝑢       ; 𝑢 = 𝑥 + 𝑏 and 𝑑𝑢 = 𝑑𝑥 

= 𝑏 [ lim
𝑎→∞

ln 𝑎 − ln 𝑏 − 1]. 
 

 Since we cannot find the expected value because of the upper limit of integration, we 

will consider the limit of expectation for the first and second order to become the expected 

value and variance.  
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The first order of limited expectation of 𝑋  
 

𝐸[(𝑋 ∧ 𝑢)] = ∫ 𝑥𝑓(𝑥)𝑑𝑥 + 𝑢[1 − 𝐹(𝑢)]

𝑢

−∞

 

= ∫ 𝑥 ∙
𝑏

(𝑥 + 𝑏)2
𝑑𝑥 + 𝑢 [1 − (1 −

𝑏

𝑢 + 𝑏
)]

𝑢

0

 

= 𝑏 ∫
𝑢 − 𝑏

𝑢2
𝑑𝑢 +

𝑢𝑏

𝑢 + 𝑏

𝑢+𝑏

𝑏

; 𝑤ℎ𝑒𝑟𝑒 𝑢 = 𝑥 + 𝑏 𝑎𝑛𝑑 𝑑𝑢 = 𝑑𝑥 

= 𝑏 ln (
𝑢 + 𝑏

𝑏
). 

 

The second order of limited expectation of 𝑋  
 

𝐸[(𝑋 ∧ 𝑢)2] = ∫ 𝑥2𝑓(𝑥)𝑑𝑥 + 𝑢2[1 − 𝐹(𝑢)]

𝑢

−∞

 

= ∫ 𝑥2 ∙
𝑏

(𝑥 + 𝑏)2
𝑑𝑥 + 𝑢2 [1 − (1 −

𝑏

𝑢 + 𝑏
)]

𝑢

0

 

= 𝑏 ∫
𝑢2 − 2𝑢𝑏 + 𝑏2

𝑢2
𝑑𝑢 +

𝑢2𝑏

𝑢 + 𝑏

𝑢+𝑏

𝑏

; 𝑤ℎ𝑒𝑟𝑒 𝑢 = 𝑥 + 𝑏 𝑎𝑛𝑑 𝑑𝑢 = 𝑑𝑥 

= 𝑏 [ ∫ 1

𝑢+𝑏

𝑏

 𝑑𝑢 − ∫
2𝑏

𝑢

𝑢+𝑏

𝑏

 𝑑𝑢 + ∫
𝑏2

𝑢2

𝑢+𝑏

𝑏

 𝑑𝑢] +
𝑢2𝑏

𝑢 + 𝑏
 

=
2𝑏

𝑢 + 𝑏
[𝑢(𝑢 + 𝑏) − 𝑏(𝑢 + 𝑏) 𝑙𝑛 (

𝑢 + 𝑏

𝑏
)]. 

 

Theorem 2:  

 Let 𝑋 be a random variable. The probability distribution function is an Exponential-

Exponential (EE) distribution such that 
 

𝑓(𝑥) =
𝑏

(𝑥 + 𝑏)2
;     𝑏 > 0, 𝑥 ≥ 0. 

 

Then EE has a heavy tail. 
 

Proof: 

 The hazard rate function for the EE is 
 

ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
=

𝑏
(𝑥 + 𝑏)2

𝑏
(𝑥 + 𝑏)

=
𝑏

(𝑥 + 𝑏)2
∙

(𝑥 + 𝑏)

𝑏
=

1

(𝑥 + 𝑏)
. 

 

Since 
 

ℎ′(𝑥) = −
1

(𝑥 + 𝑏)2
< 0. 
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 Using classification based on the hazard rate function, then ℎ(𝑥) is decreasing. EE with 

decreasing hazard rate function has a heavy tail.    

 

3.3 Exponentiated Exponential-Exponential Distribution 

 Dankunprasert et al. (2021) described some properties of GED or Exponentiated 

Exponential-Exponential (EEE) distribution without limited expectation. Thus, we present 

the limited expectation for the first and second order of EEE distribution in addition.  
 

Survival function 
 

𝑆(𝑥) = 1 − (
𝑥

𝑥 + 𝑏
)

𝛼

. 
 

Hazard function 
 

ℎ(𝑥) =
𝑏𝛼𝑥𝛼−1

(𝑥 + 𝑏)[(𝑥 + 𝑏)𝛼 − 𝑥𝛼]
. 

 

VaR 
 

𝜋𝑝 =
𝑏

𝑝−1/𝛼 − 1
. 

 

The first order of limited expectation of 𝑋  
 

𝐸[(𝑋 ∧ 𝑢)] = ∫ 𝑥𝑓(𝑥)𝑑𝑥 + 𝑢[1 − 𝐹(𝑢)]

𝑢

−∞

 

= ∫ 𝑥 ∙
𝛼𝑏𝑥𝛼−1

(𝑥 + 𝑏)𝛼+1
𝑑𝑥 + 𝑢 [1 − (

𝑢

𝑢 + 𝑏
)

𝛼

]

𝑢

0

 

= 𝛼𝑏 ∑ (
−1 − 𝛼

𝑛
) 𝑏𝑛 [−

𝑢−𝑛 

𝑛
]

−1−𝛼

𝑛=0

 + 𝑢 [1 − (
𝑢

𝑢 + 𝑏
)

𝛼

]. 

 

The second order of limited expectation of 𝑋  
 

𝐸[(𝑋 ∧ 𝑢)2] = ∫ 𝑥2𝑓(𝑥)𝑑𝑥 + 𝑢2[1 − 𝐹(𝑢)]

𝑢

−∞

 

= ∫ 𝑥2 ∙
𝛼𝑏𝑥𝛼−1

(𝑥 + 𝑏)𝛼+1
𝑑𝑥 + 𝑢2 [1 − (

𝑢

𝑢 + 𝑏
)

𝛼

]

𝑢

0

 

= 𝛼𝑏 ∫ ∑ (
−1 − 𝛼

𝑛
) 𝑏𝑛𝑥−𝑛

−1−𝛼

𝑛=0

𝑑𝑥 + 𝑢2 [1 − (
𝑢

𝑢 + 𝑏
)

𝛼

]

𝑢

0

 

 

𝐸[(𝑋 ∧ 𝑢)2] = 𝛼𝑏 ∑ 𝑏𝑛 [
𝑢1−𝑛 

𝑛 − 1
] (

−1 − 𝛼

𝑛
)

−1−𝛼

𝑛=0

 + 𝑢2 [1 − (
𝑢

𝑢 + 𝑏
)

𝛼

]. 
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4. MATERIAL AND METHODS 
 

 The following are the models, parameter estimation, measurements of model fitting and 

some descriptive statistics of data sets.  

 

4.1 The Models 

 The loss distributions are selected for comparison which are composed of the 

distributions Rayleigh-Rayleigh (RR), Exponential-Exponential (EE), Exponentiated 

Exponential-Exponential (EEE), Exponential (Exp), Rayleigh (R), Lognormal (LN), 

Gamma (Gam), Weibull (Wei) and generalized Pareto distribution (GPD).  
 

4.2 Parameter Estimation and Measurement of Model Fitting 
 

4.2.1 Parameter Estimation  

 The method of maximum likelihood estimation (MLE) provides an estimator of RR by 

means of the following procedure:  
 

The pdf of infinite mixture Rayleigh-Rayleigh distribution  
 

𝑓(𝑥) =
2𝑥𝑡2

(𝑥2 + 𝑡2)2
  ;  𝑡 > 0, 𝑥 ≥ 0. 

 

 A random sample 1 2,   ,  ...,  nx x x  are 𝑛 independent observation on a random  

variable 𝑋. 
 

The likelihood function can be written as follows: 
 

𝐿 =  ∏
2𝑥𝑖𝑡2

(𝑥𝑖
2 + 𝑡2)2

𝑛

𝑖=1

 

 

and the natural log-likelihood function is in the form  
 

log 𝐿 =  ∑ log {
2𝑥𝑖𝑡2

(𝑥𝑖
2 + 𝑡2)2

}

𝑛

𝑖=1

. 

 

 Taking the partial derivatives of the natural log-likelihood function with respect to the 

parameters is as follows: 
 

𝑑

𝑑𝑡
𝑙𝑜𝑔 𝐿(𝑡) =

2𝑛

𝑡
− 4𝑡 ∑

1

(𝑥𝑖
2 + 𝑡2)

𝑛

𝑖=1

. 

 

We estimate �̂� for 𝑡 by 
𝑑

𝑑𝑡
log 𝐿(𝑡) = 0. 

 

Thus, 
 

2𝑛

𝑡
− 4𝑡 ∑

1

(𝑥𝑖
2 + 𝑡2)

𝑛

𝑖=1

= 0. 

 

 Solves the equations numerically for the estimated parameters by the fixed point 

iteration method. 
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4.2.2  Measurement of Model Fitting 

 There are four measurements for model fitting and their formulae are the following:  
 

4.2.2.1 The Kolmogorov-Smirnov Test 

 The K-S test statistic is defined by 
 

𝐷 = 𝑠𝑢𝑝
𝑥

|𝐹𝑛(𝑥) − 𝐹𝑋
∗(𝑥)|. 

 

where 𝐹𝑛(𝑥) is empirical cdf of X with sample size 𝑛 and 𝐹𝑋
∗(𝑥) is the theoretical 

cumulative distribution of the distribution being tested. 
 

4.2.2.2 Anderson-Darling Test (AD Test) 
 

 Anderson-Darling test  
 

𝐴𝐷 = −𝑛 −
1

𝑛
∑(2𝑖 − 1)[𝑙𝑜𝑔 𝐹(𝑥𝑖) + 𝑙𝑜𝑔{1 − 𝐹(𝑥𝑛−𝑖+1)}]

𝑛

𝑖=1

. 

 

where 𝐹 is the theoretical cumulative distribution of the distribution being tested and 𝑛 is 

the number of data points, the number of observations, or equivalently, the sample size. 
 

4.2.2.3 The Akaike Information Criterion (AIC) 
 

𝐴𝐼𝐶 = 2𝑘 − 2 𝑙𝑜𝑔(𝐿(𝜃)), 
 

where 𝑘 is the number of parameters estimated and 𝑙𝑜𝑔 𝐿(𝜃) is the natural log-likelihood 

function. 
 

4.2.2.4 Bayesian Information Criterion (BIC) 
 

𝐵𝐼𝐶 = −2 𝑙𝑜𝑔(𝐿(𝜃)) + 𝑘 𝑙𝑜𝑔(𝑛), 
 

where 𝑙𝑜𝑔 𝐿(𝜃) is the natural log-likelihood function and n is the number of observations. 

 

5. APPLICATION 
 

 In this section, we apply the new model, RR and current models to the actual claim data 

for comparison. 

 

5.1 Data  

 We consider the motor insurance claim according to 3 voluntary plans. The claim data 

payment of the year 2009 belongs to non-life insurance in Thailand which are named as 

Plan-A, Plan-B and Plan-C. The claim amount is the individual data in Thai Baht. The 

number of claim policies (𝑛) of Plan-A, Plan-B and Plan-C are 42, 1,296 and 2,894, 

respectively. Some descriptive statistics are shown to be information about the dataset in 

Table 1.  
 

 We have seen that the observed claim amount of all plans are the right skewed 

distributions. The skewness of Plan A, B and C are 4.50, 10.67 and 32.60, respectively, 

which are illustrated by the histograms of claim amount with logarithmic scales as in the 

Figure 1.  



Jaroengeratikun, Dankunprasert and Talangtam 325 

 

Table 1 

Some Descriptive Statistics of Motor Insurance Claims 

Item 
Plan 

A B C 

Mean 

Median 

Skewness 

Kurtosis 

Standard deviation 

Coefficient of variation 

7,405.02 

4,600 

4.50 

23 

11,349 

1.53 

17,662.45 

7,297 

10.67 

181 

41,332 

2.34 

14,638.17 

4,403 

32.60 

1,317 

90,606 

6.19 

 

 

  
(b) (a) 

 
(c) 

Figure 1: Histograms of log(claim) for (a) Plan-A (b) Plan-B and (c) Plan-C 
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5.2 Results 
 The 3 Tables show the estimated parameters, K-S test, AD test, AIC and BIC statistics. 

The results at a significant level 𝛼 = 0.05 of model fitting for each data set are as follows.  
 

Table 2: Plan-A (n=42) 
 The claims data can be fitted by the distribution of RR, LN, EEE and Wei by the K-S 
and AD test. Based on the lowest value of the AIC and BIC, the RR distribution is the best 
fit for the data, following the distributions of LN, EEE, GPD, Exp, Wei, Gam, EE and R, 
respectively. The EE is the least suitable for the data.  
 

 Figure 2 shows the pdf of the distribution of RR, LN and EEE, respectively.  
 

 Figures 3 and 4 show the cdf of the distributions and P-P plots of the distributions of 
RR, LN and EEE versus the empirical distribution, respectively. They show that the fitted 
cdf for RR distribution is closer to the empirical cdf than the fits of the distributions of LN 
and EEE. The RR distribution is also good fit to the large claim amount for the dataset of 
Plan-A.  
 

Table 3: Plan-B (n=1,296) 
 The claims data cannot be fitted by any models with the K-S or AD test. Based on the 
lowest value of the AIC and BIC, the LN distribution is the best fit for the data, followed 
by the distributions of EEE, GPD, RR, EE, Wei, Gam, Exp and R, respectively. The RR 
distribution fits to the data better than the EE distribution. The distributions of RR and EE 
are more suitable for the data than Wei, Gam, Exp and R.  
 

 Figure 5 shows the pdf of the distribution of LN, EEE and GPD, respectively. Figures 

6 and 7 show the cdf of distributions and P-P plots of the distributions of LN, EEE and 

GPD versus the empirical distribution, respectively. Their figures demonstrate to confirm 

which the LN distribution is better fit than the distributions of EE and GPD.  
 

Table 4: Plan-C (n=2,894) 

 The claims data cannot be fitted to any models with the K-S and AD tests. Based  

on the lowest value of the AIC and BIC, the EEE distribution is the best fit for the  

data, followed by the distributions of LN, RR, GPD, EE, Wei, Gam, Exp and R, 

respectively. The RR distribution fits to the data better than EE and some current 

distributions, except for EEE and LN. The EE distribution is more suitable for the data than 

Wei, Gam, Exp and R.  
 

 Figure 8 shows the pdf of the distribution of EEE, LN and RR, respectively. Figures 9 

and 10 show the cdf of distributions and P-P plots of the distributions of EEE, LN and RR 

versus the empirical distribution, respectively. Similar to the dataset of Plan-B, the EEE 

distribution is the best fit and suitable for the Plan-C dataset.  
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Table 2 

Motor Insurance Data of Plan-A (𝒏=42) 

Distributions 
Estimated 

Parameters 

Measurements of Model Fitting 

K-S test AD test AIC BIC 

RR 
𝑡 = 4.3939 

× 103 

𝐷 =  0.0961 𝐴𝐷 =  0.2658 

817.8218 819.5595 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.8329 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.9612 

EE 
𝑏 = 4.4661 

× 103 

𝐷 =  0.2396 𝐴𝐷 =  3.3038 

841.1190 842.8567 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.01607 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.0194 

EEE 

𝑏 =  48.2180 𝐷 =  0.1440 𝐴𝐷 =  1.2939 

826.6241 830.0994 

𝛼 = 66.1336 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.3486 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.2342 

Exp 
𝜆 = 1.1536 

×  10−4 

𝐷 =  0.2289 𝐴𝐷 =  2.6899 

835.4222 837.1598 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.0245 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.0397 

R 
𝜎 = 9.5019 

× 103 

𝐷 = 0.5476 𝐴𝐷 = 29.7411 

917.2448 918.9825 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 

< 0.01 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 

<  0.01 

LN 

𝜇 = 8.4227157 𝐷 =  0.1033 𝐴𝐷 =  0.4244 

821.6733 825.1486 

𝜎 = 0.8981225 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.7609 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.8234 

Gam 

𝑎 = 0.9212 𝐷 =  0.2191 𝐴𝐷 =  2.5981 

838.1186 841.5939 
𝑟 = 1.0627 

x 10−4 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.0355 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.0443 

Wei 

𝑎 = 0.9716 𝐷 =  0.1791 𝐴𝐷 =  1.7678 

836.3515 839.8268 
𝑏 = 7.2844 

× 103 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.1351 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.1240 

GPD 

𝑏 = 5.7185 

× 103 
𝐷 =  0.2151 𝐴𝐷 =  1.7659 

832.3463 835.8217 

𝑠 = 0.2096 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.0410 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 
=  0.1243 
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(b) (a) 

 
(c) 

Figure 2: The pdf of Distributions (a) RR (b) LN and (c) EEE 
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(b) (a) 

 
(c) 

Figure 3: The cdf of Distributions (a) RR (b) LN and (c) EEE 
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(b) (a) 

 
(c) 

Figure 4: The P-P Plot (a) RR (b) LN and (c) EEE 
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Table 3 

Motor Insurance Data of Plan-B (𝒏=1,296) 

Distributions 
Estimated 

Parameters 

Measurements of Model Fitting 

K-S test AD test AIC BIC 

RR 
𝑡 = 7.4389 

x 103 

𝐷 = 0.0875 𝐴𝐷 = 33.4740 

27526.2502 27531.4173 
𝑝 − 𝑣𝑎𝑙𝑢𝑒  

<  0.01 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 

< 0.01 

EE 
𝑏 = 7.6240 

x 103 

𝐷 = 0.1215 𝐴𝐷 = 37.0350 

27620.5172 27625.6842 
𝑝 − 𝑣𝑎𝑙𝑢𝑒  

< 0.01 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 

<  0.01 

EEE 

𝑏 =  1.1379 

x 103 
𝐷 = 0.0381 𝐴𝐷 = 4.4783 

27364.9162 27375.2503 

𝛼 = 4.7260 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 
= 0.0462 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 

<  0.01 

Exp 
𝜆 = 5.6617 

x 10−5 

𝐷 = 0.1961 𝐴𝐷 > 38 

27941.6769 27946.8439 
𝑝 − 𝑣𝑎𝑙𝑢𝑒  

<  0.01 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 

< 0.01 

R 
𝜎 = 3.1772 

x 104 

𝐷 =  0.6321 𝐴𝐷 > 38 

33090.1921 33095.3591 
𝑝 − 𝑣𝑎𝑙𝑢𝑒  

<  0.01 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 

<  0.01 

LN 

𝜇 = 8.967189 𝐷 =  0.0466 𝐴𝐷 = 3.3749 

27354.8190 27365.1530 

𝜎 = 1.180438 
𝑝 − 𝑣𝑎𝑙𝑢𝑒  

<  0.01 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 

= 0.0177 

Gam 

𝑎 = 0.7388 𝐷 =  0.1473 𝐴𝐷 > 38 

27855.4500 27865.7900 
𝑟 = 4.1826 

x 10−5 

𝑝 − 𝑣𝑎𝑙𝑢𝑒  
<  0.01 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 

<  0.01 

Wei 

𝑎 = 0.7752 𝐷 = 0.1160 𝐴𝐷 = 33.0300 

27723.1490 27733.4831 
𝑏 = 1.4425 

x 104 

𝑝 − 𝑣𝑎𝑙𝑢𝑒  
<  0.01 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 

< 0.01 

GPD 

𝑏 = 9.5685 

x 103 
𝐷 =  0.0978 𝐴𝐷 = 15.2370 

27486.1322 27496.4663 

𝑠 = 0.4360 
𝑝 − 𝑣𝑎𝑙𝑢𝑒  

<  0.01 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 

< 0.01 
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(b) (a) 

 
(c) 

Figure 5: The pdf of Distributions (a) LN (b) EEE and (c) GPD 
 

  



Jaroengeratikun, Dankunprasert and Talangtam 333 

  
(b) (a) 

 
(c) 

Figure 6: The cdf of Distributions (a) LN (b) EEE and (c) GPD 
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(b) (a) 

 
(c) 

Figure 7: The P-P Plot (a) LN (b) EEE and (c) GPD  
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Table 4 

Motor Insurance data of Plan-C (𝒏=2,894) 

Distributions 
Estimated 

Parameters 

Measurements of Model Fitting 

K-S test AD test AIC BIC 

RR 
𝑡 = 4.7023 

 x 103 

D = 0.0781 AD = 53.1680 

58688.0303 58694.0007 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 
<  0.01 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 

 <  0.01 

EE 
𝑏 = 4.8967 

 x 103 

D = 0.1443 AD = 108.9600 

59131.0029 59136.9733 
𝑝 − 𝑣𝑎𝑙𝑢𝑒  

<  0.01 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 

<  0.01 

EEE 

𝑏 =  5.1811 

 x 102 
D = 0.0494 AD = 16.9220 

58409.3105 58421.2513 

𝛼 = 6.6460 
𝑝 − 𝑣𝑎𝑙𝑢𝑒  

<  0.01 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 

 <  0.01 

Exp 
𝜆 = 6.8315 

 x 10−5 

D = 0.2837 𝐴𝐷 > 109 

61304.9500 61310.9200 
𝑝 − 𝑣𝑎𝑙𝑢𝑒  

<  0.01 
𝑝 − 𝑣𝑎𝑙𝑢𝑒  

<  0.01 

R 
𝜎 = 6.4888 

x 104 

𝐷 =  0.84204 𝐴𝐷 > 109 

84614.3927 84620.3631 
𝑝 − 𝑣𝑎𝑙𝑢𝑒  

<  0.01 

𝑝 − 𝑣𝑎𝑙𝑢𝑒  
<  0.01 

LN 

𝜇 = 8.5423 D = 0.0677 AD = 21.7310 

58542.1449 58554.0857 

𝜎 = 1.1648 
𝑝 − 𝑣𝑎𝑙𝑢𝑒  

<  0.01 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 

 <  0.01 

Gam 

𝑎 = 0.5904 D = 0.1957 𝐴𝐷 > 109 

60641.2200 60653.1600 
𝑟 = 4.0330 

 x 10−5 

𝑝 − 𝑣𝑎𝑙𝑢𝑒  
<  0.01 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 

 <  0.01 

Wei 

𝑎 = 0.6922 D = 0.1544 𝐴𝐷 > 109 

59826.8415 59838.7823 
𝑏 = 9.4792 

 x 103 

𝑝 − 𝑣𝑎𝑙𝑢𝑒  
<  0.01 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 

 <  0.01 

GPD 

𝑏 = 5.8894 

 x 103 
D = 0.1232 AD = 59.8190 

58863.9813 58875.9221 

𝑠 = 0.4887 
𝑝 − 𝑣𝑎𝑙𝑢𝑒  

<  0.01 
𝑝 − 𝑣𝑎𝑙𝑢𝑒 

 <  0.01 
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(b) (a) 

 
(c) 

Figure 8: The pdf of Distributions (a) EEE (b) LN and (c) RR 
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(b) (a) 

 
(c) 

Figure 9: The cdf of Distributions (a) EEE (b) LN and (c) RR 

  



Infinite Mixture of Rayleigh-Rayleigh Distribution and its Application… 338 

 

 

  

(b) (a) 

 
(c) 

Figure 10: The P-P Plot (a) EEE (b) LN and (c) RR 

 

6. CONCLUSION 
 

 For all data, the Rayleigh-Rayleigh distribution is a better fit than the distributions of 

Exponential-Exponential and Rayleigh. The distributions of Rayleigh-Rayleigh and 

Exponential-Exponential are more suitable for the data than some traditional distributions 

such as Weibull, Gamma, Exponential and Rayleigh. 
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