
Architectural Tradeoffs in the
Design of MIPS-X

Paul Chow and Mark Horowitz

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

Abstract

The design of a RISC processor requires a careful analysis
of the tradcoffs that can be made between hardware
complexity and software. As new generations of processors
are built to take advantage of more advanced technologies,
new and different tradeoffs must be considered. We examine
the design of a second generation VLSI RISC processor,
MIPS-X.

MIPS-X is the successor to the MIPS project at Stanford
University and like MIPS, it is a single-chip 32-bit VLSI
processor that uses a simplified instruction set, pipelining and
a soRware code reorganizer. However, in the quest for higher
performance, MIPS-X uses a deeper pipeline, a much simpler
instruction set and achieves the goal of single cycle execution
using a 2-phase, 20 MHz clock. This has necessitated the
inclusion of an on-chip instruction cache and careful
consideration of the control of the machine. Many tradeoffs
were made during the design of MIPS-X and this paper
examines several key areas. They are: the organization of the
on-chip inslruction cache, the coprocessor interface, branches
and the resulting branch delay, and exception handling. For
each issue we present the most promising alternatives
considered for MIPS-X and the approach finally selected.
Working parts have been received and this gives us a firm
basis upon which to evaluate the success of o u r design.

Introduction

The first generation reduced instruction set processors
(IBM 8011 , RISC 2,3 and MIPS 4,5) have shown the
importance of making the correct lradeoffs across the
boundary that separates hardware complexity and software
functionality. Hardware should only he used to support
features that clearly improve performance. As
implementation technology improves, new features can be
considered and new tradeoffs must be made.

The goal of the MIPS-X project was to combine a new
technology, a 2gm, 2-level metal CMOS process, with the
knowledge and experience gained from the first generation
RISC machines, to build a single processor with a peak rate of

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinety. To copy
otherwise, or to republish, requires a fee and/or specific permission.

20 MIPS and then to use 6-10 of these processors as the nodes
in a shared memory multiprocessor. The resulting machine
would be about two orders of magnitude more powerful than
a VAX 11/780 minicomputer.

We describe here the design of the single processor, MIPS-
X. The overriding principle was to keep the design as simple
as possible. The original MIPS team was heavily involved in
the initial architectural discussions, and they helped steer
MIPS-X away from the kinds of trouble that they faced with
MIPS. The major areas of concern were control related, of
which the most important were considered to be inst~ction
decode and exception handling. Both were not considered
early enough in the MIPS design and created difficult
implementation problems in the final chip.

The design of the instruction format was straightforward
since we religiously adhered to a maxim given in the first
working document on MIPS-X. It stated, "The goal of any
instruction format should be:

1. Simple decode,
2. simple decode, and
3. simple decode.

Any attempts at improved code density at the expense of CPU
performance should be ridiculed at every opportunity."
Needless to say, all inslruction sets considered for MIPS-X
were fixed format 32-bit words and the amount of decoding
was minimal. The effects of having this simple instruction
format is discussed in the conclusions.

Not all areas were as stable as the instruction decode.
Before presenting the major Iradeoffs we made in the MIPS-X
design, the next section describes the basic architecture of the
processor and the following section gives an overview of the
hardware and organization of the machine. This is followed
by several sections, each discussing a major design issue in
MIPS-X, the solution used and the rational for that decision.

MIPS-X Architecture

The goal of the MIPS-X project was to design a
microprocessor with an order of magnitude more performance
than the original MIPS processor. MIPS-X borrows heavily
from the original MIPS design; it is again a heavily pipelined
machine, and the resulting pipeline interlocks are handled by
the supporting software system. MIPS-X differs from MIPS
in that it aims for single-cycle execution using a much faster
clock (20 MHz), a deeper pipeline and better implementation
technology.

The high insa'uction rate means that memory bandwidth is-
an important consideration. At the projected clock frequency

© 1987 ACM 0084-7495/87/0600-0300500.75 300

of 20 MHz R is very difficult to satisfy instruction and data
fetch requirements across the available package pins. To
alleviate this problem, MIPS-X has a 2K-byte, on-chip
instruction cache (Icache). Only instructions that miss in the
Icacbe pass through the package pins. The Icache is placed
above the datapath, in the area of the chip that is normally
used for mlcrocode storage and processor control. Data
references and instruction references that miss in the Icache
are handled by a large 64K word external cache (Ecache).
The Ecache uses a shared bus to communicate with main
memory. An added benefit of this two-level cache is that it
provides a second port to memory; the processor can fetch an
instruction from the Icache at the same time it is accessing
off-chip data.

A deep pipeline is used to allow the machine to start a new
inslruction every cycle. Each instruction is divided into five
pipeline stages. They are described in Figure 1. All control is
hardwired.

IF

RF
ALU
MEM

WB

Inslruction fetch.
Inslruction decode and register fetch.
ALU or shift operation
Wait for data from memory on a load and output
data for a store.
Write the result into the destination register.

Figure 1: MIPS-X Pipestages

The machine uses a load-store architecture; the only
memory operations are explicit loads and stores. The use of
the ALU cycle depends on the inslruction being executed.
For compute instructions, this cycle performs the desired
computation, for memory instructions it is used to compute
the address of the desired memory location and for branch
instructions, it is used to compute the condition. All memory
operations use the same addressing mode; the contents of a
register are added to a 17-bit signed offset to produce a 32-bit
address. There are 32 general purpose registers in the
datapath with a 32-bit ALU and a funnel shifter for compute
operations.

Although a compute instruction fmishes its computation
during the third pipeline cycle (ALU), the result is not written
back into the register file until the last pipeline cycle. This
delayed writeback is done to make inslructions only change
machine state during their last pipeline cycle, malting
exception handling much easier. Bypassing is used to reduce
the number of pipeline interlocks.

All instructions are restartable so MIPS-X will support a
dynamic, paged virtual memory system. To help implement
such a system, MIPS-X supports both maskable and
nonmaskable interrupts. For systems requiring more complex
interrupt handling, an external interrupt coprocessor can be
added. MIPS-X also provides two operating modes, system
and user, that execute in separate address spaces to provide
the protection needed to implement an operating system. The
current mode is stored in the PSW and it can only be cltanged
while executing in system mode.

A Hardware Overview

The major components of MIPS-X are the instruction
cache data array, the inslruction register and the datapath.
The datapath is composed of the register file, the execution
unit, PC unit and the tag store for the instruction cache. The
organization of these parts is shown in Figure 2.

Registar
File

Instruction
Cache

I Instruction
Register I

Unit Tag
Store

Figure 2: MIPS-X Floorplan

The instruction cache is organized as an 8-way set-
associative cache, with 4 sets (rows) and 16 words in each
block (line). A sub-block replacement scheme is used so
there ate 512 valid bits, one per word, as well as the 32 tags.
These are located in the datapath to decrease the time needed
to detect an inslruction cache miss.

The inslruction register latches the output from the
instruction cache and predecodes some fields of each •
instruction. It also conlrols the flow of data during cache
misses so that instructions can be written into the cache.
During a cache miss, the instruction is latched in the
instruction register from the data bus while it is going to the
cache memory array. This latch provides a very useful testing
feature by allowing the processor to run with the cache
disabled.

The register file contains 31 general purpose registers and
a hardwired constant zero register. It is useful to have a
read-only register as a place to write unwanted data. The
constant zero was chosen because it is used as a source value
for many instructions such as loading immediate values by
doing an add immediate to Register 0. Registers to handle
two levels of bypassing and the memory data registers are
also in this section.

Shifting and ALU operations are done in the execute unit.
It contains a 64-bit to 32-bit funnel shifter and a 32-bit ALU.
There is also a special register, called the MD register, that is
used during multiplication and division ins~'uctions.

301

The program counter, or PC unit, contains a displacement
adder for branches, an incrementer and a chain of shift
registers to save the PC values of the instructions currently in
execution. Having both the displacement adder and the
incrementer means that as soon as the branch condition is
determined the PC bus can be driven with the correct value.
The PC values in the shift chain are needed to restart the
machine after an exception.

In a small area above each section of the datapath is local
instruction decoding and control for that section. The overall
control of the machine is handled by two finite state machines
located in the PC unit One of them is used to handle Icache
misses and the other one does inslruction squashing during
exceptions and branches. Squashing an inslruction converts it
into a no-op instruction.

Critical Paths
To run the processor at or above 20 MHz meant that much

attention had to be paid to possible critical paths. In each
cycle, we tried to minimize the number of series operations as
much as possible. Whenever feasible, a signal was given a
full phase to be decoded and driven from one section to
another.

There were a few paths that we felt were most likely to be
critical paths and we spent a lot of time concentrating on
them. The most important of these involved external data
fetches. In the specification for the pipeline, addresses would
be computed during ~bl of the ALU cycle and driven to the
address pads during 02. The Ecache would be accessed
during the MEM cycle. Even assuming that the address could
be driven off the chip by the end of ALU, completing a fetch
in 50 ns would be tight because of the address buffer delay,
memory access time and setup time for the fetched data.
Getting the result of the tag compare back in a cycle seemed
impossible since this would also involve delay through some
comparators. To ease the conslraint on getting the tag
compare back, we decided to use a late-miss signal. This
meant that the cache would inform the processor at the
beginning of the WB cycle whether the cache access during
MEM was successful. If there was a miss, then the processor
would effectively go back and re-execute ~b2 of MEM to try
the access again. This loop would continue until the cache
got the data and signaled a hit. Throughout the design we had
to be careful not to unnecessarily add delay to the memory-
fetch path.

Other paths that we tried to optlmiTe included the path
from branch condition generation to driving the PC Bus,
instruction cache hit detection, squeezing the ALU time into 1
phase to get the address out by the end of the cycle and doing
register reads and writes in one cycle. The latter two were
strictly circuit design issues and are not discussed any further
here.

The Instruction Cache

Advances in processor architecture and VI_31 technology
have increased faster than the improvements in packaging
technology. This has meant that high-performance VLSI
processors have become memory bandwidth limited. For
example, if we assume that one instruction is fetched every
cycle while, on average, data is only fetched every third cycle,

then MIPS-X will have an average bandwidth of 26
MWords/s and a peak bandwidth of 40 MWords/s. Clearly,
on-chip memory would help to alleviate this bottleneck. For
MIPS-X, we built an on-chip 512-word instruction cache and
the tradeoffs made in its design are described in detail
elsewhere 6. We will only discuss the salient features here.

The instruction cache was the first part of the chip to be
designed. We first fixed a die size that we felt had enough
area to implement the functionality we desired yet small
enough that we could expect a reasonable yield of working
parts. The datapath and control would take about half of the
area inside the padframe so the cache was allocated the
remaining area fixing its area and aspect ratio. The other
main constraint on the cache was that the cycle time had to be
less than the 50ns clock cycle. Given these constraints we
investigated many different floorplans and organizations,
l~Jing to minimize the average cost of an instruction fetch.
This cost is a function of the cache hit rate, the miss penalty,
and the cache access time.

We found that the performance of the cache was mere
sensitive to the the miss service time than the miss ratio. This
meant that the implementation details of the cache were more
important than the cache organization because the
implementation affected how quickly we could determine
whether an address hit in the cache. With our pipelining, this
meant the difference between stalling the machine for 2 or 3
cycles on a cache miss. By placing the tag and valid-bit
stores in the datapath close to the PC unit a 2-cycle miss could
be realized. This lengthened the datapath by the number of
cache tags and meant that we could not have smaller block
sizes because more tags would make the datapath too long.
However, the benefits of having fewer cache miss cycles far
outweighed the slightly lower miss rates achievable by having
smaller blocks.

Initial simulations of this organization yielded
disappointing results. Using a set of medium size programs
we achieved miss rates that averaged over 20%. We felt that
real programs would have worse miss rates, pushing the cost
of an instruction fetch close to 1.5 cycles. We found a way to
reduce the number of cache miss cycles to 1 by writing the
missed instruction into the Icache as soon as it got back onto
the chip, but since accessing external data was already one of
the critical paths we did not want to risk extending the cycle
time to complete the write. Instead we realized that the 2
cache miss cycles could be used to fetch back 2 instructions,
the one that missed and the next one to be executed. Doing
this double fetch did not affect the critical path and, in feet,
was easier to do than fetching back only one instruction
because it minimized tile disruption of the pipeline. Fetching
back 2 words almost halves the miss ratio, driving down the
cost of an instruction fetch to that of a single-cycle miss. The
key realization here was that there was extra cache bandwidth
available and that we could use it to fetch back the next
instruction, significantly improving the cache miss ratio
without impacting the cycle time of the machine. Fetching
back more words would not be advantageous because the
bandwidth of the cache is fully used.

Trace driven simulations show that with our set of large
Pascal and Lisp benchmarks, the cache has an average miss
rate of 12% resulting in an average instruction executing in
1.24 cycles.

302

The Coprocessor Interface

The coprocessor interface was considered from the very
beginning of the design. It also led to some of the most
interesting discussions within the MIPS-X design tean~ We
spent considerable time trying to find an efficient interface
that would give reasonable performance and still fit within the
constraints of VLSI packaging and design. This problem was
exacerbated by the presence of the on-chip instruction cache,
since now all instructions would not he visible to the outside
world.

The proposal for the first instruction set had a single bit in
every instruction to specify whether the instruction was for
the CPU or a coprocessor. For instructions with the
coprocessor bit set, MIPS-X would perform all the addressing
calculations, but would not affect any of its stored data. That
is, all coprocessor memory instructions still used the
processor to generate the addresses and the required control
signals, while the coprocessor either acted as a source or sink
of the data. To make the coprocessor instructions visible
outside of the processor, a dedicated bus was required to
transfer the instruction off the processor chip. This schen~
had 2 disadvantages: all interprocessor communication had to
go through memory, and a coprocessor bus was required. A
minor concern was that half the opcode space was devoted to
the coprocessor; there had to be a more efficient encoding.

The next instruction format divided the opcode space into
three instruction types: memory operations, branches and
compute operations. The memory and compute instructions
had a 3-bit field to specify the coprocessor number, branches
were only done on the main processor. If Coprocessor 0 was
specified then the instruction was for the main processor,
otherwise the instruction was for one of the 7 available
coprocessors. To branch on a coprocessor condition, the
coprocessor would first be told to assert a single input to the
main processor and a branch on coprocessor true or branch
on coprocessor false would he executed to test the status of
that input. Several coprocessors could he connected by wire-
ofing their outputs. This scheme still had the problem that
data transfers between processors must be done through
memory.

It was then proposed that all coprocessor instructions must
be non-cached, removing the need for a coprocessor bus. The
issue of pins and pin bandwidth was heavily debated within
the MIPS-X design tean~ Pins on the processor were in short
supply and devoting approximately 20 of them to the
coprocessor interface seemed excessive. The question was
not just whether there were enough pins available. Without
the coprocessor bus, MIPS-X would need only about 90
signal pins, a relatively small number by today's standards.
Rather the argument focused on what would be the best use of
these pins if we had them. It was not at all clear that using
them for the coprocessor interface was the most effective use
of the pins. To prevent coprocessor instructions from being
cached, a bit in the instruction cache would be set when an
instruction being loaded was detected to be a coprocessor
instruction. If the bit was set during an instruction fetch that
missed, the coprocessor would get the instruction off the
memory bus as the main processor read the instruction from
memory during the cache miss cycle.

The obvious disadvantage of this approach was that all
coprocessor operations incurred an overhead from the internal

cache miss. Our initial benchmarks indicated that this would
not cause a significant performance loss, but when we
generated traces from some floating point intensive code we
realized a significant percentage of the instructions were
floating point instructions. This caused a re-examination of
the decision to not cache coprocessor instructions, and led to
the coprocessor scheme that was finally chosen.

The opcode encoding of the machine was changed again,
this time vnaklng coprocessor operations a form of memory
operation or more accurately, memory instructions became a
type of coproc~sor instruction. Coprocessor instructions
work in[this scheme by using the address lines to transmit the
coprocessor instruction. A memory insl~uction takes a 17-bit
offset constant and adds it to the contents of a register to
compute the memory address. If the memory system ignores
the cycle, it is possible to pass the 17-bit offset constant to a
coprocessor as an instruction. The instruction would include
a 3-bit field to specify the coprocessor being addressed,
although the processor does not need to know the format of
these instructions. This scheme has several advantages over
our earlier ideas. A coprocessor instruction bus is not
required, since the instructions are sent out over the address
pins. Only one extra pin is required to tell the memory
system to ignore the cycle. Additional pins can now he used
for alleviating the pin bandwidth problem in other parts of the
system. Using coprocessor load and store instructions, data
can be directly transferred between processors by making the
coprocessor supply or read data on the data bus instead of the
memory. Also, the coprocessor instructions can he cached
just like all the other instructions. The disadvantages of this
scheme are that there are fewer bits to specify the coprocessor
instructions, and all data to and from the coprocessor's
registers must be transferred through the main processor
registers first before it can he sent to memory.

Having to transfer all data through the main processor
registers was still thought to be inefficient for heavy floating
point computation. This lead to a further modification of the
instruction set to add load floating and store floating
instructions. These instructions provide one special
coprocessor with its own loud and store instructions, which
we assume will be a floating point unit (FPU). The interface
now allows one special coprocessor to load and store its
registers directly to memory, without passing through the
main processor, in a single instruction. All other coprocessors
require one extra cycle for memory loads/stores.

One final tweaking of the interface was to remove the
coprocessor branch instructions. The main reason for their
removal was the problem of saving state in the coprocessors
across exceptions. The solution was to just read a
coprocessor status register into a main processor register and
then branch according to the value of that register. This
change eliminated the last set of problems we h~.d discovered
with the coprocessor instructions.

By using the address lines, the resulting coprocessor
interface has instructions that can he cached, does not require
a large coprocessor bus, allows efficient communication
between the processor registers and the coprocessor registers,
and lets a single coprocessor have direct access to memory.

303

Branches

Having set out the initial architecture of the machine, we
quickly ran into the problem of branches, and branch delays.
Branches have a considerable effect on the performance of a
computer especially one that is pipelined as deeply as MIPS-
X. The effects of branches in a pipelined machine are
particularly noticeable because branches interrupt the flow of
the pipeline. Decisions about the design of the pipeline and
the type of branch scheme used are not independent. Conlrol
complexity is a serious issue.

We very quickly decided to eliminate the use of condition
codes in MIPS-X if possible. This decision was motivated by
two facts. First, inslruction trace statistics indicated that a
prior compute operation infrequently generated the condition
code needed for a branch. In roughly 80% of the branches an
explicit compare operation must be performed to set the
condition codes. A previous analysis 7 of empirical data
showed that the number of instructions saved by condition
codes was very small and essentially useless. Second,
condition codes generate state that needs to be saved and
restored during exceptions. Handling condition codes in a
pipelined machine is difficult because when an exception
occurs, great care must be taken to ensure that the correct
condition codes are saved. It seemed to us that condition
codes provide little benefit and have potential complexity
problems. In particular, generating code to use condition
codes efficiently is not as slraightforwa~d as one might
expect. All the branch schemes considered for MIPS-X
contained an explicit compare in the branch. This actually
reduces the amount of control logic required because there is
no need to worry about how to save this state.

Two arithmetic operations are required to execute a branch
instruction. One is to compute the branch condition and the
other is to compute the branch destination. A machine that
uses condition codes computes the branch condition before
the actual branch instruction and saves the condition in a
condition code register. The first idea conceived for
implementing branches in MIPS-X computed the condition in
the branch instruction, but did not compute the branch
destination. Instead the branch destination was made
explicitly visible in the architecture. The user would have to
load a register called PC+I with the branch destination. The
branch instruction computes a condition and then selects
PC+I or the next sequential instnmtion depending on the
computed condition. An observation was made that many
inner loops contain several forward branches due to constructs
like if-then-else statements so it would be good to have
several PC+I registers. Four was felt to be sufficient. This
would allow the compiler to hoist the destination address
calculations out of the loop. Without this feature, the contents
of PC+I would have to be loaded from a register for each
branch within the loop for each iteration of the loop.

This scheme still had the problem that there was some state
that must be saved (the PC+ 1 registers) when an exception
occurred. Also, deciding how to use the PC +1 registers could
be cumbersome for the compiler system- Finally, with four
special registers, it was no longer clear that this solution was
easier to implement than simply including a separate adder to
compute the destination while the ALU performed the
comparison. At this point in the design, adding a little
hardware to the datapath to make the control simpler was the

wisest choice so we added the separate adder to compute the
destination.

During this period we also became concerned about the
effect of the branch delay slots on the machine's performance.
Often in a pipelined machine one or more instructions
following a branch are fetched before the result of the
condition evaluation is known. If these inslructions are
executed, then the machine is said to have a delayed branch
meaning the effect of the branch occurs after the actual branch
instruction. The number of cycles or delay slots that execute
after the branch instruction and before the actual branch
occurs is called the branch delay. Filling these delay slots is
not a simple task s, 9,10 and affects the overall performance.

In the MIPS-X pipeline, it is most straightforward to
implement a branch with a delay of two. The ALU is used to
compute the branch condition during the third (ALU)
pipestage. Filfing two delay slots did not seem very
promising. Using data from MIPS instruction traces, we
expected over 50% of the slots to remain empty 8. This
performance problem lead to discussions about how to reduce
the branch delay to 1 cycle, and whether we could use branch
prediction to help reduce the wasted cycles 11.12.

A quick compare 3 was proposed as a method to reduce the
branch delay. In this scheme, simple comparisons between
the two source registers are done before the ALU cycle. This
comparison would be performed at the end of the RF cycle by
placing a comparator on the output of the register file. Only
equality and sign comparisons can be obtained using this
method since there is not enough time for an arithmetic
operation. Other conditions such as greater than would
require two steps. The ALU operation is done first and the
result is stored in a register. This result is then used in a quick
sign compare instruction.

The main question that needed to be resolved initially was
what percentage of branches could be handled by a quick
compare. Statistics from Katevenis's thesis indicate that by
changing the compiler slightly, about 80% of all branches can
be converted into quick compares 3, but this means that 20%
of all branches take two cycles. Our initial statistics indicated
that the number of branches that could be handled using a
quick compare was between 70% and 80%.

The quick compare was eventually dropped because it
could potentially lengthen the processor cycle time. The
comparator circuit must operate on the source buses leading
to the ALU and since the values on the buses could come
from a bypass source it was possible that the buses would not
be stable until late into that cycle, particularly for a previous
memory fetch because the data would only be back at the very
end of the cycle. For the quick compare to operate, we would
need to perform a compare on these values and then use this
result to select the correct address of the next inslruction. The
potential increase in cycle time discounted its slight advantage
in the average number of cycles it takes to complete a branch.
In retrospect, our decision was correct. In the final machine,
the delay from the generation of the branch signal to driving
the correct value on the PC Bus is long (measured to be about
20 ns). Even providing a full phase to drive this path leaves it
on a critical path.

Left with a branch delay of 2, we investigated branch
prediction as a way to reduce the effective branch delay.
There were two prediction algorithms tried: branch cache, and
static prediction. The branch cache was quickly discarded

304

when we discovered that it had to be fairly large (much
greater than 16 entries) to get a high hit rate. It would also
affect the size of our instruction cache. Besides, it never did
much better than static prediction and was much more
complex. Static prediction would use information at compile
time (possibly with profiling) to predict which way a branch
would go.

To make use of the prediction information we considered
implementing squashing, the ability to convert an instruction
into a no-op if the branch did not go in the predicted direction.
In MIPS, the instructions in the branch delay slots are always
executed. The strategy for choosing instructions is to first Iry
to move an instruction from before the branch into the slot. If
no instructions can be moved past the branch the next choice
is to find inslructions from the destination or the sequential
path that have no effect ff the branch goes the wrong way.
Thus ff you predict correctly, the slot performs a useful
instruction and if the branch goes the other way, the slot
inslruction is simply wasted. The last alternative is to place a
no-op instruction in the slot. Squashing relaxes the restriction
on the second choice for inslxuctions. It allows any
instruction from the branch destination to he placed in the
slot, even when there is an adverse effect ff the branch goes
the wrong way. The machine squashes the instruction (turns
it into a no-op) ff the branch goes the wrong way.

With squashing there are three options for dealing with the
inslructions in the delay slots giving three possible branch
types: no squash where the slot instructions are always
executed, squash if don't go where the slot instrnetions are
executed if the branch takes and squash if go where the slot
instructions are executed ff the branch does not take. Since
we decided to use static prediction, and in the static case most
branches go, MIPS-X only has the first two types of branches.
This requires only one bit in the instruction to specify how to
deal with the instructions in the slots.

Various combinations of one and two-slot schemes with
and without squashing were evaluated. The results are shown
in Table 1. The no squash scheme is the same as used in
MIPS where the instructions in the slots are always executed.
The always squash scheme only uses the squash if go and
squash if don't go actions for the instructions in the branch
slots. The squash optional scheme includes the use of
branches with no squash instructions in the slots as well as
having branches with squashing. It can be seen that by
allowing squashing the efficiency of branches is much better.

l~ranch Scheme Cycles/Branch 2

2-slot no squash 2.0
2-slot always squash 1-5
2-slot squash optional 1.3
1-slot no squash 1 A
1-slot always squash 1.3
1-slot squash optional 1.1

Table 1: Average Cycles per Branch Instruction
for Various Branch Schemes

2If all of the branch delay slots could be filled with useful
instructions, then we would achieve the ideal of a 1 cycle branch.
Any no-op instructions in the branch delay slots are attributed to the
cost of the branch so a branch with 2 no-ops in its two delay slots is
deemed to have a cost of 3.

The scheme we finally chose uses the full compare and
squash optional with two slots. Our initial estimates about
the cost of the double slots turned out to be slightly optimistic.
Where we predicted the average branch would take 1.3
cycles, results using the actual reorganizer shewed that the
average branch took about 1.5 cycles for small benchmarks
using traditional optimiT~tion. However, we have since
developed better optimization techniques and our most recent
results show that even with large Pascal and Lisp benchmarks
the average branch takes 1.27 cycles.

Implementing squashing was a gamble because we were
not completely sure how it would affect exception handling at
the time we made the commitment to use it. It turned out that
they mesh together very well as described in the next section.

Exception Handling

As the design of the machine progressed, our concentration
shifted from the functions the machine was going to perform
to how these functions were going to be controlled. MIPS-X
benefited greatly from the experience gained during the MIPS
design. Handling exceptions in MIPS caused the most
complexity in the machine because of the large number of
possible states in the processor during an exception. These
states were the result of the processor trying to complete the
instructions that occurred conceptually before the fault but
still in the pipeline, and reloading the partially full pipeline on
a return from an exception. The goal for MIPS-X was to
require as few states as possible to handle an exception so the
state machine design would not be difficult. The underlining
rule was to keep/t simple, stupid t3.

In some ways exception handling in MIPS-X followed the
MIPS model. Exceptions are not vectored so the exception
handler must first determine the cause of the exception. On
MIPS there was an on-chip surprise register where this
information was stored. MIPS-X relies instead on a separate
off-chip interrupt control unit that contains this information.
The PSW does contain bits that determine whether the
exception was caused by an interrupt, arithmetic overflow or a
non-maskable interrupt.

MIPS-X differed from MIPS in how exceptions affected
the pipeline. The MIPS exception sequence started with the
pipeline being flushed of as many instructions as possible that
were already executing. Then the program counter (PC) was
zeroed and the return PCs saved from the PC chain. The
flushing of the pipeline caused a great many extra states and
added a lot of complexity.

In MIPS-X the pipeline is halted when an exception
occurs. No instructions are completed. The PC is
immediately set to zero and the shift chain of old PC values is
frozen, saving the addresses of the instructions that are still in
the pipeline. The current PSW is placed in PSWold,
interrupts are turned off and the machine is placed into system
mode. The exception routine, located at address zero in
system space, begins execution by first saving the three PCs
from the PC chain and PSWold onto the system stack. Once
the state of the interrupted process is saved, then PC shifting
can be enabled and interrupts unmasked if desired. The
restart sequence involves reloading the PC chain with the
three saved PCs and then doing three special jumps using the
contents of the PC chain; the PC chain is used to store the

305

return addresses during the return sequence. Interrupts must
be disabled both during machine state saving and restoring.

During the discussions about how branches were to be
implemented, there was some concern about the effects the
branch implementation would have on exception handling.
The original feeling was that having more branch slots would
require more state in the machine and implementing
squashing branches would make the state machine even more
complicated. The squash proponents argued that the
hardware needed to freeze the pipeline during an exception
could be used to implement squashing branches. They not
only convinced the design team, they also turned out to be
correct. Squashing two branch slots only requires a single
extra input to the squashing finite state machine that is used to
handle exceptions. Branch squashing and squashing for
exceptions are very similar.

The general scheme used to no-op an instruction is quite
simple. All that needs to be done is to set a bit in the
destination specifier for that instruction. This bit is used by
the register file to determine whether to perform a write or
not. There are 2 lines in the machine that can set this bit,
Exception and Squash. Exception no-ops the instructions in
the ALU and MEM stages of the pipeline, while Squash
no-ops the instructions currently in the IF and RF stages of
the pipeline. The only added complexity occurs with the
Mult/Div register and the PSW which contains the only
visible state outside of the register file. Writes to these
locations are also prevented by Exception and Squash.

There is only one exception generated on chip and it is a
Irap on overflow in the ALU or the multiplication/division
hardware. At the start of the design it was felt that detecting
overflows and generating a trap was too complex to do. The
original solution was the concept of a st/cky overflow bit. If
an overflow occurred then the sticky overflow bit would be
set in the PSW. This bit could then be checked at a later time
to determine whether an overflow had occurred. This meant
that it would not be possible to precisely detect the occurrence
of the overflow but at least it was possible to indicate the
presence of an inconect result. We began looking for other
overflow mechanisms when we discovered that the sticky
overflow bit interacted badly with bypassing. Instead of
making the hardware simple, it seemed to make the PSW
harder to design.

Several other simple schemes were then proposed. One
was a SetOrtAddOverflow instruction that just routed the
overflow bit from the ALU into the most significant bit of the
ALU result. This instruction could then be used to determine
whether the addition causes an overflow by simply testing for
the sign of the result. Another suggestion was a Branch on
Ov~f/ow instruction that caused a branch if the result of the
branch comparison overflowed. These were minimal
hardware solutions that would provide some small support for
overflow detection.

At this point the exception hardware had been designed
and we observed that generating a true trap on overflow was
not difficult; in fact it was simpler than the original sticky
overflow bit. We decided to abandon the sticky overflow bit
for a maskable trap on overflow.

Control

Our overriding goal for the control section was to keep it
as simple as possible. In part we accomplished our goal by
eliminating hardware features that would complicate the
machine without providing significant performance
advantages. We also tried to keep a uniform view of the
hardware, frying to reuse the same control mechanism for
many features. Merging exceptions and squashing, and
merging memory instructions and coprocessor operations
were examples of this slrategy. Finally, we eliminated the
global controller for the machine and replaced it with a set of
smaller controllers, one for each section of the datapath. We
further partitioned the design so that a single designer was
responsible for both the datapath and control in his section,
giving each designer the incentive to make his conlrol section
simpler. Most of the machine control is simple decoders,
many generated automatically using PLA generators.

One technique that MIPS-X used to great advantage was a
qualified clock, called ¥1, to latch the control state of the
machine. This clock is the 01 clock qualified with not
external cache miss and not internal cache miss. When either
cache misses, the V1 clock does not rise, and the control state
does not shift down the pipeline conlzol latches. The lack of a
¥1 clock causes the machine to execute the previous 02 phase
before retrying the 01 phase. This simple technique made
temporary stalling of the entire pipeline very easy, and
allowed us to implement the late miss described earlier
without greatly increasing the machine complexity. Since the
V1 clock is only allowed to clock control state latches, its
pulse width can be quite narrow (about lO ns). As long as the
miss signal is monotonic, it is possible to detect a cache hit
after the data has been latched in the machine without stalling
the machine.

Together these control techniques were quite successful.
The control was nicely divided among the 4 main datapath
sections, with the only two finite state machines (FSMs)
residing in the PC unit. These FSMs handle insCuction cache
misses and iuslruction squashing during exceptions and
squashed branches. The state diagrams for the two machines
are shown in Figures 3 and 4. These FSMs are implemented
as simple shift registers with a very small amount of random
logic and occupy less than 0.2% of the total area of the chip.

Status and Conclusions

The MIPS-X project began in earnest during the summer
of 1984. By January 1985, we had settled on an initial
version of the instruction set, and had written an instruction
level simulator for the machine. We were able to use much of
the software system that was created for MIPS for MIPS-X as
well. This greatly reduced the software development effort.
The compiler/simulator system generated instruction traces
that we used to gather cache statistics and fine tune the
architecture. By April 1985, the architecture had stabilized
and work on the detailed design accelerated. We ran our first
instruction through a detailed functional simulator of the
entire processor during the summer. The final design was
taped out at the end of April 1986 and we received first
silicon back in October.

The processor was designed to run at a clock rate of 20

306

Exception or

Reset "~

Figure 3: Squash Finite State Machine

- - Rese t

MHz, executing an instruction every cycle, yielding a peak
performance of 20 MlPs. Timing analysis showed that the
version that was shipped in April would run at about 16 MHz.
Initial timing tests have shown that the part is fully functional
and it runs at the projected 16 MHz clock rate. We are now
fixing the critical paths so that we can achieve our goal of 20
MHz. The die is 8.5 mm by 8 m m and has a total of 108 pins
of which 84 are for signals and 24 are for power and ground.
There are about 150K transistors, two thirds of which are in
the instruction cache. The power dissipation is less than 1 W.

Simulations of our large Pascal benchmarks show that
15.6% of aLl instructions are no-ops due to unused branch
delays or other pipeline interlocks that cannot be optimized
away. For Lisp, this number increases slightly to 18.3% due
to a larger number of jumps and many load-load interlocks
caused by chasing car and cdr chains 14. When the memory
system overhead is included (delays from Icache and Ecache
misses), the average instruction requires about 1.7 cycles
meaning MIPS-X should have a sustained throughput above
11 MlPs. Our benchmark programs have static cede sizes in
the range of 50 KBytes to 270 K.Bytes so we cannot get exact
numbers for the effects of the external cache because most of
the benchmarks fit entirely. Smith's numbers 15 are not large
enough so we used much larger traces 16 to derive the Ecache
effects.

The performance of a machine is based on three factors:
the number of instructions executed (path length), the number
of cycles per instruction and the cycle time. Ideally, all three
factors should be minimized but we have shown that by
having simple instruction decode we can significantly
decrease the latter two factors without adversely affecting the
path length. Comparison of Pascal programs with a VAX
11/780 shows that MIPS-X executes about 25% mote
instructions but executes the programs about 14 times faster
for unoptlmiTed code. The static code size for MIPS-X is also
about 25% greater than VAX code. The Stanford compiler
system was used and the only difference was in the back end
code generators. However, when MIPS-X code is compared
to the Berkeley Pascal compiler, the path length is 80% longer
and the speedup is only 10 times faster than the VAX. Much
of this difference may be due to poorer code from our VAX
code generator. We feel that when we get the results for
optimized code, the numbers will be somewhere inbetween.

The goal of the MIPS-X project from the beginning was to
learn from MIPS and design a simpler yet faster processor.
The emphasis in all design decisions throughout the project
was simplicity: minlmiT¢ state and keep the control simple.
The implementation of MIPS-X has shown that it is possible
to implement a high performance microprocessor that
supports coprocessors, without requiring complex control or
hundreds of pins.

Acknowledgements

The MIPS-X research project has been supported by the
Defense Advanced Research Projects Agency under contract
#MDAg03-83-C-0335. Paul Chow was partially supported by
a postdoctoral fellowship from the Natural Sciences and
Engineering Research Council of Canada.

Many people have contributed to the MIPS-X research
effort. Malcolm Wing, Arturo Salz, Karen Huyser, Anant
Agarwal, Scott McFarling, C.Y. Chu, Steve Richardson,
Steve Tjiang, John Acken, Richard Simoni, Glenn Gulak,
Kathy Cuderman, Takeshi Tokuda, Eugen Reithmann, Steven
Przybylski, Chris Rowen, Norm Jouppi, Thomas Gross, John
Gill and John Hennessy deserve special thanks for their
contributions to the project.

Figure 4: Cache Miss Finite State Machine

307

I.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

References

G. Radin, "The 801 Minicomputer", Proc.
SIGARCH/SIGPLAN Symposium on Architectural
Support for Programming Languages and Operating
Systems, ACM, Paio Alto, March 1982, pp. 39-47.

D. Patterson and C. Sequin, "A VLSI RISC",
Computer, September, 1982, pp. 8-21.

M. Katevenis, "Reduced Instruction Set Computer
Architectures for VI_~I", Computer Science Division
(EECS) UCB/CSD 83/141, Univ. of CA at Berkeley,
October 1983.

J. Hennessy, et al., "The MIPS Machine",
COMPCON, IEEE, Spring 1982, pp. 2-7.

S. Przybylski, T. Gross, J. Hennessy, N. Jouppi,
C. Rowen, "Organization and VLSI Implementation
of MIPS", Journal of VLSI and Computer Systems,
Vol. 1, No. 2, December, 1984, pp. 170-208.

Anant Agarwal, Paul Chow, Mark Horowitz, John
Acken Arturo Salz and John Hennessy, "On-chip
Instruction Caches for High Performance Processors",
Proceedings, Stanford Conference on Advanced
Research in VLSI, March 1987, pp. 1-24.

J.L. Hennessy, N. Jouppi, F. Baskett, T.R. Gross and
J. Gill, "Hardware/Software Tradeoffs for Increased
Performance", Proc. SIGARCH/SIGPLAN Symposium
on Architectural Support for Programming Languages
and Operating Systems, ACM, Paio Alto, March 1982,
pp. 2-11.

Thomas Gross, Code Optimization of Pipeline
Constraints, PhD dissertation, Stanford University,
December 1983, Available as Stanford University
CSL Technical Report 83-255.

John Hennessy and Thomas Gross, "Poslpass Code
Optimization of Pipeline Constraints", ACM
Transactions on Programming Languages and
Systems, Vol. 5, No. 3, July, 1983, pp. 422-448.

Scott McFarling and John Hennessy, "Reducing the
Cost of Branches", Proceedings, 13th Symposium on
Computer Architecture, June 1986, pp. 396-403.

J.E. Smith, "A Study of Branch Predition Strategies",
Proceedings, Eighth Symposium on Computer
Architecture, May 1981, pp. 135-148.

Johnny K. F. Lee, Alan Jay Smith, "Branch Prediction
Strategies and Branch Target Buffer Design",
Computer, January, 1984, pp. 6-22.

Butler W. Lampson, "Hints for Computer System
Design", IEEE Software, Vol. 1, No. 1, January,
1984, pp. 11-30.

Peter Steenkiste, LISP on a Reduced-Instruction-Set
Processor: Characterization and Optimization, PhD
dissertation, Stanford University, 1987, To appear in
1987.

Alan Jay Smith, "Cache Memories", Computing
Surveys, Vol. 14, No. 3, September, 1982, pp.

16.

473-530.

Anant Agarwal, Richard L. Sites and Mark Horowitz,
"ATUM: A New Technique for Capturing Address
Traces Using Microcode", 13th Annual International
Symposium on Computer Architecture, IEEE, June
1986, pp. 119-127.

308

Cache Memories

ALAN JAY SMITH

Unwersity of California, Berkeley, Californm 94720

Cache memories are used in modern, medium and high-speed CPUs to hold temporarily
those portions of the contents of main memory which are {believed to be) currently in
use. Since instructions and data in cache memories can usually be referenced in 10 to 25
percent of the time required to access main memory, cache memories permit the
executmn rate of the machine to be substantially increased. In order to function
effectively, cache memories must be carefully designed and implemented. In this paper,
we explain the various aspects of cache memorms and discuss in some detail the design
features and trade-offs. A large number of original, trace-driven simulation results are
presented. Consideration is given to practical implementatmn questions as well as to more
abstract design issues.

Specific aspects of cache memories tha t are investigated include: the cache fetch
algorithm (demand versus prefetch), the placement and replacement algorithms, line size,
store-through versus copy-back updating of main memory, cold-start versus warm-start
miss ratios, mulhcache consistency, the effect of input /output through the cache, the
behavior of split data/instruction caches, and cache size. Our discussion includes other
aspects of memory system architecture, including translation lookaside buffers.
Throughout the paper, we use as examples the implementation of the cache in the
Amdahl 470V/6 and 470V/7, the IBM 3081, 3033, and 370/168, and the DEC VAX 11/780.
An extensive bibliography is provided.

Categories and Subject Descriptors: B.3.2 [Memory S t ruc tu res] : Design Styles--cache
memorws; B.3.3 [Memory S t ruc tu res] : Performance Analysis and Design Aids; C.O.
[Computer Systems Organization]: General; C.4 [Computer Systems Organiza-
tion]: Performance of Systems

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases' Buffer memory, paging, prefetching, TLB, store-
through, Amdah1470, IBM 3033, BIAS

INTRODUCTION

Definition and Rationale

Cache memories are small, high-speed
buffer memories used in modern computer
systems to hold temporarily those portions
of the contents of main memory which are
(believed to be) currently in use. Informa-
tion located in cache memory may be ac-
cessed in much less time than that located
in main memory (for reasons discussed
throughout this paper}. Thus, a central
processing unit (CPU) with a cache mem-
ory needs to spend far less time waiting for

instructions and operands to be fetched
and/or stored. For exam,~le, in typical large,
high-speed computers (e.g., Amdahl 470V/
7, IBM 3033), main memory can be ac-
cessed in 300 to 600 nanoseconds; informa-
tion can be obtained from a cache, on the
other hand, in 50 to 100 nanoseconds. Since
the performance of such machines is al-
ready limited in instruction execution rate
by cache memory access time, the absence
of any cache memory at all would produce
a very substantial decrease in execution
speed.

Virtually all modern large computer sys-

Permission to copy without fee all or part of this matenal is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying Is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0010-4892/82/0900-0473 $00.75

Computing Surveys, Vol. 14, No. 3, September 1982

474 * A . J . S m i t h

CONTENTS

INTRODUCTION
Definltlon and Rationale
Overwew of Cache Deslgn
Cache Aspects

1. DATA AND MEASUREMENTS
1 1 Ratmnale
12 Trace-Driven Snnulatlon
1 3 Slmulatlon Evaluatmn
14 The Traces
15 Swnulatmn Methods

2 ASPECTS OF CACHE DESIGN AND OPERA-
TION
2.1 Cache Fetch Algorithm
2.2 Placement Algorithm
2.3 Line Size
2.4 Replacement Algorithm
2.5 Write-Through versus Copy-Back
2.6 Effect of Multlprogramming Cold-Start and

Warm-Start
2.7 Multmache Conslstency
2.8 Data/Instruction Cache
2 9 Virtual Address Cache
2.10 User/Super~sor Cache
2.11 Input/Output through the Cache
2 12 Cache Size
2 13 Cache Bandwldth, Data Path Width, and Ac-

cess Resolutmn
2 14 Multilevel Cache
2 15 Plpehmng
2 16 Translatmn Lookaslde Buffer
2 17 Translator
2 18 Memory-Based Cache
2 19 Specmlized Caches and Cache Components

3 DIRECTIONS FOR RESEARCH AND DEVEL-
OPMENT
3 1 On-Clnp Cache and Other Technology Ad-

vances
3.2 Multmache Consistency
3.3 Implementatmn Evaluatmn
3.4 Hit Ratio versus S~e
3.5 TLB Design
3.6 Cache Parameters versus Architecture and

Workload
APPENDIX EXPLANATION OF TRACE NAMES
ACKNOWLEDGMENTS
REFERENCES

A

v

terns have cache memories; for example,
the Amdahl 470, the IBM 3081 [IBM82,
REIL82, GUST82], 3033, 370/168, 360/195,
the Univac 1100/80, and the Honeywell 66/
80. Also, many medium and small size ma-
chines have cache memories; for example,
the DEC VAX 11/780, 11/750 [ARMS81],
and PDP-11/70 [SIRE76, SNOW78], and
the Apollo, which uses a Motorolla 68000
microprocessor. We believe that within

two to four years, circuit speed and density
will progress sufficiently to permit cache
memories in one chip microcomputers.
(On-chip addressable memory is planned
for the Texas Instruments 99000 [LAFF81,
ELEC81].) Even microcomputers could
benefit substantially from an on-chip cache,
since on-chip access times are much smaller
than off-chip access times. Thus, the ma-
terial presented in this paper should be
relevant to almost the full range of com-
puter architecture implementations.

The success of cache memories has been
explained by reference to the "property of
locality" [DENN72]. The property of local-
ity has two aspects, temporal and spatial.
Over short periods of time, a program dis-
tributes its memory references nonuni-
formly over its address space, and which
portions of the address space are favored
remain largely the same for long periods of
time. This first property, called temporal
locality, or locality by time, means that the
information which will be in use in the near
future is likely to be in use already. This
type of behavior can be expected from pro-
gram loops in which both data and instruc-
tions are reused. The second property, lo-
cality by space, means that portions of the
address space which are in use generally
consist of a fairly small number of individ-
ually contiguous segments of that address
space. Locality by space, then, means that
the loci of reference of the program in the
near future are likely to be near the current
loci of reference. This type of behavior can
be expected from common knowledge of
programs: related data items (variables, ar-
rays) are usually stored together, and in-
structions are mostly executed sequentially.
Since the cache memory buffers segments
of information that have been recently
used, the property of locality implies that
needed information is also likely to be
found in the cache.

Optimizing the design of a cache memory
generally has four aspects:

(1) Maximizing the probability of finding a
memory reference's target in the cache
(the hit ratio),

(2) minimizing the time to access informa-
tion that is indeed in the cache {access
time),

(3) minimizing the delay due to a miss, and

Computing Surveys, Vol 14, No. 3, September 1982

(4) minimizing the overheads of updating
main memory, maintaining multicache
consistency, etc.

(All of these have to be accomplished
under suitable cost constraints, of course.)
There is also a trade-off between hit ratio
and access time. This trade-offhas not been
sufficiently stressed in the literature and it
is one of our major concerns in this paper.
In this paper, each aspect of cache memo-
ries is discussed at length and, where avail-
able, measurement results are presented. In
order for these detailed discussions to be
meaningful, a familiarity with many of the
aspects of cache design is required. In the
remainder of this section, we explain the
operation of a typical cache memory, and
then we briefly discuss several aspects of
cache memory design. These discussions
are expanded upon in Section 2. At the end
of this paper, there is an extensive bibliog-
raphy in which we have attempted to cite
all relevant literature. Not all of the items
in the bibliography are referenced in the
paper, although we have referred to items
there as appropriate. The reader may wish
in particular to refer to BADE79, BARS72,
GIBS67, and KAPL73 for other surveys of
some aspects of cache design. CLAR81 is
particularly interesting as it discusses the
design details of a real cache. (See also
LAMPS0.)

Overview of Cache Design

Many CPUs can be partitioned, concep-
tually and sometimes physically, into three
parts: the I-unit, the E-unit, and the S-unit.
The I-unit (instruction) is responsible for
instruction fetch and decode. It may have
some local buffers for lookahead prefetch-
ing of instructions. The E-unit (execution)
does most of what is commonly referred to
as executing an instruction, and it contains
the logic for arithmetic and logical opera-
tions. The S-unit (storage) provides the
memory interface between the I-unit and
E-unit. (IBM calls the S-unit the PSCF, or
processor storage control function.)

The S-unit is the part of the CPU of
primary interest in this paper. It contains
several parts or functions, some of which
are shown in Figure 1. The major compo-
nent of the S-unit is the cache memory.

Cache Memor ies * 475

I Moln Memory I

I ..,,,"~oc he

{I S-Unlt Tronslotor
' ASrT I T-Unit E-Unlt " ~ r i t e Through Buffers~

Figure 1. A typical CPU design and the S-unit.

There is usually a translator, which trans-
lates virtual to real memory addresses, and
a TLB (translation lookaside buffer) which
buffers (caches) recently generated (virtual
address, real address) pairs. Depending on
machine design, there can be an ASIT (ad-
dress space identifier table), a BIAS (buffer
invalidation address stack), and some write-
through buffers. Each of these is discussed
in later sections of this paper.

Figure 2 is a diagram of portions of a
typical S-unit, showing only the more im-
portant parts and data paths, in particular
the cache and the TLB. This design is
typical of that used by IBM (in the 370/168
and 3033) and by Amdahl (in the 470 series).
Figure 3 is a flowchart that corresponds
to the operation of the design in Figure
2. A discussion of this flowchart follows.

The operation of the cache commences
with the arrival of a virtual address, gener-
ally from the CPU, and the appropriate
control signal. The virtual address is passed
to both the TLB and the cache storage.
The TLB is a small associative memory
which maps virtual to real addresses. It is
often organized as shown, as a number of
groups (sets) of elements, each consisting
of a virtual address and a real address. The
TLB accepts the virtual page number, ran-
domizes it, and uses that hashed number to
select a set of elements. That set of ele-
ments is then searched associatively for a
match to the virtual address. If a match is
found, the corresponding real address is
passed along to the comparator to deter-
mine whether the target line is in the cache.
Finally, the replacement status of each en-
try in the TLB set is updated.

If the TLB does not contain the (virtual
address, real address) pair needed for the
translation, then the translator (not shown
in Figure 2) is invoked. It uses the high-
order bits of the virtual address as an entry
into the segment and page tables for the

Computing Surveys, Vol. 14, No. 3, September 1982

476

L

A. J. Smith

From translator
Virtuo! Real

Address Address

I

Tronslehon
i ~ Lookes~de

Buffer

I

CPU

Virtual Address
/ t L,°e Number Number Line I

/ \

9 -

t # #
.]Compore Virtual
"7 Addresses

S =select

Real I Address

To Morn Memory

i
J
I
I

•] :

I
I
I
I
l
!

: To translator

I Address ~l~oto Line I

C~._.~mory

essl Data I

i
I Cache

Address
1 Data
I Arrays I
f

Addresses & Select Data I ~l C o m p a r e
i

L Data ¥
Byte Select & Al.,on I

Data Out

Figure 2. A typical cache and TLB design.

I HCsh Page Numbe~
(,

[Search TLB I

J Send v,rtool Address J to Translator

I Use Poo~ & Segment Tables
1"o Translate Address I

1
I Put ,. TLB]

CACHE OPERATION FLOW CHART

l
I Rece,ve Virtual Address I

I I
t

Select Set
t

(~) ~ e o d Out Address Tags I

yes ~ =t Compare Addresses I

I Update Replacement 1 Jl ~ Status in TLB } yes

IUpdate ; t e~ : ement I send Realto Ma,n Address IMemory

'
I ReceweLine from I

Morn Memory

I ,.,~, co,,,o, 1 Bytes from Line

Figure 3. Cache operahon flow chart.

Computing Surveys, Vol. 14, No. 3, September 1982

process and then returns the address pair
to the TLB (which retains it for possible
future use), thus replacing an existing TLB
entry.

The virtual address is also passed along
initially to a mechanism which uses the
middle part of the virtual address (the line
number) as an index to select a set of entries
in the cache. Each entry consists primarily
of a real address tag and a line of data (see
Figure 4). The line is the quantum of stor-
age in the cache. The tags of the elements
of all the selected set are read into a com-
parator and compared with the real address
from the TLB. (Sometimes the cache stor-
age stores the data and address tags to-
gether, as shown in Figures 2 and 4. Other
times, the address tags and data are stored
separately in the "address array" and "data
array," respectively.) If a match is found,
the line (or a part of it) containing the
target locations is read into a shift register
and the replacement status of the entries in
the cache set are updated. The shift register
is then shifted to select the target bytes,
which are in turn transmitted to the source
of the original data request.

If a miss occurs (i.e., addresss tags in the
cache do not match), then the real address
of the desired line is transmitted to the
main memory. The replacement status in-
formation is used to determine which line
to remove from the cache to make room for
the target line. If the line to be removed
from the cache has been modified, and main
memory has not yet been updated with the
modification, then the line is copied back to
main memory; otherwise, it is simply de-
leted from the cache. After some number of
machine cycles, the target line arrives from
main memory and is loaded into the cache
storage. The line is also passed to the shift
register for the target bytes to be selected.

Cache Aspects

The cache description given above is both
simplified and specific; it does not show
design alternatives. Below, we point out
some of the design alternatives for the
cache memory.

Cache Fetch Algorithm. The cache fetch
algorithm is used to decide when to bring
information into the cache. Several possi-

Cache Memories * 477

I e°A00r"s '100'ol Vo,0 1
Cache Entry

[Eo,ry, I E°,..21 i E°,ry I.e0,oce.°, s,oio.
Cache Set

Figure 4. Structure of cache entry and cache set.

bilities exist: information can be fetched on
demand (when it is needed) or prefetched
(before it is needed). Prefetch algorithms
attempt to guess what information will soon
be needed and obtain it in advance. It is
also possible for the cache fetch algorithm
to omit fetching some information (selec-
tive fetch) and designate some information,
such as shared writeable code (sema-
phores), as unfetchable. Further, there may
be no fetch-on-write in systems which use
write-through (see below).

Cache Placement Algorithm. Informa-
tion is generally retrieved from the cache
associatively, and because large associative
memories are usually very expensive and
somewhat slow, the cache is generally or-
ganized as a group of smaller associative
memories. Thus, only one of the associative
memories has to be searched to determine
whether the desired information is located
in the cache. Each such (small) associative
memory is called a set and the number of
elements over which the associative search
is conducted is called the set size. The
placement algorithm is used to determine
in which set a piece {line) of information
will be placed. Later in this paper we con-
sider the problem of selecting the number
of sets, the set size, and the placement
algorithm in such a set-associative memory.

Line Size. The fixed-size unit of infor-
mation transfer between the cache and
main memory is called the line. The line
corresponds conceptually to the page,
which is the unit of transfer between the
main memory and secondary storage. Se-
lecting the line size is an important part of
the memory system design. (A line is also
sometimes referred to as a block.)

Replacement Algorithm. When infor-
mation is requested by the CPU from main
memory and the cache is full, some infor-
mation in the cache must be selected for

Computing Surveys, Vol. 14, No. 3, September 1982

478 * A. J. Smith

replacement. Various replacement algo-
rithms are possible, such as FIFO (first in,
first out), LRU (least recently used), and
random. Later, we consider the first two of
these.

Main Memory Update Algorithm. When
the CPU performs a write (store) to mem-
ory, that operation can actually be reflected
in the cache and main memories in a num-
ber of ways. For example, the cache mem-
ory can receive the write and the main
memory can be updated when that line is
replaced in the cache. This strategy is
known as copy-back. Copy-back may also
require that the line be fetched if it is absent
from the cache (i.e., fetch-on-write). An-
other strategy, known as write-through, im-
mediately updates main memory when a
write occurs. Write-through may specify
that if the information is in the cache, the
cache be either updated or purged from
main memory. If the information is not in
the cache, it may or may not be fetched.
The choice between copy-back and write-
through strategies is also influenced by the
need to maintain consistency among the
cache memories in a tightly coupled multi-
processor system. This requirement is dis-
cussed later.

Cold-Start versus Warm-Start Miss Ra-
tios and Multiprogramming. Most com-
puter systems with cache memories are
multiprogrammed; many processes run on
the CPU, though only one can run at a
time, and they alternate every few millisec-
onds. This means that a significant fraction
of the cache miss ratio is due to loading
data and instructions for a new process,
rather than to a single process which has
been running for some time. Miss ratios
that are measured when starting with an
empty cache are called cold-start miss ra-
tios, and those that are measured from the
time the cache becomes full are called
warm-start miss ratios. Our simulation
studies consider this multiprogramming en-
vironment.

User/Supervisor Cache. The frequent
switching between user and supervisor
state in most systems results in high miss
ratios because the cache is often reloaded
(i.e., cold-start). One way to address this is
to incorporate two cache memories, and
allow the supervisor to use one cache and

the user programs to use the other. Poten-
tially, this could result in both the super-
visor and the user programs more fre-
quently finding upon initiation what they
need in the cache.

Multicache Consistency. A multiproces-
sor system with multiple caches faces the
problem of making sure that all copies of a
given piece of information (which poten-
tially could exist in every cache, as well as
in the main memory) are the same. A mod-
ification of any one of these copies should
somehow be reflected in all others. A num-
ber of solutions to this problem are possible.
The three most popular solutions are essen-
tially: (1) to transmit all stores to all caches
and memories, so that all copies are up-
dated; (2) to transmit the addresses of all
stores to all other caches, and purge the
corresponding lines from all other caches;
or (3) to permit data that are writeable
(page or line flagged to permit modifica-
tion) to be in only one cache at a time. A
centralized or distributed directory may be
used to control making and updating of
copies.

Input/Output. Input/output (from and
to I/O devices) is an additional source of
references to information in memory. It is
important that an output request stream
reference the most current values for the
information transferred. Similarly, it is also
important that input data be immediately
reflected in any and all copies of those lines
in memory. Several solutions to this prob-
lem are possible. One is to direct the I/O
stream through the cache itself (in a single
processor system); another is to use a write-
through policy and broadcast all writes so
as to update or invalidate the target line
wherever found. In the latter case, the
channel accesses main memory rather than
the cache.

Data/Instruction Cache. Another cache
design strategy is to split the cache into two
parts: one for data and one for instructions.
This has the advantages that the band-
width of the cache is increased and the
access time (for reasons discussed later) can
be decreased. Several problems occur: the
overall miss ratio may increase, the two
caches must be kept consistent, and self-
modifying code and execute instructions
must be accommodated.

Computing Surveys, Vol. 14, No 3, September 1982

Virtual versus Real Addressing. In com-
puter systems with virtual memory, the
cache may potentially be accessed either
with a real address (real address cache) or
a virtual address (virtual address cache). If
real addresses are to be used, the virtual
addresses generated by the processor must
first be translated as in the example above
(Figure 2); this is generally done by a TLB.
The TLB is itself a cache memory which
stores recently used address translation in-
formation, so that translation can occur
quickly. Direct virtual address access is
faster (since no translation is needed), but
causes some problems. In a virtual address
cache, inverse mapping (real to virtual ad-
dress) is sometimes needed; this can be
done by an RTB (reverse translation buffer).

Cache Size. It is obvious that the larger
the cache, the higher the probability of
finding the needed information in it. Cache
sizes cannot be expanded without limit,
however, for several reasons: cost (the most
important reason in many machines, espe-
cially small ones), physical size (the cache
must fit on the boards and in the cabinets),
and access time. (The larger the cache, the
slower it may become. Reasons for this are
discussed in Section 2.12.). Later, we ad-
dress the question of how large is large
enough.

Multilevel Cache. As the cache grows in
size, there comes a point where it may be
usefully split into two levels: a small, high-
level cache, which is faster, smaller, and
more expensive per byte, and a larger, sec-
ond-level cache. This two-level cache struc-
ture solves some of the problems that afflict
caches when they become too large.

Cache Bandwidth. The cache bandwidth
is the rate at which data can be read from
and written to the cache. The bandwidth
must be sufficient to support the proposed
rate of instruction execution and I/O.
Bandwidth can be improved by increasing
the width of the data path, interleaving the
cache and decreasing access time.

1. DATA AND MEASUREMENTS

1.1 Rationale

As noted earlier, our in-depth studies of
some aspects of cache design and optimi-
zation are based on extensive trace-driven

Cache Memories • 479

simulation. In this section, we explain the
importance of this approach, and then dis-
cuss the presentation of our results.

One difficulty in providing definitive
statements about aspects of cache opera-
tion is that the effectiveness of a cache
memory depends on the workload of the
computer system; further, to our knowl-
edge, there has never been any (public)
effort to characterize that workload with
respect to its effect on the cache memory.
Along the same lines, there is no generally
accepted model for program behavior, and
still less is there one for its effect on the
uppermost level of the memory hierarchy.
(But see AROR72 for some measurements,
and LEHM78 and L~.HMS0, in which a model
is used.)

For these reasons, we believe that it is
possible for many aspects of cache design
to make statements about relative perform-
ance only when those statements are based
on trace-driven simulation or direct mea-
surement. We have therefore tried through-
out, when examining certain aspects of
cache memories, to present a large number
of simulation results and, if possible, to
generalize from those measurements. We
have also made an effort to locate and
reference other measurement and trace-
driven simulation results reported in the
literature. The reader may wish, for exam-
ple, to read WIND73, in which that author
discusses the set of data used for his simu-
lations.

1.2 Trace-Driven Simulation

Trace-driven simulation is an effective
method for evaluating the behavior of a
memory hierarchy. A trace is usually gath-
ered by interpretively executing a program
and recording every main memory location
referenced by the program during its exe-
cution. (Each address may be tagged in any
way desired, e.g., instruction fetch, data
fetch, data store.) One or more such traces
are then used to drive a simulation model
of a cache (or main) memory. By varying
parameters of the simulation model, it is
possible to simulate directly any cache size,
placement, fetch or replacement algorithm,
line size, and so forth. Programming tech-
niques allow a range of values for many of
these parameters to be measured simulta-

Computing Surveys, Vol. 14, No. 3, September 1982

480 • A. J. Smi th

neously, during the same simulation run
[GEcS74, MATT70, SLUT72]. Trace-driven
simulation has been a mainstay of memory
hierarchy evaluation for the last 12 to 15
years; see BELA66 for an early example of
this technique, or see POHM73. We assume
only a single cache in the system, the one
that we simulate. Note that our model does
not include the additional buffers com-
monly found in the instruction decode and
ALU portions of many CPUs.

In many cases, trace-driven simulation is
preferred to actual measurement. Actual
measurements require access to a computer
and hardware measurement tools. Thus, if
the results of the experiments are to be
even approximately repeatable, standalone
time is required. Also, if one is measuring
an actual machine, one is unable to vary
most (if any) hardware parameters. Trace-
driven simulation has none of these diffi-
culties; parameters can be varied at will and
experiments can be repeated and repro-
duced precisely. The principal advantage of
measurement over simulation is that it re-
quires 1 to 0.1 percent as much running
time and is thus very valuable in establish-
ing a genuine, workload-based, actual level
of performance (for validation). Actual
workloads also include supervisor code, in-
terrupts, context switches, and other as-
pects of workload behavior which are hard
to imitate with traces. The results in
this paper are mostly of the trace-driven
variety.

1.3 Simulation Evaluation

There are two aspects to the performance
of a cache memory. The first is access time:
How long does it take to get information
from or put information into the cache? It
is very difficult to make exact statements
about the effect of design changes on access
time without specifying a circuit technology
and a circuit diagram. One can, though,
indicate trends, and we do that throughout
this paper.

The second aspect of cache performance
is the miss ratio: What fraction of all mem-
ory references attempt to access something
which is not resident in the cache memory?
Every such miss requires that the CPU wait
until the desired information can be
reached. Note that the miss ratio is a func-

tion not only of how the cache design affects
the number of misses, but also of how the
machine design affects the number of cache
memory references. (A memory reference
represents a cache access. A given instruc-
tion requires a varying number of memory
references, depending on the specific imple-
mentation of the machine.) For example, a
different number of memory references
would be required if one word at a time
were obtained from the cache than if two
words were obtained at once. Almost all of
our trace-driven studies assume a cache
with a one-word data path (370 words = 4
bytes, PDP-11 word ffi 2 bytes). The WA-
TEX, WATFIV, FFT, and APL traces as-
sume a two-word (eight-byte) data path.
We measure the miss ratio and use it as the
major figure of merit for most of our stud-
ies. We display many of these results as
x / y plots of miss ratios versus cache size in
order to show the dependence of various
cache design parameters on the cache size.

1.4 The Traces

We have obtained 19 program address
traces, 3 of them for the PDP-11 and the
other 16 for the IBM 360/370 series of
computers. Each trace is for a program
developed for normal production use.
(These traces are listed in the Appendix,
with a brief description of each.) They have
been used in groups to simulate multipro-
gramming; five such groups were formed.
Two represent a scientific workload (WFV,
APL, WTX, FFT, and FGO1, FGO2, FGO3,
FGO4), one a business (commercial) work-
load (CGO1, CGO2, CGO3, PGO2), one a
miscellaneous workload, including compi-
lations and a utility program (PGO1,
CCOMP, FCOMP, IEBDG), and one a
PDP-11 workload (ROFFAS, EDC,
TRACE). The miss ratio as a function of
cache size is shown in Figure 5 for most of
the traces; see SMIT79 for the miss ratios of
the remaining traces. The miss ratios for
each of the traces in Figure 5 are cold-start
values based on simulations of 250,000
memory references for the IBM traces, and
333,333 for the PDP-11 traces.

1.5 Simulation Methods

Almost all of the simulations that were run
used 3 or 4 traces and simulated multipro-

Computing Surveys, Vol 14, No. 3, September 1982

0.i00

0.050

0 . 0 2 0

0.010

0 . 0 0 5
I---
< :
rY

03 0 . 0 5 0
03
I - - - I
:E 0 . 0 2 0

0.010

0.005

0 . 0 0 2

0.001

Cache Memories • 481

TRACE MISS RATIOS
20000 40000 60000 10000 20000 30000

~o; , , , , , , , , , , , i , ,i, , , , , , , , , , , , , ,

=-~. ' ' - - - CG01 - - ~ A I I FG~I -~ 0.100
: i:', --- cgo2 \, Fo02 !
- cG 3 \ ' , F G 0 3 : 0 . 0 5 0

- "i-"'.., \", " " ...\ ~ ~. " 0 . 0 2 0

-=-! "'" ~ = = " - - W ~ " ., - ~ , . ~ 0.010

• .= 0 . 0 0 5

! , ' , , I I I , , I , ; ' , , ' t ' : - ' , , , I , : o .oo2
: ' , ' ' 1 I I ' ' ' - ' , ~ I ' ' ' ' I ' ' 0.100
- :' " - ROFFAS ~ " \ " . P G 0 2

"EDC "'~'~!\~... " C C O H P ! 0 . 0 5 0
't. TRACEEOC " - \ "'. " .. - " "" FCOHP -

0.010

Z ~ % 0 .005

I , , , , I , , , - , - , ~ , - ~ , , , , I , , , , I , , 0 . 0 0 2

2 0 0 0 4 0 0 0 6 0 0 0 2 0 0 0 0 4 0 0 0 0
MEMORY C A P A C I T Y

Figure 5. Individual trace miss ratios.

gramming by switching the trace in use
every Q time-units (where Q was usually
10,000, a cache memory reference takes 1
time-unit, and a miss requires 10). Multi-
programmed simulations are used for two
reasons: they are considered to be more
representative of usual computer system
operation than uniprogrammed ones, and
they also allow many more traces to be
included without increasing the number of
simulation runs. An acceptable alternative,
though, would have been to use unipro-
gramming and purge the cache every Q
memory references. A still better idea
would have been to interleave user and
supervisor code, but no supervisor traces
were available.

All of the multiprogrammed simulations
(i.e., Figures 6, 9-33) were run for one mil-
lion memory references; thus approxi-
mately 250,000 memory references were
used from each of the IBM 370 traces, and
333,333 from the PDP-11 traces.

The standard number of sets in the sim-
ulations was 64. The line size was generally
32 bytes for the IBM traces and 16 bytes
for the PDP-11 traces.

2. ASPECTS OF CACHE DESIGN AND
OPERATION

2.1 Cache Fetch Algorithm

2.1.1 Introduction

As we noted earlier, one of the two aims of
cache design is to minimize the miss ratio.
Part of the approach to this goal is to select
a cache fetch algorithm that is very likely
to fetch the right information, if possible,
before it is needed. The standard cache
fetch algorithm is demand fetching, by
which a line is fetched when and if it is
needed. Demand fetches cannot be avoided
entirely, but they can be reduced if we can
sucessfully predict which lines will be
needed and fetch them in advance. A cache
fetch algorithm which gets information be-

Computing Surveys. Vol. 14, No. 3, September 1982

482 • A. J. Smith

fore it is needed is called a prefetch algo-
rithm.

Prefetch algorithms have been studied in
detail in Smv78b. Below, we summarize
those results and give one important exten-
sion. We also refer the reader to several
other works [AIcH76, BENN76, BEaG78,
ENGE73, PERK80, and RAU76] for addi-
tional discussions of some of these issues.

We mention the importance of a tech-
nique known as fetch bypass or load-
through. When a miss occurs, it can be
rectified in two ways: either the line desired
can be read into the cache, and the fetch
then reinitiated (this was done in the orig-
inal Amdahl 470V/6 [SMIT78b]), or, better,
the desired bytes can be passed directly
from the main memory to the instruction
unit, bypassing the cache. In this latter
strategy, the cache is loaded, either simul-
taneously with the fetch bypass or after the
bypass occurs. This method is used in the
470V/7,470V/8, and the IBM 3033. (A wra-
paround load is usually used [KROFS0] in
which the transfer begins with the bytes
accessed and wraps around to the rest of
the line.)

2.1.2 Prefetching

A prefetch algorithm must be carefully de-
signed if the machine performance is to be
improved rather than degraded. In order to
show this more clearly, we must first define
our terms. Let the prefetch ratio be the
ratio of the number of lines transferred due
to prefetches to the total number of pro-
gram memory references. And let transfer
ratio be the sum of the prefetch and miss
ratios. There are two types of references to
the cache: actual and prefetch lookup. Ac-
tual references are those generated by a
source external to the cache, such as the
rest of the CPU (I-unit, E-unit) or the chan-
nell.. A prefetch lookup occurs when the
cache interrogates itself to see if a given
line is resident or if it must be prefetched.
The ratio of the total accesses to the cache
(actual plus prefetch lookup) to the number
of actual references is called the access
ratio.

There are costs associated with each of
the above ratios. We can define these costs
in terms of lost machine cycles per memory

reference. Let D be the penalty for a de-
mand miss (a miss that occurs because the
target is needed immediately) which arises
from machine idle time while the fetch
completes. The prefetch cost, P, results
from the cache cycles used (and thus other-
wise unavailable) to bring in a prefetched
line, used to move out (if necessary) a line
replaced by a prefetch, and spent in delays
while main memory modules are busy doing
a prefetch move-in and move-out. The ac-
cess cost, A, is the penalty due to additional
cache prefetch lookup accesses which inter-
fere with the executing program's use of the
cache. A prefetch algorithm is effective only
if the following equation holds:

D * miss ratio (demand)
> [D * miss ratio (prefetch)

+ P * prefetch ratio
+ A * (access ratio - 1)] (1)

We should note also that the miss ratio
when using prefetching may not be lower
than the miss ratio for demand fetching.
The problem here is cache memory pollu-
tion; prefetched lines may pollute memory
by expelling other lines which are more
likely to be referenced. This issue is dis-
cussed extensively and with some attempt
at analysis in SMIT78c; in SMIT78b a num-
ber of experimental results are shown. We
found earlier [SMIT78b] that the major fac-
tor in determining whether prefetching is
useful was the line size. Lines of 256 or
fewer bytes (such as are commonly used in
caches) generally resulted in useful pre-
fetching; larger lines (or pages) made pre-
fetching ineffective.The reason for this is
that a prefetch to a large line brings in a
great deal of information, much or all of
which may not be needed, and removes an
equally large amount of information, some
of which may still be in use.

A prefetch algorithm has three major
concerns: (1) when to initiate a prefetch,
(2) which line(s) to prefetch, and (3) what
replacement status to give the prefetched
block. We believe that in cache memories,
because of the need for fast hardware im-
plementation, the only possible line to pre-
fetch is the immediately sequential one;
this type of prefetching is also known as
one block lookahead (OBL). That is, if line

Computing Surveys, Vol. 14, No. 3, September 1982

i is referenced, only line i + 1 is considered
for prefetching. Other possibilities, which
sometimes may result in a lower miss ratio,
are not feasible for hardware implementa-
tion in a cache at cache speeds. Therefore,
we consider only OBL.

If some lines in the cache have been
referenced and others are resident only be-
cause they were prefetched, then the two
types of lines may be treated differently
with respect to replacement. Further, a pre-
fetch lookup may or may not alter the
replacement status of the line examined. In
this paper we have made no distinction
between the effect of a reference or a pre-
fetch lookup on the replacement status of
a fine. That is, a line is moved to the top of
the LRU stack for its set if it is referenced,
prefetched, or is the target of a prefetch
lookup; LRU is used for replacement for all
prefetch experiments in this paper. (See
Section 2.2.2} The replacement status of
these three cases was varied in SMIT78C,
and in that paper it was found that such
distinctions in replacement status had little
effect on the miss ratio.

There are several possibilities for when
to initiate a prefetch. For example, a pre-
fetch can occur on instruction fetches, data
reads and/or data writes, when a miss oc-
curs, always, when the last nth of a line is
accessed, when a sequential access pattern
has already been observed, and so on. Pre-
fetching when a sequential access pattern
has been observed or when the last nth
segment (n = ½, ¼, etc.} of a line has been
used is likely to be ineffective for reasons of
timing: the prefetch will not be complete
when the line is needed. In SMIT78b we
showed that limiting prefetches only to in-
struction accesses or only to data accesses
is less effective than making all memory
accesses eligible to start prefetches. See
also BENN82.

It is possible to create prefetch algo-
rithms or mechanisms which employ infor-
mation not available within the cache mem-
ory. For example, a special instruction
could be invented to initiate prefetches. No
machine, to our knowledge, has such an
instruction, nor have any evaluations been
performed of this idea, and we are inclined
to doubt its utility in most cases. A prefetch
instruction that specified the transfer of

Cache Memories * 483

large amounts of information would run the
substantial risk of polluting the cache with
information that either would not be used
for some time, or would not be used at all.
If only a small amount of information were
prefetched, the overhead of the prefetch
might well exceed the value of the savings.
However, some sophisticated versions of
this idea might work. One such would be to
make a record of the contents of the cache
whenever the execution of a process was
stopped, and after the process had been
restarted, to restore the cache, or better,
only its most recently used half. This idea
is known as working set restoration and
has been studied to some extent for paged
main memories. The complexity of imple-
menting it for cache makes it unlikely to be
worthwhile, although further study is called
for.

Another possibility would be to recognize
when a base register is loaded by the proc-
ess and then to cause some number of lines
(one, two, or three) following the loaded
address to be prefetched [PoME80b,
HoEv81a, HoEv81b]. Implementing this is
easy, but architectural and software
changes are required to ensure that the
base registers are known or recognized, and
modifications to them initiate prefetches.
No evaluation of this idea is available, but
a decreased miss ratio appears likely to
result from its implementation. The effect
could be very minor, though, and needs to
be evaluated experimentally before any
modification of current software or hard-
ware is justified.

We consider three types of prefetching in
this paper: (1) always prefetch, (2) prefetch
on misses, and (3) tagged prefetch. Always
prefetch means that on every memory ref-
erence, access to line i (for all i) implies, a
prefetch access for line i + 1. Thus the
access ratio in this case is always 2.0. Pre-
fetch on misses implies that a reference to
a block i causes a prefetch to block i + 1 if
and only if the reference to block i itself
was a miss. Here, the access ratio is 1 +
miss ratio. Taggedprefetch is a little more
complicated, and was first proposed by
GIND77. We associate with each line a sin-
gle bit called the tag, which is set to one
whenever the line is accessed by a program.
It is initially zero and is reset to zero when

Computing Surveys, Vol. 14, No. 3, September 1982

484 •

0 .100

0 . 0 5 0

O.OlO

E~ 0 . 0 0 5
I - - I

I--
<
n,"

0.001 09
09

0.I00

0 . 0 5 0

O.OlO

0 . 0 0 5

A. J. Smith

PREFETCH EXPERIMENTS
0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 0

J ' ' ' ' i / / ' '

, , _

2 0 0 0 0 4 0 0 0 0 6 0 0 0 0

I ~ ! ' ' ' [' ' ' ' [' ' ' ' I '
o PREFETCH ON MISSES--.-" 0.i00

" , ~ ~ A G G E D PREFETCH ! 0.050

- \, < > ~
- - " x _ _ ~ - o.olo

: " .. 0 . 0 0 5 : "%
,%

PGO-CCOMP-FCOMP-IEBOG'~.: " ~\ ROFFAS-EOC-TRACE
YTE LINES :" ~.~ 16 BYTE LINES

- x - - -× .

: . !

" 1 , , , , I , , , , I , , I . " , I , , , I , . , ; I - , ~ ,
0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 0 5 0 0 0 1 0 0 0 0 1 5 0 0 0

MEMORY CAPACITY

Figure 6. Comparison of miss ratios for two prefetch strategies and no prefetch.

0.001

0.0500

0.0100

0.0050

0.0010

0.0005

the line is removed from the cache. Any
line brought to the cache by a prefetch
operation retains its tag of zero. When a tag
changes from 0 to 1 (i.e., when the line is
referenced for the first time after prefetch-
ing or is demand-fetched), a prefetch is
initiated for the next sequential line. The
idea is very similar to prefetching on misses
only, except that a miss which did not occur
because the line was prefetched (i.e., had
there not been a prefetch, there would have
been a miss to this line) also initiates a
prefetch.

Two of these prefetch algorithms were
tested in SMIT78b: always prefetch and pre-
fetch on misses. It was found that always
prefetching reduced the miss ratio by as
much as 75 to 80 percent for large cache
memory sizes, while increasing the transfer
ratio by 20 to 80 percent. Prefetching only
on misses was much less effective; it pro-
duced only one half, or less, of the decrease
in miss ratio produced by always prefetch-
ing. The transfer ratio, of course, also in-

creased by a much smaller amount, typi-
cally 10 to 20 percent.

The experiments in SMIT78b, while very
thorough, used only one set of traces and
also did not test the tagged prefetch algo-
rithm. To remedy this, we ran additional
experiments; the results are presented in
Figure 6. (In this figure, 32-byte lines are
used in all cases except for 16-byte lines for
the PDP-11 traces, the task switch interval
Q is 10K, and there are 64 sets in all cases.)
It can be seen that always prefetching cut
the (demand) miss ratio by 50 to 90 percent
for most cache sizes and tagged prefetch
was almost equally effective. Prefetching
only on misses was less than half as good as
always prefetching or tagged prefetch in
reducing the miss ratio. These results are
seen to be consistent across all five sets of
traces used.

These experiments are confirmed by the
results in Table 1. There we have tabulated
the miss, transfer, and access ratios for the
three prefetch algorithms considered, as

Computmg Surveys, Vol 14, No. 3, September 1982

%
e

t -
O

a .

I ' -

e-
0

8

o ~ o o o ~ o o "

M ~ M M ~ M ~ M

o o o d o o o •

I~oooSoo

I ~ 0 0 0 0 0 ~ 1 ~ .

~ ~ t ' ~
' ~ < 0 0 0 © 0 0 1 ~
, ~ 0 ~ 0 0 0 0 0 ~ 1 ~ : ~ ~ ~ 1 ~

486 • A . J . S m i t h

well as the demand miss ratio for each of
the sets of traces used and for a variety of
memory sizes. We observe from this table
that always prefetch and tagged prefetch
are both very successful in reducing the
miss ratio. Tagged prefetch has the signifi-
cant additional benefit of requiring only a
small increase in the access ratio over de-
mand fetching. The transfer ratio is com-
parable for tagged prefetch and always pre-
fetch.

It is important to note that taking advan-
tage of the decrease in miss ratio obtained
by these prefetch algorithms depends
very strongly on the effectiveness of the
implementation. For example, the Amdahl
470V/6-1 has a fairly sophisticated prefetch
algorithm built in, but because of the design
architecture of the machine, the benefit of
prefetch cannot be realized. Although the
prefetching cuts the miss ratio in this ar-
chitecture, it uses too many cache cycles
and interferes with normal program ac-
cesses to the cache. For that reason, pre-
fetching is not used in the 470V/6-1 and is
not available to customers. The more re-
cent 470V/8, though, does contain a pre-
fetch algorithm which is useful and im-
proves machine performance. The V/8
cache prefetch algorithm prefetches (only)
on misses, and was selected on the basis
that it causes very little interference with
normal machine operation. (Prefetch is im-
plemented in the Dorado [CLAR81], but its
success is not described.)

The prefetch implementation must at all
times minimize its interference with regular
machine functioning. For example, prefetch
lookups should not block normal program
memory accesses. This can be accom-
plished in three ways: (1) by instituting a

second, parallel port to the cache, (2) by
deferring prefetches until spare cache cy-
cles are available, or (3) by not repeating
recent prefetches. (Repeat prefetches can
be eliminated by remembering the ad-
dresses of the last n prefetches in a small
auxiliary cache. A potential prefetch could
be tested against this buffer and not issued
if found. This should cut the number of
prefetch lookups by 80 to 90 percent for
small n).

The move-in (transfer of a line from main
to cache memory) and move-out (transfer
from cache to main memory) required by a

prefetch transfer can be buffered for per-
formance during otherwise idle cache cy-
cles. The main memory busy time engen-
dered by a prefetch transfer seems unavoid-
able, but is not a serious problem. Also
unavoidable is the fact that a prefetch may
not be complete by the time the prefetched
line is actually needed. This effect was ex-
amined in SMIT78b and was found to be
minor although noticeable. Further com-
ments and details of a suggested implemen-
tation are found in SMIT78b.

We note briefly that it is possible to
consider the successful use of prefetching
as an indication that the line size is too
small; prefetch functions much as a larger
line size would. A comparison of the results
in Figure 6 and Table I with those in Fig-
ures 15-21 shows that prefetching on misses
for 32-byte lines gives slightly better results
than doubling the line size to 64 bytes.
Always prefetching and tagged prefetch are
both significantly better than the larger line
size without prefetching. Therefore, it
would appear that prefetching has benefits
in addition to those that it provides by
simulating a larger line size.

2.2 Placement Algorithm

The cache itself is not a user-addressable
memory, but serves only as a buffer for
main memory. Thus in order to locate an
element in the cache, it is necessary to have
some function which maps the main mem-
ory address into a cache location, or to
search the cache associatively, or to per-
form some combination of these two. The
placement algorithm determines the map-
ping function from main memory address
to cache location.

The most commonly used form of place-
ment algorithm is called set-associative
mapping. It involves organizing the cache
into S sets of E elements per set (see Figure
7). Given a memory address r(i) , a function
f will map r(i) into a set s(i) , so that
f (r (i)) ffi s (i) . The reason for this type of
organization may be oberved by letting
either S or E become one. If S becomes
one, then the cache becomes a fully asso-
ciative memory. The problem is that the
large number of lines in a cache would make
a fully associative memory both slow and
very expensive. (Our comments here apply

Computing Surveys, Vol, 14, No. 3, September 1982

E
elements
per set

Figure 7.
each.

Cache M e m o r i e s • 487

o , o

o o o

o o o

: : : : : :

. e °

S sets

The cache is orgamzed as S sets of E elements

to non-VLSI implementations. VLSI MOS
facilitates broad associative searches.) Con-
versely, if E becomes one, in an organiza-
tion known as direct mapping [CONT69],
there is only one element per set. (A more
general classification has been proposed by
HARD75.) Since the mapping function f is
many to one, the potential for conflict in
this latter case is quite high: two or more
currently active lines may map into the
same set. It is clear that, on the average,
the conflict and miss ratio decline with
increasing E, (as S * E remains constant),
while the cost and access time increase. An
effective compromise is to select E in the
range of 2 to 16. Some typical values de-
pending on certain cost and performance
tradeoffs, are: 2 (Amdahl 470V/6-1, VAX
11/780, IBM 370/158-1}, 4 (IBM 370/168-1,
Amdahl 470V/8, Honeywell 66/80, IBM
370/158-3), 8 (IBM 370/168-3, Amdahl
470V/7), 16 (IBM 3033).

Another placement algorithm utilizes a
sector buffer [CONT68], as in the IBM 360/
85. In this machine, the cache is divided
into 16 sectors of 1024 bytes each. When a
word is accessed for which the correspond-
ing sector has not been allocated a place in
the cache (the sector search being fully
associative), a sector is made available (the
LRU sector--see Section 2.4), and a 64-
byte block containing the information ref-
erenced is transferred. When a word is ref-
erenced whose sector is in the cache but
whose block is not, the block is simply
fetched. The hit ratio for this algorithm is
now generally known to be lower than that
of the set-associative organization (Private
Communication: F. Bookett) and hence we
do not consider it further. (This type of
design may prove appropriate for on-chip
microprocessor caches, since the limiting
factor in many microprocessor systems is

Memory Address
b I

I I . . . I !J . - ' l I), I '"1 I !
Set number Byte within hne

Figure 8. The set is selected by the low-order bits of
the line number.

bus bandwidth. That topic is currently un-
der study.)

There are two aspects to selecting a
placement algorithm for the cache. First,
the number of sets S must be chosen while
S * E ffi M remains constant, where M is
the number of lines in the cache. Second,
the mapping function f, which translates a
main memory address into a cache set,
must be specified. The second question is
most fully explored by SMIT78a; we sum-
marize those results and present some new
experimental measurements below. A num-
ber of other papers consider one or both of
these questions to some extent, and we refer
to reader to those [CAMP76, CONT68,
CONT69, FUKU77, KAPL73, LIPT68,
MATT71, STRE76, THAK78] for additional
information.

2.2.1 Set Selection Algorithm

Several possible algorithms are used or
have been proposed for mapping an address
into a set number. The simplest and most
popular is known as bit selection, and is
shown in Figure 8. The number of sets S is
chosen to be a power of 2 (e.g., S = 2k).
If there are 2 J bytes per line, the j bits
1 . . . j select the byte within the line, and
bitsj + 1 . . . j + k select the set. Performing
the mapping is thus very simple, since all
that is required is the.decoding of a binary
quantity. Bit-selection is used in all com-

Computing Surveys, Vol. 14, No. 3, September 1982

488 • A . J . S m i t h

0.100

0.050

0.020

E~O.OIO

~<0.005
or"
CO
CO
5-- 0.10

0.05

0

0.02 i

0.01

0

Figure 9.

RANDOM VS. SET ASSOC. MAPPING
20000 40000 60000 0 20000 40000 60000

32 BYTES/LINE, 64 SETS
- - -SET ASSOC., 0-250K

FGOI...4

: . \
oN

CG01...3, PG02
- - S E T ^SSBC., Q-IOR

. . . . RANDOM, Q-IOK

\ (..
~" 4..

PGO-CCOMP-FCOMP-IEBDG
RANDOM, Q-250K

%.
'.k

°°~

%% "~ ° .,,w.

ROFFAS-EDC-TRACE

16 BYTES/LINE

20000 40000 60000 0 5000 10000 15000

MEMORY CAPACITY

0.I00

0,050

0.020

0.005
0.100

0.050

0.020

0.010

0.005

0.002

0.001

Comparison of miss ratios when using random or bit-selection set-assocmtive mapping.

puters to our knowledge, including partic-
ularly all Amdahl and IBM computers.

Some people have suggested that be-
cause bit selection is not random, it might
result in more conflict than a random al-
gorithm, which employs a pseudorandom
calculation (hashing) to map the line into
a set. It is difficult to generate random
numbers quickly in hardware, and the usual
suggestion is some sort of f o l d i n g of the
address followed by exclusive oring of the
bits. That is, if b i ts j + 1 . . . b are available
for determining the line location, then these
b - j bits are grouped into k groups, and
within each group an Exclusive Or is per-
formed. The resulting k bits then designate
a set. (This algorithm is used in TLBs--see
Section 2.16.) In our simulations discussed
later, we have used a randomizing function
of the form s (i) = a * r (i) mod 2 k.

Simulations were performed to compare
random and set-associative mapping. The
results are shown in Figure 9. (32 bytes is
the line size used in all cases except the

PDP-11 traces, for which 16 bytes are used.)
It can be observed that random mapping
seems to have a small advantage in most
cases, but that the advantage is not signifi-
cant. Random mapping would probably be
preferable to bit-selection mapping if it
could be done equally quickly and inexpen-
sively, but several extra levels of logic apo
pear to be necessary. Therefore, bit selec-
tion seems to be the most desirable algo-
rithm.

2.2.2 Set Size and the Number of Sets

There are a number of considerations in
selecting values for the number of sets (S)
and the set size (E). (We note that S and E
are inversely related in the equation S * E
= M, where M is the number of lines in the
cache (M ffi 2 m).) These considerations have
to do with lookup time, expense, miss ratio,
and addressing. We discuss each below.

The first consideration is that most cache
memories (e.g., Amdahl, IBM) are ad-
dressed using the real address of the data,

Computing Surveys, Vol 14, No. 3, September 1982

although the CPU produces a virtual ad-
dress. The most common mechanism for
avoiding the time to translate the virtual
address to a real one is to overlap the cache
lookup and the translation operation (Fig-
ures 1 and 2). We observe the following: the
only address bits that get translated in a
virtual memory system are the ones that
specify the page address; the bits that spec-
ify the byte within the page are invariant
with respect to virtual memory translation.
Let there be 2 j bytes per line and 2 k sets in
the cache, as before. Also, let there be 2 p
bytes per page. Then (assuming bit-selec-
tion mapping), p - j bits are immediately
available to choose the set. If (p - j) _> k,
then the set can be selected immediately,
before translation; if (p - j) < k, then the
search for the cache line can only be nar-
rowed down to a small number 2 (k-p +J) of
sets. It is quite advantageous if the set can
be selected before translation (since the
associative search can be started immedi-
ately upon completion of translation); thus
there is a good reason to attempt to keep
the number of sets less than or equal to
2 (p-J) . (We note, though, that there is an
alternative. The Amdahl 470V/6 has 256
sets, but only 6 bits immediately available
for set selection. The machine reads out
both elements of each of the four sets which
could possibly be selected, then after the
.translation is complete, selects one of those
sets before making the associative search.
See also LEE80.)

S e t s i z e is just a different term for the
scope of the associative search. The smaller
the degree of associative search, the faster
and less expensive the search (except, as
noted above, for MOS VLSI). This is be-
cause there are fewer comparators and sig-
nal lines required and because the replace-
ment algorithm can be simpler and faster
(see Section 2.4). Our second consideration,
expense, suggests that therefore the smaller
the set size, the better. We repeat, though,
that the set size and number of sets are
inversely related. If the number of sets is
less than or equal to 2 (p -J),then the set size
is greater than or equal to 2 (m -P +J) lines.

The third consideration in selecting set
size is the effect of the set size on the miss
ratio. In [SMIT78a] we developed a model
for this effect. We summarize the results of

C a c h e M e m o r i e s • 489

that model here, and then we present some
new experimental results.

A commonly used model for program
behavior is what is known as the LRU
Stack Model. (See COFF73 for a more thor-
ough explanation and some basic results.)
In this model, the pages or lines of the
program's address space are arranged in a
list, with the most recently referenced line
at the top of the list, and with the lines
arranged in decreasing recency of reference
from top to bottom. Thus, referencing a
line moves it to the top of the list and
moves all of the lines between the one
referenced and the top line down one posi-
tion. A reference to a line which is the ith
line in the list (stack) is referred to as a
stack distance of i. This model assumes
that the stack distances are independently
and identically drawn from a distribution
(q(j)), j ffi 1 , . . . , n. This model has been
shown not to hold in a formal statistical
sense [LEwI71, LEw173], but the author
and others have used this model with good
success in many modeling efforts.

Each set in the cache constitutes a sepa-
rate associative memory. If each set is man-
aged with LRU replacement, it is possible
to determine the probability of referencing
the kth most recently used item in a given
set as a function of the overall LRU stack
distance probability distribution {q(j)}.
Letp(i, S) be the probability of referencing
the ith most recently referenced line in a
set, given S sets. Then, we show thatp(i , S)
may be calculated from the {q(i)} with the
following formula:

p(i , S) f l Y , ql (l / S) i-I (S - l / S) J-+ -
J E t

Note that p(i , 1) ffi q(i) . In SMIT78a this
model was shown to give accurate predic-
tions of the effect of set size.

Experimental results are provided in Fig-
ures 10-14. In each of these cases, the num-
ber of sets has been varied. The rather
curious shape of the curves (and the simi-
larities between different plots) has to do
with the task-switch interval and the fact
that round-robin scheduling was used.
Thus, when a program regained control of
the processor, it might or might not, de-
pending on the memory capacity, find any
of its working set still in the cache.

Computing Surveys, Vol. 14, No. 3, September 1982

490 • A. J. Smith

VARY NUMBER BF SETS

E~
I - - - I
} -

rY

co
o3
I--.4

h--
<
rr"

O3
CO

0.I00

0.050

0.010

0.005

Figure 10

0.100

0.050

0.010

0.005

Figure 11

ix

%

WFV-APL-WTX-FFT
Q-10000, 32 BYTE LINES

32 SETS
... 64 SETS
. . . . 128 SETS
. 258 SETS

512 SETS

0 20000 40000 60000

MEMORY CAPACITY

Miss rat ios as a funct ion of the n u m b e r of se ts and m e m o r y capacity.

VARY NUMBER OF SETS

~ FG01...4
-~ 0-I0000, 32 BYTE LINES -
~ \ - - - 8 SETS
X ' ~ \ 10 SETS

~\ \ . - 32 SETS
~\ \ '% 64 SETS

SEZ

_ ~ \ . . 256 SETS _
" , , o ~.

0 20000 40000 60000

P1EP10£Y CAPACITY
Miss rat ios as a funct ion of the n u m b e r of se ts and m e m o r y capaci ty

Computing Surveys, VoL 14, No 3, September 1982

I-,-I
t -

oc

CO
co

0.20

0.08
0.07
O.OO
0.05

0.04

0.03

0.02

Ca~e Memorws

VARY NUMBER OF SETS

C601...3, PG02
Q-IO000, 32 BYTE LINES

- - 1 8 SETS
........ 32 SETS
. . . . 54 SETS

SETS
,w.

"~"o

256 SETS

SETS

491

Q
F-
<
rr"

CO
CO
EI

Figure 12.

0.10

0.05

0.01

Figure 13.

0 20000 40000 80000

MEMORY CAPACITY

Miss ratios as a function of the number of sets and memory capacity.

VARY NUMBER OF SETS

i t , , , , i , , , , i , , , , I ,

li PGO-CCOMP-FCOMP-IEBD6
\'> 0-i0000, 32 BYTE LINES I L l

-t{.',,,, - - 16 SETS
__\('~ 32 SETS
~ , , '~ 64 SETS

~, " .N~,~/128 SETS

256 SETS

0 20000 40000 60000

HEHORY CAPACITY
Miss ratios as a function of the number of sets and memory capacity.

Computing Surveys, VoI, 14, No, 3, September 1982

492 • A . J . S m i t h

VARY NUMBER OF SETS

E~
I - - - I

rY

O9
CO

0.100

0.050

0.010

0.005

0.001

__ ~. ROFF^S-EDC-TRACE (PDP-II) _
~ Q-IO000, 16 BYTE LINES
if' 8 SETS

16 SETS
~i - - - - 32 SETS
~'~ "- 64 SETS

'-. \
:!i~-. ~ \ \ \ 128 SETS

"'.. \ "~

~ . \ ~ - ~ 256 SETS
~ ' . . . ~ \ f -

" ~ ... \ . .
" ~ . "".. " -. " " ' - . ~ 512 SETS

0 10000 20000 30000
MEMORY CAPACITY

Figure 14. Miss ratios as a function of the number of sets and memory capacity.

Based on Figures 10-14, Figure 33, and
the information given by SMIT78a, we be-
lieve that the minimum number of elements
per set in order to get an acceptable miss
ratio is 4 to 8. Beyond 8, the miss ratio is
likely to decrease very little if at all. This
has also been noted for TLB designs
[SATY81]. The issue of maximum feasible
set size also suggests that a set size of more
than 4 or 8 will be inconvenient and expen-
sive. The only machine known to the author
with a set size larger than 8 is the IBM 3033
processor. The reason for such a large set
size is that the 3033 has a 64-kbyte cache
and 64-byte lines. The page size is 4096
bytes, which leaves only 6 bits for selecting
the set, if the translation is to be over-
lapped. This implies that 16 lines are
searched, which is quite a large number.
The 3033 is also a very performance-ori-
ented machine, and the extra expense is
apparently not a factor.

Values for the set size (number of ele-
ments per set) and number of sets for a
number of machines are as follows: Amdahl
470V/6 (2, 256), Amdahl 470V/7 (8, 128),
Amdahl 470V/8 (4, 512), IBM 370/168-3 (8,

128), IBM 3033 (16, 64), DEC PDP-11/70
(2, 256), DEC VAX 11/780 (2, 512), Itel
AS/6 (4, 128) [Ross78], Honeywell 66/60
and 66/80 (4, 128) [DIET74].

2.3 Line Size

One of the most visible parameters to be
chosen for a cache memory is the line size.
Just as with paged main memory, there are
a number of trade-offs and no single crite-
rion dominates. Below we discuss the ad-
vantages of both small and large line sizes.
Additional information relating to this
problem may be found in other papers
[ALSA78, ANAC67, GIBS67, KAPL73,
MATT71, MEAD70, and STRE76].

Small line sizes have a number of advan-
tages. The transmission time for moving a
small line from main memory to cache is
obviously shorter than that for a long line,
and if the machine has to wait for the full
transmission time, short lines are better. (A
high-performance machine will use fetch
bypass; see Section 2.1.1.) The small line is
less likely to contain unneeded information;
only a few extra bytes are brought in along

Computing Surveys, Vo]. 14, No. 3, September 1982

Cache Memories

VARY LINE SIZE

493

H

h-

n-
CO
tO

0.I00

0.050

0.010

0.005

I \ ' ' ' ' I ' ' ' ' I ' ' ' ' I '

.~. CG01.. .3. P B 0 2
- \ \ Q-IO000. 84 SETS --~

"~',~.. ~ 16 BYTES -
.......... =

/ "~ - -X~x _ , " '"" f32 BYTES -
64 BYTES ' . . \ - ~ ' - -

> - . - \ - - - . . . •_.,

I , , -

0 20000 40000 60000
HEHORY CAPACITY

Figure 1 5. Miss rat ios as a funct ion of the line size and m e m o r y capacity.

with the actually requested information.
The data width of main memory should
usually be at least as wide as the line size,
since it is desirable to transmit an entire
line in one main memory cycle time. Main
memory width can be expensive, and short
lines minimize this problem.

Large line sizes, too, have a number of
advantages. If more information in a line is
actually being used, fetching it all at one
time (as with a long line) is more efficient.
The number of lines in the cache is smaller,
so there are fewer logic gates and fewer
storage bits (e.g., LRU bits} required to
keep and manage address tags and replace-
ment status. A larger line size permits fewer
elements/set in the cache (see Section 2.2),
which minimizes the associative search
logic. Long lines also minimize the fre-
quency of "line crossers," which are re-
quests that span the contents of two lines.
Thus in most machines, this means that
two separate fetches are required within
the cache (this is invisible to the rest of the
machine.)

Note that the advantages cited above for

both long and short lines become disadvan-
tages for the other.

Another important criterion for selecting
a line size is the effect of the line size on
the miss ratio. The miss ratio, however,
only tells part of the story. It is inevitable
that longer lines make processing a miss
somewhat slower (no matter how efficient
the overlapping and buffering), so that
translating a miss ratio into a measure of
machine speed is tricky and depends on the
details of the implementation. The reader
should bear this in mind when examining
our experimental results.

Figures 15-21 show the miss ratio as a
function of line size and cache size for five
different sets of traces. Observe that we
have also varied the multiprogramming
quantum time Q. We do so because the
miss ratio is affected by the task-switch
interval nonuniformly with line size. This
nonuniformity occurs because long line
sizes load up the cache more quickly. Con-
sider two cases. First, assume that most
cache misses result from task switching. In
this case, long lines load up the cache more

Computing Surveys, Vol. 14, No. 3, September 1982

494 • A. J, Smith

VARY LINE SIZE
t I | I I I I I I

I . . ~ ' ' I ' ' I ' ' ' I

PGO-CCOMP-FCOMP-IEBBB
__ G-tO000, 64 SETS 0.I00

~" .~ ~... -

~ °°o°,, .

0.050 \., ""

n- ~ '"~X. - - - - - " ' L " ~ ' . . ' L ~ 8 BYTES -

R • ~oo /\-:... .

~-~ 64 BYTES \ ':.7 ", '" . .
".. " ' - . \ , , f l 6 BYTES

128 / ~ "" " BYTE~ "'" BYTES "" " " 0.010

0.005 I , ~
0 2 0 0 0 0 4 0 0 0 0 60000

M E M O R Y C A P A C I T Y

Figure 16. Miss rat ios as a funct ion of t h e line size and m e m o r y capacity.

VARY LINE SIZE

" - ' ' ' ' I ' ' ' ' I ' ' ' ' I '

I~ . . . FGBI...4 __
0,100 - \x~_ Q-IO000, 64 SETS

" "" . / 8 BYTES
• , ~ . " , o ,

, .~ , , " o , , , , o p /

• , . , , . , ' . , , , * . . , , o , , , , °

~ ~ ~i6 BYTES
64 BYTES "'m~.. ""- ~,

"" " ~ I 3 - Y T E

256 BYTES

128 BYTES
0 . 0 0 1 - I , , , , I , , , , I , , , , I , -

0 20000 40000 60000
FIEHORY CAPACITY

Figure 17. Mms rat ios as a funct ion of t he line size and m e m o r y capacity.

0 . 0 5 0

E~

h- ~z
FF

co 0.010
o3

~- 0 . 0 0 5

Computing Surveys, Vol. 14, No 3, September 1982

b -

c~

CO
CO

b--

co
co
H

C a c h e M e m o r i e s • 495

V A R Y LINE SIZE

0.100

0.050

0.010

0.005

0.001

Figure 18.

I I I I I I I I I I I I ! I] I

\ I I I

\ \ WFV-APL-WTX-FFT _
\\ Qf250K, 64 SETS

\ , X~. \
v." x ' & - ~ y
\'~'"',~ - Z - " f 8 B TEE

\ ' : . \ \ ~',x
\ ' ~ % . ~ /16 BYTES

I ",'" "X£......~
..............

/ ' ~ ' , . " " ~ _ _ ~ f 6 4 BYTES
128 BYTES " " " . . . ~ - - - -

I , , , , I , , , , I , , , , , ~
0 20000 40000 60000

MEMBRY CAPACITY
Miss rat ios as a funct ion of the line size and m e m o r y capacity.

VARY LINE SIZE

0.100

0.050

0.010

0.005

Figure 19.

I ~ ' ' ' ' I ' ' ' ' I ' ' ' ' I '

i k WFV-APL-WTX-FFT
- " ~ \ o - l o o o o . 6 4 S E T S -

~-.. ~ ,8 BYTES

,. -

" ' . . . ' ~x .~ f l 6 B Y T E S
64 BYTES " "~ . - -~ . , , ' - , , " -

i i i ' " •, o " , ,~ ~, " J " ' ° " ' o , . o , l oo , , , o T 128 BYTES "" ". ' " ' " " - 4 32 BYTES

I , , , , I, , ,, I , , , , I, ;I
0 20000 40000 60000

MEMORY CAPACITY
Miss rat ios as a funct ion of the line size and m e m o r y capacity.

Computing Surveys, VoL 14, No.3, September 1982

496 • A. J. SmitI~

VARY LINE SIZE

10-1

10 -2
Q~
03
03
I--4

10-3

~ '''I''''I I I'''

ROFFAS-EDC-TRACE (PDP-11)-
Q-333334, 64 SETS

'LI',, \
I

4 BYTES
~ , . "'.. ~ :

~',\. \ "'". / 8 BYTES v,: \ :: J, \ * \ " , " ° ° , l * * , * * , _

"-,.. \ ".. / 1 6 BYTES

_ . , ' . : . ~ i T _ . . : . : . _ ._ . j . 3 2 B h T E S . _ . _ ~ % y - -

"".. f 6 4 BYTES :
128 BYTES J "

, , , , I , , , , I , , , , I , , , , I , , ,
0 5000 10000 15000 20000

MEMORY CAPACITY

Figure 20. Miss ratios as a function of the line size and memory capacity.

VARY LINE SIZE

10-1

I--4

~- 10-2 <i2
(Y
03
03

10-3

II' ' ' I '' ' ' I '' ' ' I' ' '

ROFFAS-EDC-TRACE (PDP-11V!
L gIlO000, 64 SETS !

\"',x.').'~... 4 BYTES : .~:..... ,/

" { ~ ~ , , / 8 BYTES

"4" " ~ ~ 16 BYTES ~

- " " ' ~ . : . _ ~ 1 2 8 ~ BYTES --

32 BYTES ~ :
64 BYTES ~

, I , , , , I , , , , I , , , , I , , ,
0 10000 20000 30000

MEMORY C A P A C I T Y

Figure 21. Miss ratios as a functmn of the line size and memory capacity.

Computing Surveys, Vol 14, No. 3, September 1982

quickly than small ones. Conversely, as-
sume that most misses occur in the steady
state; that is, that the cache is entirely full
most of the time with the current process
and most of the misses occur in this state.
In this latter case, small lines cause less
memory pollution and possibly a lower miss
ratio. Some such effect is evident when
comparing Figures 18 and 19 with Figures
20 and 21, but explanation is required. A
quantum of 10,000 results not in a program
finding an empty cache, but in it finding
some residue of its previous period of activ-
ity {since the degree of multiprogramming
is only 3 or 4); thus small lines are relatively
more advantageous in this case than one
would expect.

The most interesting number to be
gleaned from Figures 15-21 is the line size
which causes the minimum miss ratio for
each memory size. This information has
been collected in Table 2. The consistency
displayed there for the 360/370 traces is
surprising; we observe that one can divide
the cache size by 128 or 256 to get the
minimum miss ratio line size. This rule does
not apply to the PDP-11 traces. Programs
written for the PDP-11 not only use a dif-
ferent instruction set, but they have been
written to run in a small (64K) address
space. Without more data, generalizations
from Figures 20 and 21 cannot be made.

In comparing the minimum miss ratio
line sizes suggested by Table 2 and the
offerings of the various manufacturers, one
notes a discrepancy. For example, the IBM
168-1 (32-byte line, 16K buffer) and the
3033 (64-byte line, 64K buffer) both have
surprisingly small line sizes. The reason for
this is almost certainly that the transmis-
sion time for longer lines would induce a
performance penalty, and the main mem-
ory data path width required would be too
large and therefore too expensive.

Kumar [KuMA79] also finds that the line
sizes in the IBM 3033 and Amdahl 470 are
too small. He creates a model for the work-
ing set size w of a program, of the form w (k)
= c / k a, where k is the block size, and c and
a are constants. By making some conven-
ient assumptions, Kumar derives from this
an expression for the miss ratio as a func-
tion of the block size. Both expressions are
verified for three traces, and a is measured
to be in the range of 0.45 to 0.85 over the

C a c h e M e m o r i e s • 497

Table 2. Line Size (in bytes) Giving Minimum Miss
Rat=o, for Given Memory Capacity and Traces

Minimum miss
Memory size ratio line size

Traces Quantum (kbytes) (bytes)

CGO1 10,000 4 32
CGO2 8 64
CGO3 16 128
PGO2 32 256

64 256
PGO 10,000 4 32
CCOMP 8 64
FCOMP 16 128
IEBDG 32 256

64 256
FGO1 10,000 4 32
FG02 8 64
FG03 16 128
FG04 32 256

64 128
WFV 10,000 4 32
APL 8 64
WTX 16 128
FFT 32 256

64 128
250,000 4 32

8 64
16 64
32 128
64 256

ROFFAS 10,000 2 16
EDC 4 32
TRACE 8 16

16 32
333,333 2 8

4 16
8 32

16 64

three traces and various working set win-
dow sizes. He then found that for those
machines, the optimum block size lies in
the range 64 to 256 bytes.

It is worth considering the relationship
between prefetching and line size. Prefetch-
ing can function much as a larger line size
would. In terms of miss ratio, it is usually
even better; although a prefetched line that
is not being used can be swapped out, a half
of a line that is not being used cannot be
removed independently. Comparisons be-
tween the results in Section 2.1 and this
section show that the performance im-
provement from prefetching is significantly
larger than that obtained by doubling the
line size.

Line sizes in use include: 128 bytes (IBM
3081 [IBM82]), 64 bytes (IBM 3033), 32
bytes (Amdahl 470s, Itel AS/6, IBM 370/

Computmg Surveys, Vol. 14, No. 3, September 1982

498 • A . J . S m i t h

168), 16 bytes (Honeywell 66/60 and
66/80), 8 bytes (DEC VAX 11/780), 4 bytes
(PDP-11/70).

2.4 Replacement Algorithm

2.4.1 Classification

In the steady state, the cache is full, and a
cache miss implies not only a fetch but also
a replacement; a line must be removed from
the cache. The problem of replacement has
been studied extensively for paged main
memories (see SMIT78d for a bibliography),
but the constraints on a replacement algo-
rithm are much more stringent for a cache
memory. Principally, the cache replace-
ment algorithm must be implemented en-
tirely in hardware and must execute very
quickly, so as to have no negative effect on
processor speed. The set of feasible solu-
tions is still large, but many of them can be
rejected on inspection.

The usual classification of replacement
algorithms groups them into usage-based
versus non-usage-based, and fixed-space
versus variable-space. Usage-based algo-
rithms take the record of use of the line (or
page) into account when doing replace-
ment; examples of this type of algorithm
are LRU (least recently used) [COFF73] and
Working Set [DEI~N68]. Conversely, non-
usage-based algorithms make the replace-
ment decision on some basis other than and
not related to usage; FIFO and Rand {ran-
dom or pseudorandom) are in this class.
(FIFO could arguably be considered usage-
based, but since reuse of a line does not
improve the replacement status of that line,
we do not consider it as being such.) Fixed-
space algorithms assume that the amount
of memory to be allocated is fixed; replace-
ment simply consists of selecting a specific
line. If the algorithm varies the amount of
space allocated to a specific process, it is
known as a variable-space algorithm, in
which case, a fetch does not imply a re-
placement, and a swap-out can take place
without a corresponding fetch. Working Set
and Page Fault Frequency [CHu76] are
variable-space algorithms.

The cache memory is fixed in size, and it
is usually too small to hold the working set
of more than one process (although the
470V/8 and 3033 may be exceptions). For

this reason, we believe that variable-space
algorithms are not suitable for a cache
memory. To our knowledge, no variable-
space algorithm has ever been used in a
cache memory.

It should also be clear that in a set-asso-
ciative memory, replacement must take
place in the same set as the fetch. A line is
being added to a given set because of the
fetch, and thus a line must be removed.
Since a line maps uniquely into a set, the
replaced line in that set must be entirely
removed from the cache.

The set of acceptable replacement algo-
rithms is thus limited to fixed-space algo-
rithms executed within each set. The basic
candidates are LRU, FIFO, and Rand. It is
our experience (based on prior experiments
and on material in the literature) that non-
usage-based algorithms all yield compara-
ble performance. We have chosen FIFO
within set as our example of a non-usage-
based algorithm.

2.4.2 Comparisons

Comparisons between FIFO and LRU ap-
pear in Table 3, where we show results
based on each set of traces for varying
memory sizes, quantum sizes, and set num-
bers. We found (averaging over all of the
numbers there) that FIFO yields a miss
ratio approximately 12 percent higher than
LRU, although the ratios of FIFO to LRU
miss ratio range from 0.96 to 1.38. This 12
percent difference is significant in terms of
performance, and LRU is clearly a better
choice if the cost of implementing LRU is
small and the implementation does not slow
down the machine. We note that in mini-
computers (e.g., PDP-11) cost is by far the
major criterion; consequently, in such sys-
tems, this performance difference may not
be worthwhile. The interested reader will
find additional performance data and dis-
cussion in other papers [CHIA75, FURS78,
GIBS67, LEE69, and SIRE76].

2.4.3 Implementation

It is important to be able to implement
LRU cheaply, and so that it executes
quickly; the standard implementation in
software using linked lists is unlikely to be
either cheap or fast. For a set size of two,

Computing Surveys, Vol. 14, No. 3, September 1982

Cache Memories

Table 3. • Miss Ratio Comparison for FIFO and LRU (within set) Replacement

• 4 9 9

Memory size Quantum Number of Miss ratio Miss ratio Ratio FIFO/
(kbytes) SLZe sets LRU FIFO LRU Traces

16 10K 64 0.02162 0.02254 1.04 WFV
32 10K 64 0 00910 0.01143 1.26 APL
16 250K 64 0 00868 0.01036 1.19 WTX
32 250K 64 0.00523 0.00548 1.05 FFT
16 10K 256 0.02171 0.02235 1.03
32 10K 256 0.01057 0.01186 1.12
4 10K 64 0 00845 0.00947 1.12 ROFFAS
8 10K 64 0 00255 0.00344 1.35 EDC
4 333K 64 0.00173 0.00214 1.24 TRACE
8 333K 64 0.00120 0.00120 1.00
4 10K 256 0.0218 0.02175 0.998
8 10K 256 0.00477 0 00514 1.08
4 333K 256 0.01624 0.01624 1.00
8 333K 256 0.00155 0.00159 1.03

64 10K 64 0.01335 0.01839 1.38 COO1
128 10K 64 0.01147 0.01103 0.96 COO2
64 10K 256 0.01461 0.01894 1.30 CGO3

128 10K 256 0.01088 0.01171 1.08 PGO2
16 10K 64 0 01702 0.01872 1.10 FOOl
32 10K 64 0.00628 0.00867 1.38 FGO2
16 10K 256 0.01888 0.01934 1.02 FGO3
32 10K 256 0.00857 0.00946 1.10 FGO4
16 10K 64 0.03428 0.03496 1.02 POOl
32 10K 64 0.02356 0.02543 1.08 CCOMP
16 10K 256 0 03540 0.03644 1.03 FCOMP
32 10K 256 0.02394 0.02534 1.06 IEBDG

Average 1.116

only a hot /co ld (toggle) bit is required.
More generally, replacement in a set of E
elements can be effectively implemented
with E (E - 1)/2 bits of status. (We note
tha t [log 2E!] bits of status are the theo-
retical minimum.) One creates an upper-
left triangular matrix (without the diagonal,
tha t is, i + j < E) which we will call R and
refer to as R (i , j) . When line i is referenced,
row i of R(i , j) is set to 1, and column i of
R(], i) is set to 0. The LRU line is the one
for which the row is entirely equal to 0 (for
those bits in the row; the row may be
empty) and for which the column is entirely
1 (for all the bits in the column; the column
may be empty). This algorithm can be eas-
ily implemented in hardware, and executes
rapidly. See MARU75 for an extension and
MARU76 for an alternative.

The above algorithm requires a number
of LRU status bits tha t increases with the
square of the set size. This number is ac-
ceptable for a set size of 4 (470V/8, Itel A S /
6), marginal for a set size of eight (470V/7),
and unacceptable for a set size of 16. For
tha t reason, IBM has chosen to implement

approximations to L R U in the 370/168 and
the 3033. In the 370/168-3 [IBM75], the set
size is 8, with the 8 lines grouped in 4 pairs.
The LRU pair of lines is selected, and then
the LRU block of the pair is the one used
for replacement. This algorithm requires
only 10 bits, ra ther than the 28 needed by
the full LRU. A set size of 16 is found in
the 3033 [IBM78]. The 16 lines tha t make
up a set are grouped into four groups of two
pairs of two lines. The line to be replaced is
selected as follows: (1) find the L R U group
of four lines (requiring 6 bits of status), (2)
find the LRU pair of the two pairs (1 bit
per group, thus 4 more bits), and (3) find
the LRU line of tha t pair (1 bit per pair,
thus 8 more bits). In all, 18 bits are used for
this modified L R U algorithm, as opposed
to the 120 bits required for a full LRU. No
experiments have been published compar-
ing these modified L R U algorithms with
genuine LRU, but we would expect to find
no measurable difference.

Implementing either FIFO or Rand is
much easier than implementing LRU.
FIFO is implemented by keeping a modulo

Computing Surveys, VoL 14, No. 3, September 1982

500 * A. J. S m i t h

Table 4. Percentage of Memory References That Are Reads, Writes, and
Instruction Fetches for Each Trace ~

Partial trace Full trace

Trace Data read Data write I F E T C H Data read Da ta write I F E T C H

WATFIV 23.3 16.54 60.12 - - 15.89 - -
APL 21.5 8.2 70.3 - - 8.90 - -
W A T E X 24.5 9.07 66.4 - - 7.84 - -
FFT1 23.4 7.7 68.9 - - 7.59 - -
ROFFAS 37.5 4.96 57.6 38.3 5.4 56.3
EDC 30 4 10.3 59.2 29.8 11.0 59.2
TRACE 47.9 10.2 41.9 48.6 10.0 41.3
CGO1 41.5 34.2 24.3 42.07 34.19 23.74
CG02 41.1 32.4 26.5 36.92 15.42 47.66
CGO3 37.7 22.5 39.8 37.86 22.55 39.59
PG02 31.6 15.4 53.1 30.36 12.77 56.87
FGO1 29.9 17.6 52.6 30.57 11.26 58.17
FG02 30 6 5.72 63 7 32.54 10.16 57.30
FG03 30.0 12.8 57.2 30.60 13.25 56.15
FG04 28.5 17.2 54.3 28 38 17.29 54.33
PGO1 29.7 19.8 50.5 28.68 16.93 54.39
CCOMP1 30.8 9.91 59.3 33.42 17.10 49.47
FCOMP1 29.5 20.7 50.0 30.80 15.51 53.68
IEBDG 39.3 28.1 32.7 39.3 28.2 32.5
Average 32.0 15.96 52 02 34.55 14.80 49.38
Stand. Dev. 7.1 8.7 13.4 5.80 7.21 10.56

a Partial trace results are for first 250,000 memory references for IBM 370 traces, and 333,333 memory
references for PDP-11 traces. Full trace results refer to entire length of memory address trace (one to ten
million memory percent references).

E (E elements/set) counter for each set; it
is incremented with each replacement and
points to the next line for replacement.
Rand is simpler still. One possibility is to
use a single modulo E counter, incremented
in a variety of ways: by each clock cycle,
each memory reference, or each replace-
ment anywhere in the cache. Whenever a
replacement is to occur, the value of the
counter is used to indicate the replaceable
line within the set.

2.5 Write-Through versus Copy-Back

When the CPU executes instructions that
modify the contents of the current address
space, those changes must eventually be
reflected in main memory; the cache is only
a temporary buffer. There are two general
approaches to updating main memory:
stores can be immediately transmitted to
main memory (called write-through or
store-through), or stores can initially only
modify the cache, and can later be reflected
in main memory (copy-back). There are
issues of performance, reliability, and com-
plexity in making this choice; these issues
are discussed in this section. Further infor-
mation can be found in the literature

[AGRA77a, BELL74, POHM75, and R1s77]. A
detailed analysis of some aspects of this
problem is provided in SMIT79 and YEN81.

To provide an empirical basis for our
discussion in this section, we refer the
reader to Table 4. There we show the per-
centage of memory references that resulted
from data reads, data writes, and instruc-
tion fetches for each of the traces used in
this paper. The leftmost three columns
show the results for those portions of the
traces used throughout this paper; that is,
the 370 traces were run for the first 250,000
memory references and the PDP-11 traces
for 333,333 memory references. When avail-
able, the results for the entire trace (1 to 10
million memory references) are shown in
the rightmost columns. The overall average
shows 16 percent of the references were
writes, but the variation is wide (5 to 34
percent) and the values observed are clearly
very dependent on the source language and
on the machine architecture. In SMIT79 we
observed that the fraction of lines from the
cache that had to be written back to main
memory (in a copy-back cache) ranged
from 17 to 56 percent.

Several issues bear on the trade-off be-
tween write-through and copy-back.

Computing Surveys, Vol. 14, No. 3, September 1982

1. Main Memory Traffic. Copy-back al-
most always results in less main memory
traffic since write-through requires a main
memory access on every store, whereas
copy-back only requires a store to main
memory if the swapped out line {when a
miss occurs) has been modified. Copy-back
generally, though, results in the entire line
being written back, rather than just one or
two words, as would occur for each write
memory reference (unless "dirty bits" are
associated with partial lines; a dirty bit,
when set, indicates the line has been mod-
ified while in the cache). For example, as-
sume a miss ratio of 3 percent, a line size of
32 bytes, a memory module width of 8
bytes, a 16 percent store frequency, and 30
percent of all cache lines requiring a copy-
back operation. Then the ratio of main
memory store cycles to total memory ref-
erences is 0.16 for write-through and 0.036
for copy-back.

2. Cache Consistency. If store-through is
used, main memory always contains an up-
to-date copy of all information in the sys-
tem. When there are multiple processors in
the system (including independent chan-
nels), main memory can serve as a common
and consistent storage place, provided that
additional mechanisms are used. Other-
wise, either the cache must be shared or a
complicated directory system must l~e em-
ployed to maintain consistency. This sub-
ject is discussed further in Section 2.7, but
we note here that store-through simplifies
the memory consistency problem.

3. Complicated Logic. Copy-back may
complicate the cache logic. A dirty bit is
required to determine when to copy a line
back. In addition, arrangements have to be
made to perform the copy-back before the
fetch (on a miss) can be completed.

4. Fetch-on-write. Using either copy-
back or write-through still leaves undecided
the question of whether to fetch-on-write
or not, if the information referenced is not
in the cache. With copy-back, one will usu-
ally fetch-on-write, and with write-through,
usually not. There are additional related
possibilities and problems. For example,
when using write-through, one could not
only not fetch-on-write but one could
choose actually to purge the modified line
from the cache should it be found there. If
the line is found in the cache, its replace-

Cache Memories • 501

ment status (e.g., LRU) may or may not be
updated. This is considered in item 6 below.

5. Buffering. Buffering is required for
both copy-back and write-through. In copy-
back, a buffer is required so that the line to
be copied back can be held temporarily in
order to avoid interfering with the fetch.
One optimization worth noting for copy-
back is to use spare cache/main memory
cycles to do the copy-back of "dirty" {mod-
ified) fines [BALZ81b]. For write-through, it
is important to buffer several stores so that
the CPU does not have to wait for them to
be completed. Each buffer consists of a data
part (the data to be stored) and the address
part (the target address). In SMIT79 it was
shown that a buffer with capacity of four
provided most of the performance improve-
ment possible in a write-through system.
This is the number used in the IBM 3033.
We note that a great deal of extra logic may
be required if buffering is used. There is not
only the logic required to implement the
buffers, but also there must be logic to test
all memory access addresses and match
them against the addresses in the address
part of the buffers. That is, there may be
accesses to the material contained in the
store buffers before the data in those
buffers has been transferred to main mem-
ory. Checks must be made to avoid possible
inconsistencies.

6. Reliability. If store-through is used,
main memory always has a valid copy of
the total memory state at any given time.
Thus, if a processor fails (along with its
cache), a store-through system can often be
restored more easily. Also, if the only valid
copy of a line is in the cache, an error-
correcting code is needed there. If a cache
error can be corrected from main memory,
then a parity check is sufficient in the
cache.

Some experiments were run to look at
the miss ratio for store-through and copy-
back. A typical example is shown in Figure
22; the other sets of traces yield very similar
results. (In the case of write-through, we
have counted each write as a miss.) It is
clear that write-through always produces a
much higher miss ratio. The terms reorder
and no reorder specify how the replace-
ment status of the lines were updated.
Reorder means that a modified line is

Computing Surveys, Vol. 14, No. 3, September 1982

502

l--

rr

Co
Co

A. J. Smi th

WRITE POLICY EXPERIMENTS

ROUGH, NO REORDER

WRITE THROUGH, REORDER
0.10

0.05

0.01

i ,

}OPY BACK

PGO-CCOMP-FCOMP-IEBDG
64 SETS, 32 BYTE LINES, Q-IOK

0 20000 40000 60000

MEMORY CAPACITY
Figure 22. Miss raho for copy-back and write-through. All writes counted as misses for write-
through. No reorder nnplies replacement status not modified on write, reorder nnphes
replacement status is updated on write.

moved to the top of the LRU stack within
its set in the cache. No reorder implies that
the replacement status of the line is not
modified on write. From Figure 22, it can
be seen that there is no significant differ-
ence in the two policies. For this reason,
the IBM 3033, a write-through machine,
does not update the LRU status of lines
when a write occurs.

With respect to performance, there is no
clear choice to be made between write-
through and copy-back. This is because a
good implementation of write-through sel-
dom has to wait for a write to complete. A
good implementation of write-through re-
quires, however, both sufficient buffering of
writes and sufficient interleaving of main
memory so that the probability of the CPU
becoming blocked while waiting on a store
is small. This appears to be true in the IBM
3033, but at the expense of a great deal of
buffering and other logic. For example, in
the 3033 each buffered store requires a dou-
ble-word datum buffer, a single buffer for
the store address, and a 1-byte buffer to

Computing Surveys, Vol 14, No. 3, September 1982

indicate which bytes have been modified in
the double-word store. There are also com-
parators to match each store address
against subsequent accesses to main mem-
ory, so that references to the modified data
get the updated values. Copy-back could
probably have been implemented much
more cheaply.

The Amdahl Computers all use copy-
back, as does the IBM 3081. IBM uses
store-through in the 370/168 [IBM75] and
the 3033 [IBM78], as does DEC in the
PDP-11/70 [SIRE76] and VAX 11/780
[DEC78], Honeywell in the 66/60 and 66/
80, and Itel in the AS/6.

2.6 Effect of Multiprogramming: Cold-Start
and Warm-Start

A significant factor in the cache miss ratio
is the frequency of task switching, or in-
versely, the value of the mean intertask
switch time, Q. The problem with task
switching is that every time the active task
is changed, a new process may have to be

Cache M e m o r i e s • 503

loaded from scratch into the cache. This
issue was discussed by EAST75, where the
terms warm-s tar t and cold-start were
coined to refer to the miss ratio starting
with a full memory and the miss ratio start-
ing with an empty memory, respectively.
Other papers which discuss the problem
include EAST78, KOBA80, MACD79,
PEUT77, POHM75, SCHR71, and SIRE76.

Typically, a program executes for a pe-
riod of time before an interruption (I/O,
clock, etc.) of some type invokes the super-
visor. The supervisor eventually relin-
guishes control of the processor to some
user process, perhaps the same one as was
running most recently. If it is not the same
user process, the new process probably does
not find any lines of its address space in the
cache, and starts immediately with a num-
ber of misses. If the most recently executed
process is restarted, and if the supervisor
interruption has not been too long, some
useful information may still remain. In
PEUT77, some figures are given about the
length of certain IBM operating system
supervisor interruptions and what fraction
of the cache is purged. (One may also view
the user as interrupting the supervisor and
increasing the supervisor miss ratio.)

The effect of the task-switch interval on
the miss ratio cannot be easily estimated.
In particular, the effect depends on the
workload and on the cache size. We also
observe that the proportion of cache misses
due to task switching increases with in-
creasing cache size, even though the abso-
lute miss ratio declines. This is because a
small cache has a large inherent miss ratio
(since it does not hold the program's work-
ing set) and this miss ratio is only slightly
augmented by task-switch-induced misses.
Conversely, the inherent low miss ratio of
a large cache is greatly increased, in relative
terms, by task switching. We are not aware
of any current machine for which a break-
down of the miss ratio into these two com-
ponents has been done.

Some experimental results bearing on
this problem appear in Figures 23 and 24.
In each, the miss ratio is shown as a func-
tion of the memory size and task-switch
interval Q (Q is the number of memory
references). The figures presented can be
understood as follows. A very small Q (e.g.,
100, 1,000) implies that the cache is shared

between all of the active processes, and that
when a process is restarted it finds a sig-
nificant fraction of its previous information
still in the cache. A very large Q (e.g.,
100,000, 250,000) implies that when the pro-
gram is restarted it finds an empty cache
(with respect to its own working set), but
that the new task runs long enough first to
fill the cache and then to take advantage of
the full cache. Intermediate values for Q
result in the situation where a process runs
for a while but does not fill the cache;
however, when it is restarted, none of its
information is still cache resident (since the
multiprogramming degree is four). These
three regions of operation are evident in
Figures 23 and 24 as a function of Q and of
the cache size. (In SATY81, Q is estimated
to be about 25,000.)

There appear to be several possible so-
lutions to the problem of high cache miss
ratios due to task switching. (1) It may be
possible to lengthen the task-switch inter-
val. (2) The cache can be made so large
that several programs can maintain infor-
mation in it simultaneously. (3) The sched-
uling algorithm may be modified in order
to give preference to a task likely to have
information resident in the cache. (4) If the
working set of a process can be identified
(e.g., from the previous period of execu-
tion), it might be reloaded as a whole; this
is called work ing set restoration. (5) Mul-
tiple caches may be created; for example, a
separate cache could be established for the
supervisor to use, so that, when invoked, it
would not displace user data from the
cache. This idea is considered in Section
2.10, and some of the problems of the ap-
proach are indicated.

A related concept is the idea of bypassing
the cache for operations unlikely to result
in the reuse of data. For example, long
vector operations such as a very long move
character (e.g., IBM MVCL) could bypass
the cache entirely [LOSQ82] and thereby
avoid displacing other data more likely to
be reused.

2.7 Multicache Consistency

Large modern computer systems often have
several independent processors, consisting
sometimes of several CPUs and sometimes
of just a single CPU and several channels.

Computing Surveys, Vol. 14, No. 3, September 1982

504 • A. J. Smith

VARY MP QUANTUM SIZE

H
t -

or"

03
03
H

0.080
0.070
0.060
0.050

0.040

0.030

0.020

Figure 2 3

i ,

Q-3000

' ' I ' ' ' ' I

CG01...3, PG02
64 SETS, 32 BYTE LINES

I, k \ °'o%

\-,, "" " - N ; . .

\ "% ~'~ ~ Q'30000

@-IOOOOO Q - 2 5 0 0 o o y - ~ - - -

0 20000 40000 60000

MEMORY CAPACITY
Miss ratio versus memory capacity for range of multlprogramming intervals Q.

VARY MP QUANTUM SIZE

I--4

O~

co
03

0.100

0.050

0.010

0.005

' I ' I

WFV-APL-WTX-FFT
64 SETS, 32 BYTE LINES

!-3000

. o-3oooo
\% ",~

• N"° ",~,
\%.°°

Q ' l O O O O O ~ Q . 2 5 0 0 0 0 d ~ r "

Figure 24.

0 20000 40000 60000

H E N O R Y C A P A C I T Y

Miss ratio versus memory capacity for variety of multlprogrammmg intervals Q.

Computing Surveys, Vol. 14, No. 3, September 1982

Cache Memories • 505

Each processor may have zero, one, or sev-
eral caches. Unfortunately, in such a mul-
tiple processor system, a given piece of in-
formation may exist in several places at a
given time, and it is important that all
processors have access (as necessary) to the
same, unique (at a given time) value. Sev-
eral solutions exist and/or have been pro-
posed for this problem. In this section, we
discuss many of these solutions; the in-
terested reader should refer to BEAN79,
CENS78, DRIM81a, DUBO82, JONE76,
JONE77a, MAZA77, McWI77, NGAI81, and
TANG76 for additional explanation.

As a basis for discussion, consider a single
CPU with a cache and with a main memory
behind the cache. The CPU reads an item
into the cache and then modifies it. A sec-
ond CPU (of similar design and using the
same main memory) also reads the item
and modifies it. Even if the CPUs were
using store-through, the modification per-
formed by the second CPU would not be
reflected in the cache of the first CPU
unless special steps were taken. There are
several possible special steps.

1. Shared Cache. All processors in the
system can use the same cache. In general,
this solution is infeasible because the band-
width of a single cache usually is not suffi-
cient to support more than one CPU, and
because additional access time delays may
be incurred because the cache may not be
physically close enough to both (or all)
processors. This solution is employed suc-
cessfully in the Amdahl 470 computers,
where the CPU and the channels all use
the same cache; the 470 series does not,
however, permit tightly coupled CPUs. The
UNIVAC 1100/80 [BORG79] permits two
CPUs to share one cache.

2. Broadcast Writes. Every time a CPU
performs a write to the cache, it also sends
that write to all other caches in the system.
If the target of the store is found in some
other cache, it may be either updated or
invalidated. Invalidation may be less likely
to create inconsistencies, since updates can
possibly "cross," such that CPU A updates
its own cache and then B's cache. CPU B
simultaneously updates its own cache and
then A's. Updates also require more data
transfer. The IBM 370/168 and 3033 proc-
essors use invalidation. A store by a CPU

or channel is broadcast to all caches sharing
the same main memory. This broadcast
store is placed in the buffer invalidation
address stack (BIAS) which is a list of
addresses to be invalidated in the cache.
The buffer invalidation address stack has a
high priority for cache cycles, and if the
target line is found in that cache, it is in-
validated.

The major difficulty with broadcasting
store addresses is that every cache memory
in the system is forced to surrender a cycle
for invalidation lookup to any processor
which performs a write. The memory inter-
ference that occurs is generally acceptable
for two processors (e.g., IBM's current MP
systems), but significant performance deg-
radation is likely with more than two proc-
essors. A clever way to minimize this prob-
lem appears in a recent patent [BEA~79].
In that patent, a BIAS Filter Memory
(BFM) is proposed. A BFM is associated
with each cache in a tightly coupled MP
system. This filter memory works by filter-
ing out repeated requests to invalidate the
same block in a cache.

3. Software Control. If a system is being
written from scratch and the architecture
can be designed to support it, then software
control can be used to guarantee consist-
ency. Specifically, certain information can
be designated noncacheable, and can be
accessed only from main memory. Such
items are usually semaphores and perhaps
data structures such as the job queue. For
efficiency, some shared writeable data has
to be cached. The CPU must therefore be
equipped with commands that permit it to
purge any such information from its own
cache as necessary. Access to shared write-
able cacheable data is possible only within
critical sections, protected by noncacheable
semaphores. Within the critical regions, the
code is responsible for restoring all modified
items to main memory before releasing the
lock. Just such a scheme is intended for the
S-1 multiprocessor system under construc-
tion at the Lawrence Livermore Laboratory
[HAIL79, McWI77]. The Honeywell Series
66 machines use a similar mechanism. In
some cases, the simpler alternative of mak-
ing shared writeable information noncache-
able may be acceptable.

4. Directory Methods. It is possible to
keep a centralized and/or distributed direc-

Computing Surveys, VoL 14, No. 3, September 1982

506 • A. J. Smith

tory of all main memory lines, and use it to
ensure that no lines are write-shared. One
such scheme is as follows, though several
variants are possible. The main memory
maintains k + 1 bits for each line in main
memory, when there are k caches in the
system. Bit i, i -- 1 , . . . , k is set to 1 if the
corresponding cache contains the line. The
(k + 1)th bit is I if the line is being or has
been modified in a cache, and otherwise is
0. If the (k + 1)th bit is on, then exactly
one of the other bits is on. Each CPU has
associated with each line in its cache a
single bit (called thepr ivate bit). If that bit
is on, that CPU has the only valid copy of
that line. If the bit is off, other caches and
main memory may also contain current
copies. Exactly one private bit is set if and
only if the main memory directory bit k +
I is set.

A CPU can do several things which pro-
voke activity in this directory system. If a
CPU attempts to read a line which is not in
its cache, the main memory directory is
queried. There are two possibilities: either
but k + 1 is off, in which case the line is
transferred to the requesting cache and the
corresponding bit set to indicate this; or, bit
k + 1 is on, in which case the main memory
directory must recall the line from the
cache which contains the modified copy,
update main memory, invalidate the copy
in the cache that modified it, send the line
to the requesting CPU/cache and finally
update itself to reflect these changes. (Bit
k + 1 is then set to zero, since the request
was a read.)

An attempt to perform a write causes one
of three possible actions. If the line is al-
ready in cache and has already been modi-
fied, the private bit is on and the write
takes place immediately. If the line is not
in cache, then the main memory directory
must be queried. If the line is in any other
cache, it must be invalidated (in all other
caches), and main memory must be up-
dated if necessary. The main memory di-
rectory is then set to reflect the fact that
the new cache contains the modified copy
of the data, the line is transmitted to the
requesting cache, and the private bit is set.
The third possibility is that the cache al-
ready contains the line but that it does not
have its private bit set. In this case, per-
mission must be requested from the main

memory directory to perform the write.
The main memory directory invalidates
any other copies of the line in the system,
marks its own directory suitably, and then
gives permission to modify the data.

The performance implications of this
method are as follows. The cost of a miss
may increase significantly due to the need
to query the main memory directory and
possibly retrieve data from other caches.
The use of shared writeable information
becomes expensive due to the high miss
ratios that are likely to be associated with
such information. In CENS78, there is some
attempt at a quantitative analysis of these
performance problems.

Another problem is that I /O overruns
may occur. Specifically, an I/O data stream
may be delayed while directory operations
take place. In the meantime, some I/O data
are lost. Care must be taken to avoid this
problem. Either substantial I/O buffering
or write-through is clearly needed.

Other variants of method 4 are possible.
(1) The purpose of the central directory is
to minimize the queries to the caches of
other CPUs. The central directory is not
logically necessary; sufficient information
exists in the individual caches. It is also
possible to transmit information from cache
to cache, without going through main mem-
ory. (2) If the number of main memory
directory bits is felt to be too high, locking
could be on a page instead of on a line basis.
(3) Store-through may be used instead of
copy-back; thus main memory always has
a valid copy and data do not have to be
fetched from the other caches, but can sim-
ply be invalidated in these other caches.

The IBM 3081D, which contains two
CPUs, essentially uses the directory
scheme described. The higher performance
3081K functions similarly, but passes the
necessary information from cache to cache
rather than going through main memory.

Another version of the directory method
is called the broadcast search [DRIM81b].
In this case, a miss is sent not only to the
main memory but to all caches. Whichever
memories (cache or main) contain the de-
sired information send it to the requesting
processor.

Liu [LItT82] proposes a multicache
scheme to minimize the overhead of direc-
tory operations. He suggests that all CPUs

Computing Surveys, Vol. 14, No. 3, September 1982

have two caches, only one of which can
contain shared data. The overhead of direc-
tory access and maintenance would thus
only be incurred when the shared data
cache is accessed.

There are two practical methods among
the above alternatives: method 4 and the
BIAS Filter Memory version of method 2.
Method 4 is quite general, but is potentially
very complex. It may also have perform-
ance problems. No detailed comparison ex-
ists, and other and better designs may yet
remain to be discovered. For new machines,
it is not known whether software control is
better than hardware control; clearly, for
existing architectures and software, hard-
ware control is required.

2.8 Data/Instruction Cache

Two aspects of the cache having to do with
its performance are cache bandwidth and
access time. Both of these can be improved
by splitting the cache into two parts, one
for data and one for instructions. This dou-
bles the bandwidth since the cache can now
service two requests in the time it formerly
required for one. In addition, the two re-
quests served are generally complementary.
Fast computers are pipelined, which means
that several instructions are simultaneously
in the process of being decoded and exe-
cuted. Typically, there are several stages in
a pipeline, including instruction fetch, in-
struction decode, operand address genera-
tion, operand fetch, execution, and trans-
mission of the results to their destination
(e.g., to a register). Therefore, while one
instruction is being fetched (from the in-
struction cache), another can be having its
operands fetched from the operand cache.
In addition, the logic that arbitrates priority
between instruction and data accesses to
the cache can be simplified or eliminated.

A split instruction/data cache also pro-
vides access time advantages. The CPU of
a high-speed computer typically contains
(exclusive of the S-unit) more than 100,000
logic gates and is physically large. Further,
the logic having to do with instruction fetch
and decode has little to do with operand
fetch and store except for execu te in-
structions and possibly for the targets of
branches. With a single cache system, it is
not always possible simultaneously to place
the cache immediately adjacent to all of the

C a c h e M e m o r i e s • 507

logic which will access it. A split cache, on
the other hand, can have each of its halves
placed in the physical location which is
most useful, thereby saving from a fraction
of a nanosecond to several nanoseconds.

There are, of course, some problems in-
troduced by the split cache organization.
First, there is the problem of consistency.
Two copies now exist of information which
formerly existed only in one place. Specifi-
cally, instructions can be modified, and this
modification must be reflected before the
instructions are executed. Further, it is pos-
sible that even if the programs are not self-
modifying, both data and instructions may
coexist in the same line, either for reasons
of storage efficiency or because of immedi-
ate operands. The solutions for this prob-
lem are the same as those discussed in the
section on multicache consistency (Section
2.7), and they work here as well. It is im-
perative that they be implemented in such
a way so as to not impair the access time
advantage given by this organization.

Another problem of this cache organiza-
tion is that it results in inefficient use of the
cache memory. The size of the working set
of a program varies constantly, and in par-
ticular, the fraction devoted to data and to
instructions also varies. (A dynamically
split design is suggested by FAVR78.) If the
instructions and data are not stored to-
gether, they must each exist within their
own memory, and be unable to share a
larger amount of that resource. The extent
of this problem has been studied both ex-
perimentally and analytically. In SHED76,
a set of formulas are provided which can be
used to estimate the performance of the
unified cache from the performance of the
individual ones. The experimental results
were not found to agree with the mathe-
matical ones, although the reason was not
investigated. We believe that the nonsta-
tionarity of the workload was the major
problem.

We compared the miss ratio of the split
cache to that of the unified cache for each
of the sets of traces; some of the results
appear in Figures 25-28. (See BP.LL74 and
THAK78 for additional results.) We note
that there are several possible ways to split
and manage the cache and the various al-
ternatives have been explored. One could
split the cache in two equal parts (labeled
"SPLIT EQU. AL"), or the observed miss

Computing Surveys, Vol. 14, No. 3, September 1982

508 • A. J. Smith

I/D CACHES VS. UNIFIED CACHE

0.100

0,050 E~

cr
03
03
~- 0,010

0,005

I I ' ' ' ' I ' ' ' ' I '

~,, C601,,,3, P602
Q-IO000, 64 SETS, 32 BYTES/LINE - ~

~':~. ~UNIF IED - - !

~ ,~ : . , SPLIT OPT UAL :,

-: ::-_- -.-:: :
~-DA]A

- I N S T R U C T ~ --
I , , , , I , , , , I , , , , I ,

0 20000 40000 60000
MEMORY C A P A C I T Y

Figure 25. Miss ratio versus memory capacity for unified cache, cache split equally between
instruction and data halves, cache split according to static optimum partition between instruc-
tion and data halves, and miss ratios individually for instruction and data halves.

I/D CACHES VS. UNIFIED CACHE

I , , , , I , , , , I , : , , 1 I

CG01...3, P602
O-lO000, 64 SETS, 32 BYTES/LINE

0.100 - I\ ~- i NO DUPLICATES -

:%~f--- SPLIT EQUAL
0.050

EE ~ ~ . SPLIT OPT

\

CO ~ \ ~o^~^ ~

O.OlO _ ~ U":F:E°) --

o oo~ (1.s:~ucT:o.s
I , , , , I , , , , I , , , , I ,

0 20000 40000 60000
MEMORY CAPACITY

Figure 26. Miss ratio versus memory capacity for instruct ion/data cache and for umfied cache.

Computing Surveys, Vo]. 14, No. 3, September 1982

C a c h e M e m o r i e s •

I/D CACHES VS. UNIFIED CACHE

O.IO0

0 . 0 5 0
E)

<
r r "

CO
CO
I ' - - '1

O,OlO

0 . 0 0 5

I I I '
F00!...4
Q-IOOOO, 64 SETS, 32 BYTES/LINE

i \ ~SPLIT OPT

~,~ SPLIT EQUAL

"~k "~'.,,.~ DATA

INSTRUCTIO

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0

MEMBRY CAPACITY
Figure 27. Miss ratio versus memory capacity for instructmn/data cache and for unified cache.

509

I/D CACHES VS. UNIFIED CACHE

FG01...4
0,100 - Q-IOOOO, 64 SETS, 32 BYTES/LINE_

NO DUPLICATES

0 . 0 5 0 SPLIT OPT

~---< ~ ~ - ~ S P L I T EQUAL

" " " . . -- _ DATA

0 . 0 1 0 - ~ ~" '~ ' " " " ' ~ " " - -

0 . 0 0 5

I , , , ,] , , , , I , , , , I ,
0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0

MEMORY CAPACITY
Figure 28. Miss ratio versus memory capacity for instruction/data cache and for unified cache

Computing Surveys, VoL 14, No. 3, September 1982

510 • A. J. Smith

ratios could be used (from this particular
run) to determine the optimal static split
("SPLIT OPT"). Also, when a line is found
to be in the side of the cache other than the
one currently accessed, it could either be
duplicated in the remaining side of the
cache or it could be moved; this latter case
is labeled "NO DUPLICATES." (No spe-
cial label is shown if duplicates are permit-
ted.) The results bearing on these distinc-
tions are given in Figures 25-28.

We observe in Figures 25 and 26 that the
unified cache, the equally split cache, and
the cache split unequally (split optimally)
all perform about equally well with respect
to miss ratio. Note that the miss ratio for
the instruction and data halves of the cache
individually are also shown. Further, com-
paring Figures 25 and 26, it seems that
barring duplicate lines has only a small
negative effect on the miss ratio.

In sharp contrast to the measurements of
Figures 25 and 26 are those of Figures 27
and 28. In Figure 27, although the equally
and optimally split cache are comparable,
the unified cache is significantly better. The
unified cache is better by an order of mag-
nitude when duplicates are not permitted
(Figure 28), because the miss ratio is
sharply increased by the constant move-
ment of lines between the two halves. It
appears that lines sharing instruction and
data are very common in programs com-
piled with IBM's FORTRAN G compiler
and are not common in programs compiled
using the IBM COBOL or PL/ I compiler.
(Results similar to the FORTRAN case
have been found for the two other sets of
IBM traces, all of which include FOR-
TRAN code but are not shown.)

Based on these experimental results, we
can say that the miss ratio may increase
significantly if the caches are split, but that
the effect depends greatly on the workload.
Presumably, compilers can be designed to
minimize this effect by ensuring that data
and instructions are in separate lines, and
perhaps even in separate pages.

Despite the possible miss ratio penalty of
splitting the cache, there are at least two
experimental machines and two commer-
cial ones which do so. The S-1 [HAIL79,
McWI77] at Lawrence Livermore Labora-
tory is being built with just such a cache; it
relies on (new) software to minimize the

problems discussed here. The 801 minicom-
puter, built at IBM Research (Yorktown
Heights) [ELEC76, RADI82] also has a
split cache. The Hitachi H200 and Itel
AS/6 [Ross79] both have a split data/in-
struction cache. No measurements have
been publicly reported for any of these
machines.

2.9 Virtual Address Cache

Most cache memories address the cache
using the real address (see Figure 2). As the
reader recalls, we discussed (Introduction,
Section 2.3) the fact that the virtual address
was translated by the TLB to the real ad-
dress, and that the line lookup and readout
could not be completed until the real ad-
dress was available. This suggests that the
cache access time could be significantly re-
duced if the translation step could be elim-
inated. The way to do this is to address the
cache directly with the virtual address. We
call a cache organized this way a virtual
address cache. The MU-5 [IBBE77] uses
this organization for its name store. The
S-l, the IBM 801, and the ICL 2900 series
machines also use this idea. It is discussed
in BEDE79. See also OLBE79.

There are some additional considerations
in building a virtual address cache, and
there is one serious problem. First, all ad-
dresses must be tagged with the identifier
of the address space with which they are
associated, or else the cache must be purged
every time task switching occurs. Tagging
is not a problem, but the address tag in the
cache must be extended to include the ad-
dress space ID. Second, the translation
mechanism must still exist and must still be
efficient, since virtual addresses must be
translated to real addresses whenever main
memory is accessed, specifically for misses
and for writes in a write-through cache.
Thus the TLB cannot be eliminated.

The most serious problem is that of
"synonyms," two or more virtual addresses
that map to the same real address. Syn-
onyms occur whenever two address spaces
share code or data. (Since the lines have
address space tags, the virtual addresses
are different even if the line occurs in the
same place in both address spaces.) Also,
the supervisor may exist in the address
space of each user, and it is important that

Computing Surveys, Vol. 14, No. 3, September 1982

only one copy of supervisor tables be kept.
The only way to detect synonyms is to take
the virtual address, map it into a real ad-
dress, and then see if any other virtual
addresses in the cache map into the same
real address. For this to be feasible, the
inverse mapping must be available for every
line in the cache; this inverse mapping is
accessed on real address and indicates all
virtual addresses associated with that real
address. Since this inverse mapping is the
opposite of the TLB, we choose to call the
inverse mapping buffer (if a separate one is
used) the RTB or reverse translation
buffer. When a miss occurs, the virtual ad-
dress is translated into the real address by
the TLB. The access to main memory for
the miss is overlapped with a similar search
of the RTB to see if that line is already in
the cache under a different name (virtual
address). If it is, it must be renamed and
moved to its new location, since multiple
copies of the same line in the cache are
clearly undesirable for reasons of consist-
ency.

The severity of the synonym problem can
be decreased if shared information can be
forced to have the same location in all
address spaces. Such information can be
given a unique address space identifier, and
the lookup algorithm always considers such
a tag to match the current address space
ID. A scheme like this is feasible only for
the supervisor since other shared code
could not conceivably be so allocated.
Shared supervisor code does have a unique
location in all address spaces in IBM's MVS
operating system.

The RTB may or may not be a simple
structure, depending on the structure of the
rest of the cache. In one case it is fairly
simple: if the bits used to select the set of
the cache are the same for the real and
virtual address (i.e., if none of the bits used
to select the set undergo translation}, the
RTB can be implemented by associating
with each cache line two address tags
[BEDE79]. If a match is not found on the
virtual address, then a search is made in
that set on the real address. If that search
finds the line, then the virtual address tag
is changed to the current virtual address. A
more complex design would involve a sep-
arate mapping buffer for the reverse trans-
lation.

Cache M e m o r i e s • 511

2.10 User/Supervisor Cache

It was suggested earlier that a significant
fraction of the miss ratio is due to task-
switching. A possible solution to this prob-
lem is to use a cache which has been split
into two parts, one of which is used only by
the supervisor and the other of which is
used primarily by the user state programs.
If the scheduler were programmed to re-
start, when possible, the same user program
that was running before an interrupt, then
the user state miss ratio would drop appre-
ciably. Further, if the same interrupts recur
frequently, the supervisor state miss ratio
may also drop. In particular, neither the
user nor the supervisor would purge the
cache of the other's lines. (See PEUT77 for
some data relevant to this problem.) The
supervisor cache may have a high miss ratio
in any case due to its large working set.
(See MILA75 for an example.)

Despite the appealing rationale of the
above comments, there are a number of
problems with the user/supervisor cache.
First, it is actually unlikely to cut down the
miss ratio. Most misses occur in supervisor
state [MILA75] and a supervisor cache half
as large as the unified cache is likely to be
worse since the maximum cache capacity is
no longer available to the supervisor. Fur-
ther, it is not clear what fraction of the time
the scheduling algorithm can restart the
same program. Second, the information
used by the user and the supervisor are not
entirely distinct, and cross-access must be
permitted. This overlap introduces the
problem of consistency.

We are aware of only one evaluation of
the split user/supervisor cache [RossS0].
In that case, an experiment was run on an
Hitatchi M180. The results seemed to show
that the split cache performed about as well
as a unified one, but poor experimental
design makes the results questionable. We
do not expect that a split cache will prove
to be useful.

2.11 Input/Output through
the Cache

In Section 2.7, the problem of mu]ticache
consistency was discussed. We noted that
if all accesses to main memory use the same
cache, then there would be no consistency
problem. Precisely this approach has been

Computing Surveys, Vol. 14, No. 3, September 1982

512 • A . J . S m i t h

used in one manufacturer's computers
(Amdahl Corporation).

2.1 1. I Overruns

While putting all input/output through the
cache solves the consistency problem, it
introduces other difficulties. First, there is
the overrun problem. An overrun occurs
when for some reason the I/O stream can-
not be properly transmitted between the
memory (cache or main) and the I/O de-
vice. Transmitting the I/O through the
cache can cause an overrun when the line
accessed by the I/O stream is not in the
cache (and is thus a miss) and for some
reason cannot be obtained quickly enough.
Most I /O devices involve physical move-
ment, and when the buffering capacity
embedded in the I/O path is exhausted, the
transfer must be aborted and then re-
started. Overruns can be provoked when:
(1) the cache is already processing one or
more misses and cannot process the current
{additional) one quickly enough; (2) more
than one I/O transfer is in progress, and
more active (in use) lines map into one set
than the set size can accommodate; or (3)
the cache bandwidth is not adequate to
handle the current burst of simultaneous
I/O from several devices. Overruns can be
minimized if the set size of the cache is
l a rgeenough , the bandwidth is high
enough, and the ability to process misses is
sufficient. Sufficient buffering should also
be provided in the I/O paths to the devices.

2.1 1.2 Miss Ratio

Directing the input/output data streams
through the cache also has an effect on the
miss ratio. This I /O data occupies some
fraction of the space in the cache, and this
increases the miss ratio for the other users
of the cache. Some experiments along these
lines were run by the author and results are
shown in Figures 29-32. IORATE is the
ratio of the rate of I/O accesses to the cache
to the rate of CPU accesses. (I/O activity
is simulated by a purely sequential syn-
thetic address stream referencing a distinct
address space from the other programs.)
The miss ratio as a function of memory size
and I/O transfer rate is shown in Figures
29 and 30 for two of the sets of traces. The

data has been rearranged to show more
directly the effect on the miss ratio in Fig-
ures 31 and 32. The results displayed here
show no clear mathematical pattern, and
we were unable to derive a useful and ver-
ifiable formula to predict the effect on the
miss ratio by an I/O stream.

Examination of the results presented in
Figures 29-32 suggests that for reasonable
I/O rates (less than 0.05; see PowE77 for
some I/O rate data) the miss ratio is not
affected to any large extent. This observa-
tion is consistent with the known perform-
ance of the Amdahl computers, which are
not seriously degraded by high I/O rates.

2.12 Cache Size

Two very important questions when select-
ing a cache design are how large should the
cache be and what kind of performance can
we expect. The cache size is usually dictated
by a number of criteria having to do with
the cost and performance of the machine.
The cache should not be so large that it
represents an expense out of proportion to
the added performance, nor should it oc-
cupy an unreasonable fraction of the phys-
ical space within the processor. A very large
cache may also require more access cir-
cuitry, which may increase access time.

Aside from the warnings given in the
paragraph above, one can generally assume
that the larger the cache, the higher the hit
ratio, and therefore the better the perform-
ance. The issue is then one of the relation
between cache size and hit ratio. This is a
very difficult problem, since the cache hit
ratio varies with the workload and the ma-
chine architecture. A cache that might yield
a 99.8 percent hit ratio on a PDP-11 pro-
gram could result in a 90 percent or lower
hit ratio for IBM (MVS) supervisor state
code. This problem cannot be usefully stud-
ied using trace-driven simulation because
the miss ratio varies tremendously from
program to program and only a small num-
ber of traces can possibly be analyzed. Typ-
ical trace-driven simulation results appear
throughout this paper, however, and the
reader may wish to scan that data for in-
sight. There is also a variety of data avail-
able in the literature and the reader may
wish to inspect the results presented in
ALSA78, BELL74, BERG76, GIBS67, LEE69,

Computing Surveys, Vo|. 14, No. 3, September 1982

Cache Memories

VARY I/0 RATE

0.20

0.I0
0.09
0.08

E;~ 0.07 I - -4

~- 0.06
rF 0.05
O3 0.04
O3
~- 0.03

0.02 10RATE,

IOF
IOF

CG01...3, P602 i
Q-IO000, 64 SEa'S
32 BYTE LINES

10RATE-.IO ~ " "- ,, ,//-10RATE-.20

IORAT i-.05

0 20000 40000 60000
M E M O R Y C A P A C I T Y

Figure 29. Miss ratio versus memory capacity while I /O occurs through cache at specified
rate IORATE refers to fraction of all memory references due to I/O

513

E~
I,--I

rY

GO
CO
I--I

2::

I
0.I00 --

0.050

0.010 --

0.005

Figure 30.

V A R Y I / 0 R A T E

. . . . I ' ' ' ' I ' ' ' ' I '

~ WFV-APL-WTX-FFT --
Q-iO000, 64 SETS
32 BYTE LINES

~]E=.20 " -

IORATE,O.?J ~ : ~ : . . ~ " . . ~ . . . IORATE-.iO

10RATE"OI/ ~ ~

10RATE=.025 T. 2.L-Z-" ~ L

10RATE-.05

, , , , I , , , , I , , , , I ,
20000 40000 60000

M E M O R Y C A P A C I T Y

Miss ratio versus memory capacity while I/O occurs through cache.

Computing Surveys, Vol. 14, No. 3, September 1982

514 •

0.04

E~ 0.03
I-- .<::
Q:::

03
03 0.02 I-.-t

0.01

A. J. Smith

MISS RATIO VS. 110 RATE

WIV-APL-WTX-FFT

- / / . 1 6 K - ° ° . o
, ° ° " / .>... 24K-- - .~ , .

f s. •

• " " 32K'-'~., " " /
/ j .

/" d"

/ .--':'. / 6 4 K
- ..-" f48K / I - - ~ -

0 0.05 0.I 0.15 0.2

Figure 31.

C G 0 1 . . . 3 ~ ' ~ 0.040

_ ~ ~-8K - 0.035

16K~
l I ~ 1 " " - 0.030

" f"*"°"°" I" / "/ t 1 ' " , 24K / "
- (~ .,.-" -_I 0.025

> / f 3 2 K ...,."

- " [.'" - - 0.020
48K

~ ' " ~ 0.015

0 0.05 0.1 0.15 0.2
I/0 RATE

Miss rat io versus I / 0 ra te for var ie ty of m e m o r y capacitms.

2.0

nl

1,8

_j 1,6

1.4 =o

1,2

1.0
rr

INCREASE IN MISS RATIO VS. I / 0 RATE I""l''"l'''l'" '4~ WFV-APL- /" / / /
WTX-FFT //24K//" C

32K // / ~ ' " ' " "

E \ , " ; ' X . " " • i "w #

"7

0 0.05

Figure 32.

I I ~ I l l ~ & & ' ' l ' ' ' ' l '
1...3, 2 / -

/ , /

/ / °
/ •

/ /
/ /"

24K / /

/ 32K
/ /

/ / ,8K
/ ,," 16K [/ -

/ ," / ,,,.~.....-
, , .," ! . .>~. . . - ..

rl / ' ' ' ' " "' ' / / ' . , ° "
/ V ' ' " l --

./.."~.~""~ " 64K /,, ,,, •
~ ' : 1 . , , , I , , , , I , , i , I

0.1 0.15 0.2 0 0.05 0.1 0.15
I/0 RATE

Miss ratio versus I / O ra te for var ie ty of m e m o r y capacities.

0.2

1.5

1,4

1.3

1,2

1,1

1,0

Computing Surveys, Vol. 14, No 3, September 1982

Cache Memories

MISS RATIC) VS. CACHE SIEE

E~

k-
.<
rY

03
CO

5-

0.10
o.og
0.08
0.07

0.06

0.05

0.04

0.03

0.02

!

- - 2 - - z '2g 6

I | I I

K-'4353
DIGIT EQUALS SET SIZE

STATE ̀4 SUPERVISOR "

" 2 - - _ / . 0 8 4 3 C "4632

- ~- - - ~- - -~-~ ~_~ - 4-- PROBLEM STATE

 osoo - 4-

* 5 1 5

I

0.01 I I I I I I

20 30 40 50 60 70

CACHE SIZE (KILOBYTES)

Figure 33. - Miss ratio versus cache size, classified by set size and use r / supe rv i so r s tate . D a t a
ga thered by hardware moni to r f rom mach i ne runn ing s t anda rd benchmark .

MEAD70, STRE76, THAK78, and YUVA75.
Some direct measurements of cache miss
ratios appear in CLAR81 and CLAR82. In the
former, the Dorado was found to have hit
ratios above 99 percent. In the latter, the
VAX 11/780 was found to have hit ratios
around 90 percent.

Another problem with trace-driven sim-
ulation is that in general user state pro-
grams are the only ones for which many
traces exist. In IBM MVS systems, the
supervisor typically uses 25 to 60 percent of
the CPU time, and provides by far the
largest component of the miss ratio
[MILA75]. User programs generally have
very low miss ratios, in our experience, and
many of those misses come from task
switching.

Two models have been proposed in the
literature for memory hierarchy miss ratios.
Saltzer [SALT74] suggested, based on his
data, that the mean time between faults
was linearly related to the capacity of the
memory considered. But later results, taken
on the same system [GREE74] contradict

Saltzer's earlier findings. [CHow75 and
CHOW76] suggest that the miss ratio curve
was of the form m ffi a(cb), where a and b
are constants, m is the miss ratio, and c is
the memory capacity. They show no exper-
imental results to substantiate this model,
and it seems to have been chosen for math-
ematical convenience.

Actual cache miss ratios, from real ma-
chines running "typical" workloads, are the
most useful source of good measurement
data. In Figure 33 we show a set of such
measurements taken from Amdahl 470
computers running a standard Amdahl in-
ternal benchmark. This data is reproduced
from HARD80a. Each digit represents a
measurement point, and shows either the
supervisor or problem state miss ratio for a
specific cache size and set size; the value of
the digit at each point is the set size. Ex-
amination of the form of the measurements
from Figure 33 suggest that the miss ratio
can be approximated over the range shown
by an equation of the form m = a(k b)
(consistent with CHOW75 and CHow76),

Computing Surveys, VoL 14, No. 3, September 1982

516 • A. J. S m i t h

where m is the miss ratio, a and b are
constants (b < 0), and k is the cache capac-
ity in kilobytes. The values of a and b are
shown for four cases in Figure 33; supervi-
sor and user state for a set size of two, and
supervisor and user state for all other set
sizes. We make no claims for the validity of
this function for other workloads and/or
other architectures, nor for cache sizes be-
yond the range shown. From Figure 33 it is
evident, though, that the supervisor con-
tributes the largest fraction of the miss
ratio, and the supervisor state measure-
ments are quite consistent. Within the
range indicated, therefore, these figures can
probably be used for a first approximation
at estimating the performance of a cache
design.

Typical cache sizes in use include 128
kbytes (NEC ACOS 9000), 64 kbytes (Am-
dahl 470V/8, IBM 3033, IBM 3081K per
CPU), 32 kbytes (IBM 370/168-3, IBM
3081D per CPU, Amdahl 470V/7, Magnu-
son M80/43), 16 kbytes (Amdahl 470V/6,
Itel AS/6, IBM 4341, Magnuson M80/42,
M80/44, DEC VAX 11/780), 8 kbytes (Hon-
eywell 66/60 and 66/80, Xerox Dorado
[CLAR81]), 4 kbytes (VAX 11/750, IBM
4331), 1 kbyte (PDP-11/70).

2.13. Cache Bandwidth, Data Path Width,
and Access Resolution

2.13.1 Bandwidth

For adequate performance, the cache band-
width must be sufficient. Bandwidth refers
to the aggregate data transfer rate, and is
equal to data path width divided by access
time. The bandwidth is important as well
as the access time, because (1) there may
be several sources of requests for cache
access (instruction fetch, operand fetch and
store, channel activity, etc.), and (2) some
requests may be for a large number of bytes.
If there are other sources of requests for
cache cycles, such as prefetch lookups and
transfers, it must be possible to accommo-
date these as well.

In determining what constitutes an ade-
quate data transfer rate, it is not sufficient
that the cache bandwidth exceed the aver-
age demand placed on it by a small amount.
It is important as well to avoid contention
since if the cache is busy for a cycle and one
or more requests are blocked, these blocked

requests can result in permanently wasted
machine cycles. In the Amdah1470V/8 and
the IBM 3033, the cache bandwidth ap-
pears to exceed the average data rate by a
factor of two to three, which is probably
the minimum sufficient margin. We note
that in the 470V/6 {when prefetch is used
experimentally) prefetches are executed
only during otherwise idle cycles, and it has
been observed that not all of the prefetches
actually are performed. (Newly arrived pre-
fetch requests take the place of previously
queued but never performed requests.)

For some instructions, the cache band-
width can be extremely important. This is
particularly the case for data movement
instructions such as: (1) instructions which
load or unload all of the registers (e.g., IBM
370 instructions STM, LM); (2) instructions
which move long character strings (MVC,
MVCL); and (3) instructions which operate
on long character strings (e.g., CLC, OC,
NC, XC). In these cases, especially the first
two, there is little if any processing to be
done; the question is simply one of physical
data movement, and it is important that
the cache data path be as wide as possible--
in large machines, 8 bytes (3033, 3081, Itel
AS/6) instead of 4 (470V/6, V/7, V/8); in
small machines, 4 bytes (VAX 11/780) in-
stead of 2 (PDP-11/70).

It is important to note that cache data
path width is expensive. Doubling the path
width means doubling the number of lines
into and out of the cache (i.e., the bus
widths) and all of the associated circuitry.
This frequently implies some small increase
in access time, due to larger physical pack-
aging and/or additional levels of gate delay.
Therefore, both the cost and performance
aspects of cache bandwidth must be consid-
ered during the design process.

Another approach to increasing cache
bandwidth is to interleave the cache
[DRIS80, YAMO80]. If the cache is required
to serve a large number of small requests
very quickly, it may be efficient to replicate
the cache (e.g., two or four times) and ac-
cess each separately, depending on the low-
order bits of the desired locations. This
approach is very expensive, and to our
knowledge, has not been used on any exist-
ing machine. (See POHM75 for some addi-
tional comments.)

Computing Surveys, Vol 14, No. 3, September 1982

2.13 .2 Pr ior i ty Arb i t ra t ion

An issue related to cache bandwidth is what
to do when the cache has several requests
competing for cache cycles and only one
can be served at a given time. There are
two criteria for making the choice: (1) give
priority to any request that is "deadline
scheduled" (e.g., an I/O request that would
otherwise abort); and (2) give priority (after
(1)) to requests in order to enhance ma-
chine performance. The second criterion
may be sacrificed for implementation con-
venience, since the optimal scheduling of
cache accesses may introduce unreasonable
complexity into the cache design. Typically,
fixed priorities are assigned to competing
cache requests, but dynamic scheduling,
though complex, is possible [BLOC80].

An an illustration of cache priority reso-
lution, we consider two large, high-speed
computers: the Amdahl 470V/7 and the
IBM 3033. In the Amdahl machine, there
are five "ports" or address registers, which
hold the addresses for cache requests. Thus,
there can be up to five requests queued for
access. These ports are the operand port,
the instruction port, the channel port, the
translate port, and the prefetch port. The
first three are used respectively for operand
store and fetch, instruction fetch, and chan-
nel I/O (since channels use the cache also).
The translate port is used in conjunction
with the TLB and translator to perform
virtual to real address translation. The pre-
fetch port is for a number of special func-
tions, such as setting the storage key or
purging the TLB, and for prefetch opera-
tions. There are sixteen priorities for the
470V/6 cache; we list the important ones
here in decreasing order of access
priority: (1) move line in from main stor-
age, (2) operand store, (3) channel store,
(4) fetch second half of double word re-
quest, (5) move line out from cache to main
memory, (6) translate, (7) channel fetch, (8)
operand fetch, (9) instruction fetch, (10)
prefetch.

The IBM 3033 has a similar list of cache
access priorities [IBM78]: (1) main memory
fetch transfer, (2) invalidate line in cache
modified by channel or other CPU, (3)
search for line modified by channel or other
CPU, (4) buffer reset, (5) translate, (6) redo

Cache Memories • 517

(some cache accesses are blocked and have
to be restarted), and (7) normal instruction
or operand access.

2.14 Multilevel Cache

The largest existing caches (to our knowl-
edge} can be found in the NEC ACOS 9000
(128 kbytes), and the Amdahl 470V/8 and
IBM 3033 processors (64 kbytes). Such
large caches pose two problems: (1) their
physical size and logical complexity in-
crease the access time, and (2) they are
very expensive. The cost of the chips in the
cache can be a significant fraction (5-20
percent) of the parts cost of the CPU. The
reason for the large cache, though, is to
decrease the miss ratio. A possible solution
to this problem is to build a two-level cache,
in which the smaller, faster level is on the
order of 4 kbytes and the larger, slower
level is on the order of 64-512 kbytes. In
this way, misses from the small cache could
be satisfied, not in the six to twelve machine
cycles commonly required, but in two to
four cycles. Although the miss ratio from
the small cache would be fairly high, the
improved cycle time and decreased miss
penalty would yield an overall improve-
ment in performance. Suggestions to this
effect may be found in BENN82, OHNO77,
and SPAR78. It has also been suggested for
the TLB [NGAI82].

As might be expected, the two-level or
multilevel cache is not necessarily desira-
ble. We suggested above that misses from
the fast cache to the slow cache could be
serviced quickly, but detailed engineering
studies are required to determine if this is
possible. The five-to-one or ten-to-one ratio
of main memory to cache memory access
times is not wide enough to allow another
level to be easily placed between them.

Expense is another consideration. A two-
level cache implies another level of access
circuitry, with all of the attendant compli-
cations. Also, the large amount of storage
in the second level, while cheaper per bit
than the low-level cache, is not inexpensive
on the whole.

The two-level or multilevel cache repre-
sents a possible approach to the problem of
an overlarge single-level cache, but further
study is needed.

Computmg Surveys, Vol. 14, No. 3, September 1982

518 • A. J. Smith

2.15 Pipelining

Referencing a cache memory is a multistep
process. There is the need to obtain priority
for a cache cycle. Then the TLB and the
desired set are accessed in parallel. After
this, the real address is used to select the
correct line from the set, and finally, after
the information is read out, the replace-
ment bits are updated. In large, high-speed
machines, it is common to pipeline the
cache, as well as the rest of the CPU, so
that more than one cache access can be in
progress at the same time. This pipelining
is of various degrees of sophistication, and
we illustrate it by discussing two machines:
the Amdahl 470V/7 and the IBM 3033.

In the 470V/7, a complete read requires
four cycles, known as the P, B1, B2, and R
cycles [SMIT78b]. The P {priority) cycle is
used to determine which of several possible
competing sources of requests to the cache
will be permitted to use the next cycle. The
B1 and B2 {buffer 1, buffer 2) cycles are
used actually to access the cache and the
TLB, to select the appropriate line from
the cache, to check that the contents of the
line are valid, and to shift to get the desired
byte location out of the two-word (8-byte)
segment fetched. The data are available at
the end of the B2 cycle. The R cycle is used
for "cleanup" and the replacement status is
updated at that time. It is possible to have
up to four fetches active at any one time in
the cache, one in each of the four cycles
mentioned above. The time required by a
store is longer since it is essentially a read
followed by a modify and write-back; it
takes six cycles all together, and one store
requires two successive cycles in the cache
pipeline.

The pipeline in the 3033 cache is similar
[IBM78]. The cache in the 3033 can service
one fetch or store in each machine cycle,
where the turnaround time from initial re-
quest for priority until the data is available
is about 2½ cycles (½-cycle transmission
time to S-unit, 1½ cycles in S-unit, ½ cycle
to return data to instruction unit). An im-
portant feature of the 3033 is that the cache
accesses do not have to be performed in the
order that they are issued. In particular, if
an access causes a miss, it can be held up
while the miss is serviced, and at the same
time other requests which are behind it in

the pipeline can proceed. There is an elab-
orate mechanism built in which prevents
this out-of-order operation from producing
incorrect results.

2.16 Translation Lookaside Buffer

The translation lookaside buffer {also
called the translation buffer [DEC78], the
associative memory [SCHR71], and the di-
rectory lookaside table [IBM78]), is a small,
high-speed buffer which maintains the
mapping between recently used virtual and
real memory addresses (see Figure 2). The
TLB performs an essential function since
otherwise an address translation would re-
quire two additional memory references:
one each to the segment and page tables.
In most machines, the cache is accessed
using real addresses, and so the design and
implementation of the TLB is intimately
related to the cache memory. Additional
information relevant to TLB design and
operation may be found in JONE77b,
LUDL77, RAMA81, SAT¥81, SCHR71, and
WILK71. Discussions of the use of TLBs
(TLB chips or memory management units)
in microcomputers can be found in JOHN81,
STEVS1, and ZOLN81.

The TLB itself is typically designed to
look like a small set-associative memory.
For example, the 3033 TLB {called the
DLAT or directory lookaside table) is set-
associative, with 64 sets of two elements
each. Similarly, the Amdahl 470V/6 uses
128 sets of two elements each and the 470V/
7 and V/8 have 256 sets of 2 elements each.
The IBM 3081 TLB has 128 entries.

The TLB differs in some ways from the
cache in its design. First, for most processes,
address spaces start at zero and extend
upward as far as necessary. Since the TLB
translates page addresses from virtual to
real, only the high-order {page number)
address bits can be used to access the TLB.
If the same method was used as that used
for accessing the cache (bit selection using
lower order bits), the low-order TLB entries
would be used disproportionately and
therefore the TLB would be used ineffi-
ciently. For this reason, both the 3033 and
the 470 hash the address before accessing
the TLB (see Figure 2). Consider the 24-bit
address used in the System/370, with the
bits numbered from 1 to 24 (high order to

Computmg Surveys, Vol 14, No. 3, September 1982

low order). Then the bits 13 to 24 address
the byte within the page (4096-byte page)
and the remaining bits (1 to 12) can be used
to access the TLB. The 3033 contains a 6-
bit index into the TLB computed as follows.
Let @ be the Exclusive OR operator; a 6-
bit quantity is computed [7, (8 @ 2), (9 @
3), (10 @ 4), (11 @ 5), (12 @ 6)], where
each number refers to the input bit it des-
ignates.

The Amdahl 470V/7 and 470V/8 use a
different hashing algorithm, one which pro-
vides much more thorough randomization
at the cost of significantly greater complex-
ity. To explain the hashing algorithm, we
first explain some other items. The 470
associates with each address space an 8-bit
tag field called the address space identifier
(ASID) (see Section 2.19.1). We refer to the
bits that make up this tag field as $1,
. . . . $8. These bits are used in the hashing
algorithm as shown below. Also, the 470V/
7 uses a different algorithm to hash into
each of the two elements of a set; the TLB
is more like a pair of direct mapping buffers
than a set-associative buffer. The first half
is addressed using 8 bits calculated as fol-
lows: [(6 @ 1 @ $8), 7, (8 @ 3 @ $6), 9, (10
@ $4), 11, (12 @ $2), 5]; and the second
half is addressed as [6, (7 @ 2 @ $7), 8, (9
@ 4 @ $5), I0, (11 @ $3), 12, (5 @ SI)].
There are no published studies that indi-
cate whether the algorithm used in the 3033
is sufficient or whether the extra complex-
ity of the 470V/7 algorithm is warranted.

There are a number of fields in a TLB
entry (see Figure 34). The virtual address
presented for translation is matched against
the virtual address tag field (ASID plus
virtual page address) in the TLB to ensure
that the right entry has been found. The
virtual address tag field must include
the address space identifier (8 bits in the
470V/7, 5 bits in the 3033) so that entries
for more than one process can be in the
TLB at one time. A protection field (in 370-
type machines) is also included in the TLB
and is checked to make sure that the access
is permissible. (Since keys are associated
on a page basis in the 370, this is much
more efficient than placing the key with
each line in the cache.) The real address
corresponding to the virtual address is the
primary output of the TLB and occupies a

Cache Memories , 519

Address V~rtual Page Valid Protechon Real Page[
Space TD Address B~t B)te Address

Translation Lookaslde Buffer (TLB) Entry

I Replacement Entry I Entry2 (usage) S=ts

TLB Set

Figure 34 . Structure of translation lookaslde buffer
(TLB) entry and TLB set.

field. There are also bits that indicate
whether a given entry in the TLB is valid
and the appropriate bits to permit LRU-
like replacement. Sometimes, the modify
and reference bits for a page are kept in the
TLB. If so, then when the entry is removed
from the TLB, the values of those bits must
be stored.

It may be necessary to change one or
more entries in the TLB whenever the vir-
tual to real address correspondence changes
for any page in the address space of any
active process. This can be accomplished in
two ways: (1) if a single-page table entry is
changed (in the 370), the IPTE (insert page
table entry) instruction causes the TLB to
be searched, and the now invalid entry
purged; (2) if the assignment of address
space IDs is changed, then the entire TLB
is purged. In the 3033, purging the TLB is
slow (16 machine cycles) since each entry
is actually invalidated. The 470V/7 does
this in a rather clever way. There are two
sets of bits used to denote valid and invalid
entries, and a flag indicating which set is to
be used at any given time. The set not in
use is supposed to be set to zero (invalid).
The purge TLB command has the effect of
flipping this flag, so that the set of bits
indicating that all entries are invalid are
now in use. The set of bits no longer in use
is reset to zero in the background during
idle cycles. See Cosc81 for a similar idea.

The cache on the DEC VAX 11/780
[DEC78] is similar to but simpler than that
in the IBM and Amdahl machines. A set-
associative TLB (called the translation
buffer) is used, with 64 sets of 2 entries
each. (The VAX 11/750 has 256 sets of 2
entries each.) The set is selected by using
the high-order address bit and the five low-
order bits of the page address, so the ad-
dress need not be hashed at all. Since the

Computing Surveys, Vol. 14, No. 3, September 1982

520 • A. J. Smith

higher order address bit separa tes the user
f rom the supervisor address space, this
means tha t the user and supervisor T L B
entries never m a p into the same locations.
This is convenient because the user pa r t of
the T L B is purged on a task switch. (There
are no address space IDs.) T h e T L B is also
used to hold the dir ty bit, which indicates
if the page has been modified, and the
protect ion key.

Publ ished figures for T L B per formance
are not generally available. T h e observed
miss rat io for the Amdah l 470V/6 T L B is
about 0.3 to 0.4 percent (Pr ivate C om m u-
nication: W. J. Harding). Simulat ions of the
VAX 11/780 T L B [SATY81] show miss ra-
tios of 0.1 to 2 percent for T L B sizes of 64
to 256 entries.

2.17 Translator

When a vir tual address mus t be t rans la ted
into a real address and the t ransla t ion does
not a l ready exist in the TLB, the translator
must be used. T h e t rans la tor obta ins the
base of the segment table f rom the appro-
pr iate place (e.g., control register 1 in 370
machines) , adds the segment n u m b e r f rom
the vir tual address to obta in the page table
address, then adds the page n u m b e r (from
the vir tual address) to the page table ad-
dress to get the real page address. Th is real
address is passed along to the cache so tha t
the access can be made, and s imultane-
ously, the vir tual address / rea l address pair
is entered in the TLB. T h e t rans la tor is
basically an adder which knows wha t to
add.

I t is impor tan t to note tha t the t rans la tor
requires access to the segment and page
table entries, and these entr ies m a y be
ei ther in the cache or in ma in memory .
Provision mus t be made for the t rans la tor
accesses to proceed unimpeded, independ-
ent of whether ta rge t addresses are cache
or main m e m o r y resident.

We also observe another p rob lem rela ted
to translation: "page crossers." T h e ta rge t
of a fetch or store m a y cross f rom one page
to another , in a similar way as for "line
crossers." T h e p rob lem here is considerably
more compl ica ted than tha t of line crossers
since, a l though the vir tual addresses are
contiguous, the real addresses m a y not be.
Therefore , when a page crosser occurs, two

C P U I C P U z . . C P U n

sus I / I

Figure 35. Diagram of computer system m whmh
caches are associated with memorms rather than with
processors.

separa te t ransla t ions are required; these
m a y occur in the T L B a n d / o r t rans la tor as
the occasion demands.

2.18 Memory-Based Cache

I t was s ta ted at the beginning of this pape r
tha t caches are generally associated with
the processor and not with the main m e m -
ory. A different design would be to place
the cache in the main m e m o r y itself. One
way to do this is with a shared bus interfac-
ing be tween one or more CPUs and several
main m e m o r y modules, each with its own
cache (see Figure 35).

The re are two reasons for this approach.
First, the access t ime at the m e m o r y mod-
ule is decreased f rom the typical 200-500
nanoseconds (given high-densi ty MOS
RAM) to the 50-100 nanoseconds possible
for a high-speed cache. Second, there is no
consistency p rob lem even though there are
several CPUs. All accesses to da ta in m e m -
ory module i go th rough cache i and thus
there is only one copy of a given piece of
data.

Unfor tunate ly , the advantages men-
t ioned are not near ly sufficient to compen-
sate for the shor tcomings of this design.
First, the design is too slow; with the cache
on the far side of the m e m o r y bus, access
t ime is not cut sufficiently. Second, it is too
expensive; there is one cache per m e m o r y
module. Third, if there are mult iple CPUs,
there will be m e m o r y bus contention. This
slows down the sys tem and causes m e m o r y
access t ime to be highly variable.

Overall, the scheme of associating the
cache with the m e m o r y modules is very
poor unless bo th the ma in m e m o r y and the
processors are relat ively slow. In tha t case,
a large n u m b e r of processors could be
served by a small n u m b e r of m e m o r y mod-
ules with built-in caches, over a fast bus.

Computmg Surveys, Vol 14, No 3, September 1982

2.19 Specialized Caches and Cache
Components

This paper has been almost entirely con-
cerned with the general-purpose cache
memory found in most large, high-speed
computers. There are other caches and
buffers that can be used in such machines
and we briefly discuss them in this section.

2. 19. 1 Address Space Identifier Table

In many computers, the operating system
identifier for an address space is quite long;
in the IBM-compatible machines discussed
{370/168, 3033, 470V), the identifier is the
contents of control register 1. Therefore,
these machines associate a much shorter
tag with each address space for use in the
TLB and/or the cache. This tag is assigned
on a temporary basis by the hardware, and
the correspondence between the address
space and the tag is held in a hardware
table which we name the Address Space
Identifier Table (ASIT). It is also called
the Segment Base Register Table in the
470V/7, the Segment Table Origin Address
Stack in the 3033 [IBM78] and 370/168
[IBM75], and the Segment Base Register
Stack in the 470V/6.

The 3033 ASIT has 32 entries, which are
assigned starting at 1. When the table be-
comes full, all entries are purged and IDs
are reassigned dynamically as address
spaces are activated. (The TLB is also
purged.) When a task switch occurs, the
ASIT in the 3033 is searched starting at 1;
when a match is found with control register
1, the index of that location becomes the
address space identifier.

The 470V/6 has a somewhat more com-
plex ASIT. The segment table origin ad-
dress is hashed to provide an entry into the
ASIT. The tag associated with that address
is then read out. If the address space does
not have a tag, a previously unused tag is
assigned and placed in the ASIT. Whenever
a new tag is assigned, a previously used tag
is made available by deleting its entry in
the ASIT and (in the background) purging
all relevant entries in the TLB. (A complete
TLB purge is not required.) Thirty-two
valid tags are available, but the ASIT has
the capability of holding up to 128 entries;
thus, all 32 valid tags can usually be used,
with little fear of hashing conflicts.

C a c h e M e m o r i e s • 521

2.19 2 Execution Unit Buffers

In some machines, especially the IBM 360/
91 [ANDE67b, IBM71, TOMA67], a number
of buffers are placed internally in the exe-
cution unit to buffer the inputs and outputs
of partially completed instructions. We re-
fer the reader to the references just cited
for a complete discussion of this.

2.19.3 Instruction Lookahead Buffers

In several machines, especially those with-
out general-purpose caches, a buffer may
be dedicated to lookahead buffering of in-
structions. Just such a scheme is used on
the Cray I [CRAY76], the CDC 6600
[CDC74], the CDC 7600, and the IBM
360/91 [ANDE67a, BOLA67, IBM71]. These
machines all have substantial buffers, and
loops can be executed entirely within these
buffers. Machines with general-purpose
caches usually do not have much instruc-
tion lookahead buffering, although a few
extra bytes are frequently fetched. See also
BLAZ80 and KONE80.

2.19 4 Branch Target Buffer

One major impediment to high perform-
ance in pipelined computer systems is the
existence of branches in the code. When a
branch occurs, portions of the pipeline must
be flushed and the correct instruction
stream fetched. To minimize the effect of
these disruptions, it is possible to imple-
ment a branch target buffer (BTB) which
buffers the addresses of previous branches
and their target addresses. The instruction
fetch address is matched against the con-
tents of the branch target buffer and if a
match occurs, the next instruction fetch
takes place from the {previous} target of
the branch. The BTB can correctly predict
the correct branch behavior more than 90
percent of the time [LEE82]. Something like
a branch target buffer is used in the MU-5
[IBBE72, MORR79], and the S-1 [McWI77].

2 19.5 Microcode Cache

Many modern computer systems are micro-
coded and in some cases the amount of
microcode is quite large. If the microcode
is not stored in sufficiently fast storage, it

Computing Surveys, Vol. 14, No 3, September 1982

522 • A . J . S m i t h

is possible to build a special cache to buffer
the microcode.

2.19.6 Buffer Invahdation Address Stack
(BIAS)

The I B M 370/168 and 3033 both use a
store-through mechanism in which any
store to main memory causes the line af-
fected to be invalidated in the caches of all
processors other than the one which per-
formed the store. Addresses of lines which
are to be invalidated are kept in the buffer
invalidation address stack (BIAS) in each
processor, which is a small hardware imple-
mented queue inside the S-unit. The DEC
VAX 11/780 functions in much the same
way, although without a BIAS to queue
requests. That is, invalidation requests in
the VAX have high priority, and only one
may be outstanding at a time.

2 19.7 Input~Output Buffers

As noted earlier, input/output streams
must be aborted if the processor is not
ready to accept or provide data when they
are needed. For this reason, most machines
have a few words of buffering in the I/O
channels or l,/O channel controller(s). This
is the case in the 370/168 [IBM75] and the
3033 [IBM78].

2.19.8 Write-Through Buffers

In a write-through machine, it is important
to buffer the writes so that the CPU does
not become blocked waiting for previous
writes to complete. In the IBM 3033
[IBM78], four such buffers, each holding
a double word, axe provided. The VAX
11/780 [DEC78], on the other hand, buffers
one write. {Four buffers were recommended
in SMIT79.)

2.19.9 Register Cache

It has been suggested that registers be au-
tomaticaUy stacked, with the top stack
frames maintained in a cache [DITz82].
While this is much better (faster) than im-
plementing registers as part of memory, as
with the Texas Instruments 9900 micropro-
cessor, it is unlikely to be as fast as regular,
hardwired registers. The specific cache de-
scribed, however, is not general purpose,

but is dedicated to holding registers; it
therefore should be much faster than a
larger, general-purpose cache.

3. DIRECTIONS FOR RESEARCH AND
DEVELOPMENT

Cache memories are moderately well un-
derstood, but there are problems which in-
dicate directions both for research and de-
velopment. First, we note that technology
is changing; storage is becoming cheaper
and faster, as is processor logic. Cost/per-
formance trade-offs and compromises will
change with technology and the appropri-
ate solutions to the problems discussed will
shift. In addition to this general comment,
we see some more specific issues.

3.1 On-Chip Cache and Other Technology
Advances

The number of gates that can be placed on
a microcomputer chip is growing quickly,
and within a few years, it will be feasible to
build a general-purpose cache memory on
the same chip as the processor. We expect
that such an on-chip cache will occur.
There is research to be done in designing
this within the constraints of the VLSI state
of the art. (See LIND81 and POHM82.)

Cache design is also affected by the im-
plementation technology. MOS VLSI, for
example, permits wide associative searches
to be implemented easily. This implies that
parameters such as set size may change
with changing technology. This related as-
pect of technological change also needs to
be studied.

3.2 Multicache Consistency

The problem of multicache consistency was
discussed in Section 2.7 and a number of
solutions were indicated. Additional com-
mercial implementations are needed, espe-
cially of systems with four or more CPUs,
before the cost/performance trade-offs can
be evaluated.

3.3 Implementation Evaluation

A number of new or different cache designs
were discussed earlier, such as the split
instruction/data cache, the supervisor/user

Computing Surveys, Vol. 14, No 3, September 1982

C a c h e M e m o r i e s • 523

cache, the multilevel cache, and the virtual
address cache. One or more implementa-
tions of such designs are required before
their desirability can be fully evaluated.

3.4 Hit Ratio versus Size

There is no generally accepted model for
the hit ratio of a cache as a function of its
size. Such a model is needed, and it will
probably have to be made specific to each
machine architecture and workload type
(e.g., 370 commercial, 370 scientific, and
PDP-11).

3.5 TLB Design

A number of different TLB designs exist,
but there are almost no published evalua-
tions (but see SATY81). It would be useful
to know what level of performance can be
expected from the various designs and, in
particular, to know whether the complexity
of the Amdahl TLB is warranted.

3.6 Cache Parameters versus Architecture
and Workload

Most of the studies in this paper have been
based on IBM System 370 user program
address traces. On the basis of that data,
we have been able to suggest desirable pa-
rameter values for various aspects of the
cache. Similar studies need to be performed
for other machines and workloads.

APPENDIX. EXPLANATION OF TRACE
NAMES

1. EDC PDP-11 trace of text editor,
written in C, compiled with C compiler
on PDP-11.

2. ROFFAS PDP-11 trace of text output
and formatting program. (called ROFF
or runoff).

3. TRACE PDP-11 trace of program
tracer itself tracing EDC. (Tracer is
written in assembly language.)

4. FGO1 FORTRAN Go step, factor
analysis (1249 lines, single precision).

5. FGO2 FORTRAN Go step, double-
precision analysis of satellite informa-
tion, 2057 lines, FortG compiler.

6. FGO3 FORTRAN Go step, double-

precision numerical analysis, 840 lines,
FortG compiler.

7. FGO4 FORTRAN Go step, FFT of
hole in rotating body. Double-precision
FortG.

8. CGO1 COBOL Go step, fixed-assets
program doing tax transaction selec-
tion.

9. CGO2 COBOL Go step, "fixed assets:
year end tax select."

10. CGO3 COBOL Go step, projects de-
preciation of fixed assets.

11. PGO2 PL/I Go step, does CCW anal-
ysis.

12. IEBDG IBM utility that generates
test data that can be used in program
debugging. It will create multiple data
sets of whatever form and contents are
desired.

13. PGO1 PLI Go step, SMF billing pro-
gram.

14. FCOMP FORTRAN compile of pro-
gram that solves Reynolds partial dif-
ferential equation (2330 lines).

15. CCOMP COBOL compile. 240 lines,
accounting report.

16. WATEX Execution of a FORTRAN
program compiled using the WATFIV
compiler. The program is a combina-
torial search routine.

17. WATFIV FORTRAN compilation
using the WATFIV compiler. (Com-
piles the program whose trace is the
WATEX trace.)

18. APL Execution of APL program
which does plots at a terminal.

19. FFT Execution of an FFT program
written in ALGOL, compiled using AL-
GOLW compiler at Stanford.

ACKNOWLEDGMENTS

This research has been partially supported by the
Nahonal Science Foundation under grants MCS77-
28429 and MCS-8202591, and by the Department of
Energy under contract EY-76-C-03-0515 (with the
Stanford Linear Accelerator Center).

I would like to thank a number of people who were
of help to me in the preparation of this paper. Mat t
Diethelm, George Rossman, Alan Knowles, and Dileep
Bhandarkar helped me to obtain materials describing
various machines. George Rossman, Bill Harding, J im
Goodman, Domenico Ferrari, Mark Hill) and Bob

Computing Surveys, Vol. 14, No. 3, September 1982

524 • A. J. Smith

Doran read and commented upon a draft of this paper BARS72
Mac MacDougall provided a number of other useful
comments. John Lee generated a number of the traces
used for the experiments In this paper from trace data
available at Amdahl Corporation. Four of the traces
were generated by Len Shustek. The responsibility for BEAN79
the contents of this paper, of course, remains with the
author

AGRA77a

AICH76

ALSA78

ANAC67

ANDE67a

ANDE67b

ARMS81

AROR72

BADE79

BALZ81a

BALZ81b

REFERENCES
BEDE79

AGRAWAL, O. P., AND POHM, A.
V. "Cache memory systems for multi-
processor architecture," in Proc. A F I P S
Nat ional Computer Conference (Dallas, BELA66
Tex. June 13-16, 1977), vol. 46, AFIPS
Press, Arlington, Va, pp. 955-964.
AICHELMANN, F . J . Memory prefetch. BELL74
I B M Tech D~sclosure Bull. 18, 11 (April
1976), 3707-3708.
AL-SAYED, H . S . "Cache memory ap-
plication to lmcrocomputers," Tech. BENN76
Rep. 78-6, Dep. of Computer Science,
Iowa State Unlv, Ames, Iowa, 1978
ANACKER, W., AND WANG, C.
P. Performance evaluation of comput- BENN82
ing systems with memory hmrarchles.
I E E E Trans Comput. TC-16, 6 (Dec.
1967), 764-773.
ANDERSON, D. W., SPARACIO, F. J., AND
TOMASULO, R. M. The IBM System/ BERG76
360 Model 91 Machine philosophy and
instruction handling. I B M J. Res. Dev.
11, 1 (Jan. 1967), 8-24
ANDERSON, S. F , EARLE, J. G , GOLD-
SCHMIDT, R. E., AND POWERS, D. BERG78
M. The IBM System/360 Model 91
Floating point execution unit. I B M J
Res Dev 11, 1 (Jan. 1967), 34-53
ARMSTRONG, R. A Applying CAD to BLAZ80
gate arrays speeds 32 bit minicomputer
design. Electronws (Jan. 31, 1981), 167-
173.
ARORA, S. R., AND WU, F. L. "Sta-
tistical quantification of instruction and BLOU80
operand traces," in Stat~stwal Computer
Performance Evaluatmn, Freiberger
(ed.), pp. 227-239, Acaden~c Press, New
York, N Y., 1972
BADEL, M., AND LEROUDIER, J. BOLA67
"Performance evaluation of a cache
memory for a minicomputer," in Proc.
4th Int. Syrup on Modelhng and Per-
formance Evaluatmn of Computer Sys-
tems (Vienna, Austria, Feb. 1979). BORG79
BALZEN, D., GETZLAFF, K. J., HADJU, J.,
AND KNAUFT, G. Accelerating store in
cache operatmns. I B M Tech. Disclosure
Bull. 23, 12 (May 1981), 5428-5429.
BALZEN, D., HADJU, J., AND KNAUFT,
G. Preventive cast out operations in
cache hierarchies. I B M Tech D~sclosure CAMP76
Bull. 23, 12 (May 1981), 5426-5427

BARSAMIAN, H., AND DECEGAMA,
A. "System deslgn considerations of
cache memories," in Proc I E E E Com-
puter Society Conference (1972), IEEE,
New York, pp 107-110
BEAN, B M., LANGSTON, K, PART-
RIDGE, R., SY, K.-B Bias filter memory
for filtering out unnecessary interroga-
tions of cache directories in a multlpro-
cessor system United States Patent 4,-
142,234, Feb. 17, 1979.
BEDERMAN, S. Cache management
system using virtual and real tags m the
cache directory. IBM Tech. D~sclosure
Bull. 21, 11 (Aprd 1979), 4541.
BELADY, L A A study of replacement
algorithms for a virtual storage com-
puter. IBM Syst. J. 5, 2 (1966), 78-101.
BELL, J , CASASENT, D., AND BELL, C.
G. An investigation of alternative
cache organizations. I E E E Trans Corn-
put. TC-23, 4 (April 1974), 346-351.
BENNETT, B. T., AND FRANACZEK, P
A. Cache memory with prefetching of
data by priority I B M Tech. D~sclosure
Bull. 18, 12 (May 1976), 4231-4232.
BENNETT, B. T , POMERENE, J. H , Pu-
ZAK, T. R., AND RECHTSCHAFFEN, R.
N. Prefetchmg in a multilevel memory
hierarchy. I B M Tech. Dzsclosure Bull.
25, 1 (June 1982), 88
BERG, H. S., AND SUMMERFIELD, A.
R. CPU busy not all productive utill-
zatlon. Share Computer Measurement
and Evaluatmn Newsletter, no 39
(Sept. 1976), 95-97.
BERGEY, A. L , JR. Increased computer
throughput by conditioned memory data
prefetching. I B M Tech. D~sclosure Bul l
20, 10 (March 1978), 4103.
BLAZEJEWSKI, T. J., DOBRZYNSKI, S. M ,
AND WATSON, W.D. Instruction buffer
with simultaneous storage and fetch op-
erations. I B M Tech. D~sclosure Bull. 23,
2 (July 1980), 670-672.
BLOUNT, F T., BULLIONS, R. J., MAR-
TIN, D B., McGILVRAY, B L., AND RO-
BINSON, J . R . Deferred cache storing
method. I B M Teeh. D~sclosure Bul l 23,
1 (June 1980), 262-263
BOLAND, L J., GRANITO, G. D., MAR-
COTVE, A V., MESSINA, B. U , AND
SMITH, J W. The IBM System/360
Model 91 Storage system. I B M J Res
Dev. 11, 1 (Jan 1967), 54-68.
BORGERSON, B. R., GODFREY, M. D ,
HAGERTY, P. E , RYKKEN, T R. "The
architecture of the Sperry Univac l l00
series systems," m Proc. 6th Annual
Syrup Computer Archttecture (April 23-
25, 1979}, ACM, New York, N.Y., pp.
137-146.
CAMPBELL, J. E., STROHM, W. G., AND
TEMPLE, J. L Most recent class used

Computing Surveys, Vol 14, No. 3, September 1982

CDC74

CENS78

CHIA75

CHOW75

CHOW76

CHU76

CLAR81

CLAR82

COFF73

CONT68

CONT69

Cosc81

CRAY76

DEC78

DENN68

DENN72

DIET74

search algorithm for a memory cache.
IBM Tech. D~sclosure Bull. 18, 10
{March 1976), 3307-3308. DITZ82
CONTROL DATA CORP Control Data
6000 Series Computer Systems Refer-
ence Manual Arden Hills, Minn., 1974.
CENSIER, L., AND FEAUTRIER, P. A
new solution to coherence problems in
multicache systems. IEEE Trans. Corn-
put. TC-27, 12 (Dec. 1978), 1112-1118.
CHIA, D K. Opttmum implementation
of LRU hardware for a 4-way set-asso-
ciative memory. IBM Tech. D~sclosure
Bull 17, 11 (April 1975), 3161-3163.
CHOW, C.K. Determining the optimum
capacity of a cache memory. IBM Tech
D~sclosure Bull. 17, 10 (March 1975),
3163-3166.
CHOW, C.K. Determination of cache's
capacity and its matching storage hier-
archy. IEEE Trans. Comput. TC-25, 2 DRIS80
(Feb. 1976), 157-164.
CHU, W. W., AND OPDERBECK,
H Program behavior and the page
fault frequency replacement algorithm.
Computer 9, 11 (Nov. 1976), 29-38 DUBO82
CLARK, D W, LAMPSON, B. W, PIER,
K . A . The memory system of a high
performance personal computer. IEEE
Trans Comput. TC-30, 10 (Oct. 1981),
715-733
CLARK, D. W Cache performance In EAST75
the VAX-11/780. To appear in ACM
Trans Comp. Syst. 1, 1 (Feb. 1983).
COFFMAN, E. G., AND DENNING, P
J. Operating Systems Theory. Pren- EAST78
rice-Hall, Englewood Chffs, N.J , 1973.
CONTI, C. J., GIBS}3N, D. H., AND PIT-
KOWSKY, S. H. Structural aspects of ELEC76
the system/360 Model 85 IBM Syst. J.
7, 1 (1968), 2-21
CONTI, C.J. Concepts for buffer stor-
age IEEE Computer Group News 2, 8 ELEC81
(March 1969), 9-13
COSCARELLA, A S., AND SELLERS, F ENGE73
F. System for purging TLB. IBM Tech.
D~sclosure Bull 24, 2 (July 1981), 910-
911. FAVR78
CRAY RESEARCH, INC. Cray-1 Com-
puter System Reference Manual. Bloom-
mgton, Minn., 1976. Fuzu77
DIGITAL EQUIPMENT CORP. "TB/
Cache/SBI Control Technical Descmp-
tion--Vax-ll/780 Implementation,"
Document No. EK-MM780-TD-001,
First Edition (April 1978), Digital Eqmp- FERN78
ment Corp., Maynard, Mass., 1978.
DENNING, P.J . The working set model
for program behavior. Commun. ACM
11, 5 (May 1968), 323-333. GECS74
DENNING, P .J . "On modehng program
behawor," in Proc Sprung Joint Com-
puter Conference, vol. 40, AFIPS Press, GIBS67
Arlington, Va., 1972, pp. 937-944.
DIETHELM, M. A. "Level 66 cache

DRIM81a

DRIM81b

C a c h e M e m o r i e s * 525

memory," Tech. Info. Notepad 1-114,
Honeywell, Phoenix, Ariz., April, 1974.
DITZEL, D.R. "Register allocation for
free: The C machine stack cache," in
Proc Syrup on Architectural Support
for Programming Languages and Op-
erating Systems (Palo Alto, Calif.,
March 1-3, 1982), ACM, New York,
N.Y., 1982.
DRIMAK, E. G., DUTTON, P. F., HICKS,
G L., AND SITLER, W. R Multi-
processor locking with a bypass for chan-
nel references. IBM Tech. D~sclosure
Bull. 23, 12 (May 1981), 5329-5331.
DRIMAK, E. G., DUTTON, P. F., AND
SITLER, W. R. Attached processor si-
multaneous data searching and transfer
via main storage controls and intercache
transfer controls. IBM Tech. Disclosure
Bull. 24, 1A (June 1981), 26-27.
DRISCOLL, G C., MATICK, R. E , PUZAK,
T. R., AND SHEDLETSKY, J. J. Spht
cache with variable Interleave boundary.
IBM Tech D~sclosure Bull. 22, 11 (April
1980), 5183-5186.
DuBoIs, M., AND BRIGGS, F. A.
"Effects of cache concurrency in multi-
processors," in Proc. 9th Annual Syrup.
Computer Architecture (Austin, Texas,
April, 1982), ACM, New York, N.Y,
1982, pp. 292-308.
EASTON, M. C., AND FAGIN, R "Cold-
start vs. warm-start miss ratios and mul-
tlprogramming performance," IBM Res.
Rep RC 5715, Nov., 1975.
EASTON, M C. Computation of cold
start miss ratios. IEEE Trans. Comput
TC-27, 5 (May 1978), 404-408.
ELECTRONICS MAGAZINE Altering
computer architecture is way to raise
throughput, suggests IBM researchers.
Dec. 23, 1976, 30-31.
ELECTRONICS New TI 16-bit machine
has on-chip memory. Nov 3, 1981, 57.
ENGER, T.A. Paged control store pre-
fetch mechantsm. IBM Tech D~sclosure
Bull. 16, 7 (Dec. 1973), 2140-2141.
FAVRE, P., AND KUHNE, R. Fast mem-
ory organization. IBM Tech. Dtsclosure
Bull. 21, 2 (July 1978), 649-650.
FUKUNAGA, K., AND KASAI, T. "The
efficient use of buffer storage," in Proc.
ACM 1977 Annual Conference (Seattle,
Wa., Oct. 16-19, 1977), ACM, New York,
N.Y., pp. 399-403.
FURNEY, R . W . Selection of least re-
cently used slot with bad entry and
locked slots involved. IBM Tech Dtsclo-
sure Bull. 21, 6 (Nov. 1978), 290.
GECSEI, J. Determining hit ratios for
multilevel hlerarchms. IBM J. Res. Dev.
18, 4 (July 1974), 316-327.
GIBSON, D H. "Consideration in block-
oriented systems design," in Proc
Spring Jt Computer Conf, vol 30,

Computing Surveys, Vol. 14, No. 3, September 1982

526 • A. J. S m i t h

GIND77

GREE74

GUST82

HAIL79

HARD75

HARD80

HOEV81a

HOEV81b

IBBE72

IBBE77

IBM71

IBM75

IBM78

IBM82

JOHN81

JONE76

Thompson Books, Washington, D.C.,
1967, pp. 75-80
GINDELE, J . D . Buffer block prefetch-
ing method. IBM Tech Disclosure Bull.
20, 2 (July 1977), 696-697
GREENBERG, B. S. "An experimental
analysis of program reference patterns in
the multlcs virtual memory," Project JONE77b
MAC Tech Rep. MAC-TR-127, 1974.
GUSTAFSON, R. N., AND SPARACIO, F.
J. IBM 3081 processor unit: Design KAPL73
considerations and design process. IBM
d Res. Dev. 26, 1 (Jan. 1982), 12-21.
HAILPERN, B., AND HITSON, B. "S-1 KOBA80
architecture manual," Tech. Rep No
161, Computer Systems Laboratory,
Stanford Univ., Stanford, Calif., Jan ,
1979. KONE80
HARDING, W.J. "Hardware Controlled
Memory Hmrarchms and Their Perform-
ance." Ph.D. dmsertatlon, Arizona State
Univ., Dec., 1975.
HARDING, W. J, MACDOUGALL, M.H., KROF81
RAYMOND, W. J. "Empmcal estnna-
tion of cache miss ratios as a function of
cache sLze," Tech. Rep. PN 820-420-700A
(Sept. 26, 1980), Amdahl Corp.
HOEVEL, L W., AND VOLDMAN, J.
Mechanism for cache replacement and KUMA79
prefetchlng driven by heuristic estima-
tion of operating system behavior. IBM
Tech Dtsclosure Bull. 23, 8 (Jan. 1981),
3923.
HOEVEL, L W., AND VOLDMAN, J LAFF81
Cache hne reclamation and cast out
avoidance under operating system con-
trol. IBM Tech. Dzsclosure Bull. 23, 8
(Jan. 1981), 3912. LAMP80
INSET, R. The MU5 instruction pipe-
line. Comput. J 15, 1 (Jan. 1972), 42-50.
IBBET, R. N., AND HUSBAND, M.
A. The MU5 name store Comput. J.
20, 3 (Aug. 1977), 227-231.
IBM "IBM system/360 and System/ LEE69
370 Model 195 Functional characteris-
tics," Form GA22-6943-2 (Nov. 1971),
IBM, Armonk, N.Y. LEE80
IBM "IBM System/370 Model 168
Theory of Operation/Diagrams Man-
ual-Processor Storage Control Func-
tion (PSCF)," vol. 4, IBM, Poughkeep- LEE82
sin, N.Y., 1975.
IBM "3033 Processor Complex, The-
ory of Operation/Diagrams Manual--
Processor Storage Control Function
(PSCF)," vol. 4, IBM, Poughkeepsie, LEHM78
N.Y., 1978.
IBM "IBM 3081 Functional character-
istms," Form GA22-7076, IBM, Pough-
keepsie, N.Y., 1982.
JOHNSON, R .C . Microsystems exploit
mainframe methods. Electronws, Aug. LEHM80
11, 1981, 119-127
JONES, J. D., JUNOD, D. M, PARTRIDGE,
R. L., AND SHAWLEY, B. L Updating LEWI71
cache data arrays with data stored by

JONE77a

other CPUs. IBM Tech. D~sclosure Bull.
19, 2 (July 1976), 594-596.
JONES, J. D, AND JUNOD, D M. Cache
address directory invalidation scheme
for multiprocessing system. IBM Tech.
Dtsclosure Bull. 20, 1 (June 1977), 295-
296.
JONES, J D., AND JUNOD, D. M.
Pretest lookaslde buffer. IBM Tech D~s-
closure Bull. 20, 1 (June 1977), 297-298.
KAPLAN, K. R , AND WINDER, R O.
Cache-based computer systems. IEEE
Computer 6, 3 (March 1973), 30-36
KOBAYASHI, M. "An algorithm to mea-
sure the buffer growth function," Tech.
Rep. PN 820413-700A (Aug. 8, 1980),
Amdahl Corp
KONEN, D. H., MARTIN, D. B., Mc-
GILVRAY, B. L., AND TOMASULO, R.
M. Demand driven instruction fetching
inhibit mechanism. IBM Tech D~sclo-
sure Bull. 23, 2 (July 1980), 716-717
KROFT, D. "Lockup-free instruction
fetch/prefetch cache organization," in
Proc. 8th Annual Syrup. Computer Ar-
chitecture (Mlnneapohs, Minn., May 12-
14, 1981), ACM, New York, N Y., pp. 81-
87.
KUMAR, B. "A model of spatial locality
and its apphcation to cache design,"
Tech Rep. (unpubl.), Computer Sys-
tems Laboratory, Stanford Umv., Stan-
ford, Calif., 1979.
LAFFITTE, D. S., AND GUTTAG, K M.
Fast on-chip memory extends 16 blt ram-
fly's reach. Electronws, Feb. 24, 1981,
157-161.
LAMPSON, B W, AND PIER, K.A. "A
processor for a high-performance per-
sonal computer," in Proc. 7th Annual
Symp. Computer Architecture (May 6-8,
1980), ACM, New York, N Y, pp 146-
160.
LEE, F.F. Study of "look-aside" mem-
ory. IEEE Trans. Comput. TC-18, 11
(Nov 1969), 1062-1064
LEE, J M., AND WEINBERGER, A. A
solution to the synonym problem. IBM
Tech. Dtsclosure Bull. 22, 8A (Jan
1980), 3331-3333.
LEE, J. K. F., AND SMITH, i. J.
"Analysis of branch prediction strategies
and branch target buffer design," Tech.
Rep., Umv. of Calif., Berkeley, Calif,
1982.
LEHMAN, A., AND SCHMID, D. "The
performance of small cache memories in
minicomputer systems with several proc-
essors," in Dtgttal Memory and Storage.
Springer-Verlag, New York, 1978, pp.
391-407.
LEHMANN, A. Performance evaluation
and prediction of storage hierarchies.
Source unknown, 1980, pp. 43-54.
LEwis, P. A. W., AND YUE, P. C.
"Statistical analysis of program refer-

Computing Surveys, Vol 14, No 3, September 1982

LEWI73

LINDS1

LIPT68

LIU82

LOSQ82

LUDL77

MAcD79

MARU75

MARU76

MATT71

MATT70

MAZA77

McWI77

MEAD70

MILA75

MORR79

ence patterns m a paging environment,"
in Proc IEEE Computer Socwty Con-
ference, IEEE, New York, N Y., 1971. NGAIS1
LEWIS, P. A. W., AND SHEDLER, G.
S. Empirically derived micro models
for sequences of page exceptions. IBM J.
Res. Dev. 17, 2 (March 1973), 86-100. NGAI82
LINDSAY, D C. Cache memories for
microprocessors. Computer Architecture
News 9, 5 (Aug. 1981), 6-13.
LIPTAY, J. S Structural aspects of the OHNO77
System/360 Model 85, II the cache. IBM
Syst J. 7, 1 (1968), 15-21
LIu, L. Cache-splitting with informa- OLBE79
tion of XI-sensltlvity m tightly coupled
multlprocessing systems IBM Tech.
Dtsclosure Bull. 25, 1 (June 1982), 54- PERKS0
55
LOSQ, J. J., PARKS, L S., SACRAE, H. E ,
AND YAMOUR, J. Conditmnal cache
miss facility for handling short/ long PEUT77
cache requests. IBM Tech. Disclosure
Bull. 25, 1 (June 1982), 110-111
LUDLOW, D M., AND MOORE, B. B.
Channel DAT with pin bits. IBM Tech.
D~sclosure Bull 20, 2 (July 1977), 683. POHM73
MACDOUGALL, M. H. "The stack
growth function model," Teeh. Rep.
820228-700A (April 1979), Amdahl Corp.
MARUYAMA, K mLRU page replace-
ment algomthm in terms of the reference POHM75
matrix. IBM Tech D~sclosure Bull 17,
10 (March 1975), 3101-3103.
MARUYAMA, K. Implementatmn of the
stack operation circuit for the LRU al- POHM82
gonthm. IBM Tech D~sclosure Bull. 19,
1 (June 1976), 321-325
MATTSON, R. L. Evaluation of multi-
level memories. IEEE Trans Magnetics
MAG-7, 4 (Dec. 1971), 814-819.
MATTSON, R. L., GECSEI, J., SLUTZ, D.
R., AND TRAIGER, I. L Evaluation
techmques for storage hierarchms. IBM
Syst J. 9, 2 (1970), 78-117.
MAZARE, G "A few examples of how
to use a symmetrical multi-micro-proc-
essor," in Proc 4th Annual Syrup. Com-
puter Archztecture (March 1977), ACM, POWE77
New York, N.Y., pp. 57-62.
MCWILLIAMS, T., WIDDOES, L C., AND
WOOD, L "Advanced digital processor
technology base development for navy
applicatmns: The S-1 Processor," Tech RADI82
rep. UCIO-17705, Lawrence Livermore
Laboratory, Sept , 1977.
MEADE, R.M. "On memory system de-
sign," in Proc. Fall Joint Computer Con-
ference, vol. 37, AFIPS Press, Arhngton,
Va., 1970, pp. 33-43 RAMA81
MILANDRE, G., AND MIKKOR, R. "VS2-
R2 experience at the University of To-
ronto Computer Centre," in Share 44
Proc. (Los Angeles, Cahf, March, 1975),
pp. 1887-1895. RAU76
MORRIS, D., AND IBBETT, R. N. The

POMES0a

PoMES0b

C a c h e M e m o r i e s • 527

MU5 Computer System. Springer-Ver-
lag, New York, 1979.
NGAI, C. H., AND WASSEL, E R.
Shadow directory for attached processor
system. IBM Tech. Dtsclosure Bull. 23,
8 (Jan. 1981), 3667-3668.
NGAI, C. H., AND WASSEL, E .R . Two-
level DLAT hierarchy. IBM Tech. D~s-
closure Bull. 24, 9 (Feb. 1982), 4714-
4715.
OHNO, N., AND HAKOZAKI, K. Pseudo
random access memory system with
CCD-SR and MOS RAM on a chip. 1977
OLBERT, A.G. Fast DLAT load for V
= R translations. IBM Tech. Disclosure
Bull 22, 4 (Sept. 1979), 1434
PERKINS, D.R. "The Design and Man-
agement of Predictive Caches." Ph D.
dissertation, Univ of Calif., San Diego,
Calif, 1980.
PEUTO, B. L., AND SHUSTEK, L.J . "An
instruction timing model of CPU per-
formance," in Proe. 4th Annual Syrup.
Computer Architecture (March 1977),
ACM, New York, N.Y., pp. 165-178.
POHM, A. V., AGRAWAL, O P., CHENG,
C.-W., AND SHIMP, A. C. An efficient
flexible buffered memory system. IEEE
Trans. Magnetics MAG-9, 3 (Sept.
1973), 173-179.
POHM, A. V., AGRAWAL, O. P., AND MON-
ROE, R.N. "The cost and performance
tradeoffs of buffered memories," in Proc
IEEE 63, 8 (Aug. 1975), pp. 1129-1135.
POHM, A. V., AND AGRAWAL, O.P. "A
cache technique for bus oriented multi-
processor systems," in Proc. Compcon82
(San Francisco, Calif., Feb. 1982), IEEE,
New York, pp. 62-66.
POMERENE, J. H., AND RECHTSCHAFFEN,
R Reducing cache misses in a branch
history table machine. IBM Tech Dts-
closure Bull. 23, 2 (July 1980), 853.
POMERENE, J. H., AND RECHTSCHAFFEN,
R N. Base/&splacement lookahead
buffer. IBM Tech. Disclosure Bull. 22,
11 (April 1980), 5182.
POWELL, M.L. "The DEMOS File sys-
tem," in Proc 6th Syrup. on Operating
Systems Principles (West LaFayette,
Ind., Nov. 16-18, 1977), ACM, New York,
N.Y., pp. 33-42.
RADIN, G. M. "The 801 minicompu-
ter," in Proc Syrup. on Architectural
Support for Programming Languages
and Operatmg Systems (Palo Alto,
Calif., March 1-3, 1982), ACM, New
York, N.Y., pp 39-47.
RAMAMOHANARAO, g., AND SACKS-
DAVIS, R. Hardware address transla-
tion for machines with a large virtual
memory. Inf. Process. Lett. 13, 1 (Oct.
1981), 23-29.
RAU, B .R . "Sequential prefetch strat-
egies for instructions and data," Digital

Computing Surveys, VoL 14, No. 3, September 1982

. 4 ~ ~:-~.

528

REIL82

Ris77

Ross79

SALT74

SATY81

SCHR71

SHED76

SLUT72

SMIT78a

SMIT78b

SMIT78C

SMIT78d

SMIT79

SNOW78

SPAR78

STEV81

A. J. S m i t h

systems laboratory tech. rep. 131 (1976),
Stanford Univ., Stanford, Calif
REILLY, J., SUTTON, A., NASSER, R , AND STRE76
GRISCOM, R. Processor controller for
the IBM 3081. IBM J. Res Dev. 26, 1
(Jan. 1982), 22-29.
RIS, F. N., AND WARREN, H S, JR.
Read-constant control line to cache. TANC76
IBM Tech Disclosure Bull. 20, 6 (Nov.
1977), 2509-2510
ROSSMAN, G. Private communication.
Palyn Associates, San Jose, Calif., 1979.
SALTZER, J .H . "A simple linear model
of demand paging performance, Corn- THAK78
mun. ACM 17, 4 (April 1974), 181-186.
SATYANARAYANAN, M., AND BHANDAR-
KAR, D. Design trade-offs m VAX-11
translation buffer organization. IEEE TOMA67
Computer (Dec. 1981), 103-111.
SCHROEDER, M. D. "Performance of
the GE-645 associative memory while
multics is m operation," m Proc. 1971 WILK71
Conference on Computer Performance
Evaluation (Harvard Univ , Cambridge,
Mass.), pp. 227-245. WIND73
SHEDLER, G. S., AND SLUTZ, D.
R. Derivation of miss ratios for merged
access streams. IBM J Res. Dev. 20, 5 YAMO80
(Sept. 1976), 505-517.
SLUTZ, D. R , AND TRAIGER, I.
L. "Evaluation techniques for cache
memory hierarchies," IBM Res. Rep. RJ
1045, May, 1972. YEN81
SMITH, A. J A comparative study of
set assoclatwe memory mapping algo*
rithms and their use for cache and main
memory. IEEE Trans. Softw. Eng SE-
4, 2 (March 1978), 121-130
SMITH, A . J . Sequential program pre-
fetching in memory hierarchies. IEEE YUVA75
Computer 11, 12 (Dec. 1978), 7-21
SMITH, A J Sequentiahty and pre-
fetching m database systems. ACM

ZOLN81 Trans. Database Syst. 3, 3 (Sept 1978),
223-247.
SMITH, A J. Bibliography on paging
and related topics. Operating Systems
Review 12, 4 (Oct. 1978), 39-56.
SMITH, A J. Characterizing the storage
process and its effect on the update of
mare memory by write-through J. ACM
26, 1 (Jan. 1979), 6-27.

ACKL75
SNOW, E. A., AND SIEWIOREK, D.
P. "Impact of implementation design
tradeoffs on performance The PDP-11,
A case study," Dep. of Computer Science
Report (Feb. 1978), Carnegm-Mellon ACKL79
University, Pittsburgh, Pa
SPARACIO, F J. Data processing sys-
tem with second level cache. 'IBM Tech
Disclosure Bull. 21, 6 (Nov. 1978), 2468-
2469.
STEVENSON, D. "Virtual memory on
the Z8003," m Proc IEEE Compcon

AGRA77b

(San Francisco, Calff, Feb. 1981), pp
355-357
STRECKER, W.D. "Cache memories for
PDP-11 family computers," in Proc. 3rd
Annual Symp. Computer Architecture
(Jan. 19-21, 1976), ACM. New York,
N.Y, pp. 155-158.
TANG, C K. "Cache system design in
the tightly coupled multiprocessor sys-
tem," in Proc. AFIPS Natmnal Com-
puter Conference (New York City, New
York, June 7-10, 1976), vol. 45, AFIPS
Press, Arlington, Va, pp. 749-753.
THAKKAR, S. S. "Investigation of
Buffer Store Orgamzation." Master 's of
science thesis, Victoria University of
Manchester, England, October, 1978.
TOMASULO, R. M An efficmnt algo-
r i thm for exploiting multiple arithmetic
units. I B M J Res. Dev 11, 1 (Jan. 1967),
25-33.
WILKES, M. V. Slave memories and
segmentation IEEE Trans Comput
{June 1971), 674-675.
WINDER, R. O. A data base for com-
puter performance evaluation. IEEE
Computer 6, 3 (March 1973), 25-29.
YAMOUR, J. Odd/even mterleave cache
with optnnal hardware array cost, cycle
tLme and variable data part width. IBM
Tech. Disclosure Bull 23, 7B (Dec.
1980), 3461-3463.
YEN, W. C., AND FU, K.S. "Analysis of
multlprocessor cache organizations with
alternative mare memory update poli-
cies," In Proc 8th Annual Syrup. Com-
puter Architecture (Minneapolis, Minn.,
May 12-14, 1981), ACM, New York,
N Y., pp. 89-105.
YUVAL, A. "165/HSB analysis," Share
Inc., Computer Measurement and Eval-
uation, Selected Papers from the Share
Project, vol III, pp. 595-606, 1975.
ZOLNOWSKY, J. "Philosophy of the
MC68451 memory management unit," in
Proc. IEEE Compcon (San Francisco,
Callf, Feb. 1981), IEEE, New York, pp.
358-361.

BIBLIOGRAPHY

ACKLAND, B. D., AND PUCKNELL, D.
A. Studies of cache store behavior in a
real time minicomputer environment.
Electronics Letters 11, 24 (Nov. 1975),
588-590.
ACKLAND, B.D. "A bit-slice cache con-
troller," in Proc. 6th Annual Symp. Com-
puter Architecture (April 23-25, 1979),
ACM, New York, N.Y., pp 75-82.
AGRAWAL, O. P., ZINGG, R. J., POHM, A.
V. "Applicability of 'cache' memories
to dechcated multlprocessor systems," in
Proc. IEEE Computer Society Confer-

Computing Surveys, Vol. 14, No 3, September 1982

AMDA76

BELL71

BLOG61

BORG81

BRIG81

CANN81

CAPOSI

CASP79

CORD81

ELLE79

FARI80

FARM81

FERE79

GARC78

HEST78

ence (San Francisco, Calif., Spring 1977),
IEEE, New York, pp 74-76
AMDAHL CORP. 470V/6 Machine Ref-
erence Manual. 1976. HOFF81
BELL, C G., AND CASASENT, D. Im-
plementation of a buffer memory in min-
icomputers. Comput Des 10, (Nov.
1971), 83-89. HRUS81
BLOOM, L, COHEN, M., AND PORTER,
S. "Considerations in the design of a
computer with ingh logic-to-memory
speed ratio," in Proc Gigacycle Corn- IBM70
pu tmg Systems (Jan. 1962), AIEE Spe-
cial Publication S-136, pp. 53-63.
BORGWARDT, P A. "Cache structures
based on the execution stack for high
level languages," Tech Rep. 81-08-04, hzu73
Dep. of Computer Scmnce, Umv. of
Washington, Seattle, Wa., 1981
BRIGGS, F. A., AND DUBOIS, M.
"Performance of cache-based multipro- KNEP79
cessors," in Proc A C M / S I G M E T R I C S
Conf. on Measurement and Modehng of
Computer Systems (Las Vegas, Nev., KNOK69
Sept. 14-16, 1981), ACM, New York,
N.Y., 181-190.
CANNON, J. W., GRIMES, D. W., AND
HERMANN, S. D Storage protect op- KOTO76
erations. I B M Tech D~sclosure Bull. 24,
2 (July 1981), 1184-1186
CAPOWSKI, R. S., DEVEER, J A., HEL- LANG75
LER, A. R., AND MESCHI, J.
W. Dynamic address translator for I /O
channels. I B M Tech. Disclosure Bull.
23, 12 (May 1981), 5503-5508.
CASPERS, P. G., FAIX, M., GOETZE, V., LARNS0
AND ULLAND, H. Cache resident proc-
essor registers I B M Tech D~sclosure
Bul l 22, 6 (Nov. 1979), 2317-2318.
CORDERO, H, AND CHAMBERS, J
B. Second group of IBM 4341 machines LEE80
outdoes the first. Electromcs (April 7,
1981), 149-152.
ELLER, J. E., n I "Cache design and the
X-tree high speed memory buffers." LORI80
Master's of science project report, Com-
puter Science Division, EECS Depart-
ment, Umv of Calif., Berkeley, Calif., MADD81
Sept, 1979.
FARIS, S M, HENKELS, W H, VALSA-
MAKIS, E. A., AND ZAPPE, H.H. Basic
design of a Josephson technology cache
memory. I B M J Res. Dev 24, 2 (March
1980), 143-154.
FARMER, D. Comparing the 4341 and MATH8]
M80/42. Computerworld, Feb. 9, 1981.
FERETICH, R. A., AND SACHAR, H.
E. Interleaved multiple speed memory
controls with high speed buffer I B M MEAn71
Tech. Disc. Bull. 22, 5 (Octo, 1979),
1999-2000.
GARCIA, L. C. Instruction buffer de-
sign. I B M Tech. D~sclosure Bull. 20, 11b
(April 1978), 4832-4833.
HESTER, R. L., AND MOYER, J .T . Spht

MERR74

C a c h e M e m o r i e s • 529

cycle for a shared data buffer array. I B M
Tech. Disclosure Bull. 21, 6 (Nov. 1978),
2293-2294.
HOFFMAN, R. L., MITCHELL, G. R., AND
SOLTIS, F.G. Reference and change bit
recor&ng I B M Tech. Disclosure Bull.
23, 12 (May 1981), 5516-5519.
HRUSTICH, J., AND SITLER, W.
R. Cache reconfiguration. I B M Tech.
Disclosure Bull. 23, 9 (Feb. 1981), 4117-
4118
IBM "IBM field engineering theory of
operation, System/360, Model 195 stor-
age control unit buffer storage," first
edition (Aug 1970), IBM, Poughkeepsie,
N.Y.
IIZUKA, H., AND TERU, T. Cache mem-
ory simulation by a new method of ad-
dress pattern generation. J. I P S J 14, 9
(1973), 669-676.
KNEPPER, R. W. Cache bit selection
circuit. I B M Tech. D~sclosure Bull. 22,
1 (June 1979), 142-143.
KNOKE, e. "An analysis of buffered
memories," in Proc. 2nd Hawaii In t
Conf. on System Sciences (Jan. 1969),
pp. 397-400.
KOTOK, A. "Lecture notes for CS252,"
course notes (Spring 1976), Univ. of
Calif, Berkeley, Calif., 1976.
LANGE, R. E , DIETHE~M, M. A., ISH-
MAEL, P C. Cache memory store in a
processor of a data processing system
United States Patent 3,896,419, July,
1975.
LARNER, R. A., LASSETTRE, E R.,
MOORE, B B., AND STRICKLAND, J.
P. Channel DAT and page pinning for
block unit transfers I B M Tech Disclo-
sure Bull. 23, 2 (July 1980), 704-705.
LEE, P. A., GHANI, N., AND HERON,
K. A recovery cache for the PDP-11.
I E E E Trans. Comput TC-29, 6 (June
1980), 546-549.

LORIN, H., AND GOLDSTEIN, B. "An in-
version of the memory hierarchy," IBM
Res. Rep. RC 8171, March, 1980.
MADDOCK, R. F., MARKS, B. L., MIN-
SHULL, J F., AND PINNELL, M.
C. Hardware address relocation for
variable length segments. I B M Tech.
Disclosure Bul l 23, 11 (April 1981),
5186-5187
MATHIS, J. R , MAYFIELD, M. J., AND
ROWLAND, R. E Reference associative
cache mapping. I B M Tech. Disclosure
Bull 23, 9 (Feb. 1981), 3969-3971
MEADE, R. M Design approaches for
cache memory control. Comput Des. 10,
1 (Jan 1971), 87-93
MERRIL, B 370/168 cache memory
performance. Share Computer Measure-
ment and Evaluation Newsletter, no. 26
(July 1974), 98-101.

Computing Surveys, Vol. 14, No. 3, September 1982

530 * A. J. S m i t h

MOOR80 MOORE, B B, RODELL, J. T., SUTTON,
A. J., AND VOWELL, J .D. Vary storage
physical on/off lme m a non-store-
through cache system. I B M Tech. D~s- THRE82
closure Bull. 23, 7B (Dec. 1980), 3329

NAKA74 NAKAMURA, T., HAGIWARA, H., KITA-
GAWE, H., AND KANAZAWE, M. Sin]- TRED77
ulation of a computer system with buffer
memory. J I P S J 15 , 1 (1974), 26-33.

NGAI80 NGAI, C. H., AND SITLER, W.R. Two-
bit DLAT LRU algorithm. I B M Tech
Disclosure Bul l 22, 10 (March 1980),
4488-4490.

RAO75 RAO, G. S. "Performance analyms of
cache memorms," Digital Systems Lab-
oratory Tech. Rep. 110 (Aug 1975),
Stanford Univ., Stanford, Calif

RECH80 RECHTSCHAFFEN, R. N. Using a
branch history table to prefetch cache
lines. I B M Tech Disclosure Bul l 22, 12 WILK65
(May 1980), 5539.

SCHU78 SCHUENEMANN, C. Fast address trans-

lation in systems using virtual addresses
and a cache memory. I B M Tech Disclo-
sure Bull. 21, 2 (Jan. 1978), 663-664.
THREEWlTT, B A VLSI approach to
cache memory. Comput. Des. (Jan.
1982), 169-173.
TREDENNICK, H. L , AND WELCH, T.
A. "High-speed buffering for variable
length aperands," in Proc. 4th Annual
Symp. Computer Architecture (March
1977), ACM, New York, N.Y., pp 205-
210.

VOLD81a VOLDMAN, J., AND HOEVEL, L.
W. "The fourier cache connection," in
Proc. I E E E Compcon (San Francisco,
Calif., Feb. 1981), IEEE, New York, pp.
344-354

VOLD81b VOLDMAN, J , AND HOEVEL, L.W. The
software-cache connection. I B M J Res.
Dev. 25, 6 (Nov. 1981), 877-893.
WILKES, M.V. Slave memories and dy-
namic storage allocation. I E E E Trans.
Comput.j TC-14, 2 {April 1965), 270-271,

Received December 1979, final revision accepted January 1982

Computing Surveys, Vol 14, No. 3, September 1982

