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Abstract 

The design of a RISC processor requires a careful analysis 
of the tradcoffs that can be made between hardware 
complexity and software. As new generations of processors 
are built to take advantage of more advanced technologies, 
new and different tradeoffs must be considered. We examine 
the design of a second generation VLSI RISC processor, 
MIPS-X. 

MIPS-X is the successor to the MIPS project at Stanford 
University and like MIPS, it is a single-chip 32-bit VLSI 
processor that uses a simplified instruction set, pipelining and 
a soRware code reorganizer. However, in the quest for higher 
performance, MIPS-X uses a deeper pipeline, a much simpler 
instruction set and achieves the goal of single cycle execution 
using a 2-phase, 20 MHz clock. This has necessitated the 
inclusion of an on-chip instruction cache and careful 
consideration of the control of the machine. Many tradeoffs 
were made during the design of MIPS-X and this paper 
examines several key areas. They are: the organization of the 
on-chip inslruction cache, the coprocessor interface, branches 
and the resulting branch delay, and exception handling. For 
each issue we present the most promising alternatives 
considered for MIPS-X and the approach finally selected. 
Working parts have been received and this gives us a firm 
basis upon which to evaluate the success of o u r  design. 

Introduction 

The first generation reduced instruction set processors 
(IBM 8011 , RISC 2,3 and MIPS 4,5) have shown the 
importance of making the correct lradeoffs across the 
boundary that separates hardware complexity and software 
functionality. Hardware should only he used to support 
features that clearly improve performance. As 
implementation technology improves, new features can be 
considered and new tradeoffs must be made. 

The goal of the MIPS-X project was to combine a new 
technology, a 2gm, 2-level metal CMOS process, with the 
knowledge and experience gained from the first generation 
RISC machines, to build a single processor with a peak rate of 
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20 MIPS and then to use 6-10 of these processors as the nodes 
in a shared memory multiprocessor. The resulting machine 
would be about two orders of magnitude more powerful than 
a VAX 11/780 minicomputer. 

We describe here the design of the single processor, MIPS- 
X. The overriding principle was to keep the design as simple 
as possible. The original MIPS team was heavily involved in 
the initial architectural discussions, and they helped steer 
MIPS-X away from the kinds of trouble that they faced with 
MIPS. The major areas of concern were control related, of 
which the most important were considered to be inst~ction 
decode and exception handling. Both were not considered 
early enough in the MIPS design and created difficult 
implementation problems in the final chip. 

The design of the instruction format was straightforward 
since we religiously adhered to a maxim given in the first 
working document on MIPS-X. It stated, "The goal of any 
instruction format should be: 

1. Simple decode, 
2. simple decode, and 
3. simple decode. 

Any attempts at improved code density at the expense of CPU 
performance should be ridiculed at every opportunity." 
Needless to say, all inslruction sets considered for MIPS-X 
were fixed format 32-bit words and the amount of decoding 
was minimal. The effects of having this simple instruction 
format is discussed in the conclusions. 

Not all areas were as stable as the instruction decode. 
Before presenting the major Iradeoffs we made in the MIPS-X 
design, the next section describes the basic architecture of the 
processor and the following section gives an overview of the 
hardware and organization of the machine. This is followed 
by several sections, each discussing a major design issue in 
MIPS-X, the solution used and the rational for that decision. 

MIPS-X Architecture 

The goal of the MIPS-X project was to design a 
microprocessor with an order of magnitude more performance 
than the original MIPS processor. MIPS-X borrows heavily 
from the original MIPS design; it is again a heavily pipelined 
machine, and the resulting pipeline interlocks are handled by 
the supporting software system. MIPS-X differs from MIPS 
in that it aims for single-cycle execution using a much faster 
clock (20 MHz), a deeper pipeline and better implementation 
technology. 

The high insa'uction rate means that memory bandwidth is- 
an important consideration. At the projected clock frequency 
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of 20 MHz R is very difficult to satisfy instruction and data 
fetch requirements across the available package pins. To 
alleviate this problem, MIPS-X has a 2K-byte, on-chip 
instruction cache (Icache). Only instructions that miss in the 
Icacbe pass through the package pins. The Icache is placed 
above the datapath, in the area of the chip that is normally 
used for mlcrocode storage and processor control. Data 
references and instruction references that miss in the Icache 
are handled by a large 64K word external cache (Ecache). 
The Ecache uses a shared bus to communicate with main 
memory. An added benefit of this two-level cache is that it 
provides a second port to memory; the processor can fetch an 
instruction from the Icache at the same time it is accessing 
off-chip data. 

A deep pipeline is used to allow the machine to start a new 
inslruction every cycle. Each instruction is divided into five 
pipeline stages. They are described in Figure 1. All control is 
hardwired. 

IF 

RF 
ALU 
MEM 

WB 

Inslruction fetch. 
Inslruction decode and register fetch. 
ALU or shift operation 
Wait for data from memory on a load and output 
data for a store. 
Write the result into the destination register. 

Figure 1: MIPS-X Pipestages 

The machine uses a load-store architecture; the only 
memory operations are explicit loads and stores. The use of 
the ALU cycle depends on the inslruction being executed. 
For compute instructions, this cycle performs the desired 
computation, for memory instructions it is used to compute 
the address of the desired memory location and for branch 
instructions, it is used to compute the condition. All memory 
operations use the same addressing mode; the contents of a 
register are added to a 17-bit signed offset to produce a 32-bit 
address. There are 32 general purpose registers in the 
datapath with a 32-bit ALU and a funnel shifter for compute 
operations. 

Although a compute instruction fmishes its computation 
during the third pipeline cycle (ALU), the result is not written 
back into the register file until the last pipeline cycle. This 
delayed writeback is done to make inslructions only change 
machine state during their last pipeline cycle, malting 
exception handling much easier. Bypassing is used to reduce 
the number of pipeline interlocks. 

All instructions are restartable so MIPS-X will support a 
dynamic, paged virtual memory system. To help implement 
such a system, MIPS-X supports both maskable and 
nonmaskable interrupts. For systems requiring more complex 
interrupt handling, an external interrupt coprocessor can be 
added. MIPS-X also provides two operating modes, system 
and user, that execute in separate address spaces to provide 
the protection needed to implement an operating system. The 
current mode is stored in the PSW and it can only be cltanged 
while executing in system mode. 

A Hardware Overview 

The major components of MIPS-X are the instruction 
cache data array, the inslruction register and the datapath. 
The datapath is composed of the register file, the execution 
unit, PC unit and the tag store for the instruction cache. The 
organization of these parts is shown in Figure 2. 

Registar 
File 

Instruction 
Cache 

I Instruction 
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Figure 2: MIPS-X Floorplan 

The instruction cache is organized as an 8-way set- 
associative cache, with 4 sets (rows) and 16 words in each 
block (line). A sub-block replacement scheme is used so 
there ate 512 valid bits, one per word, as well as the 32 tags. 
These are located in the datapath to decrease the time needed 
to detect an inslruction cache miss. 

The inslruction register latches the output from the 
instruction cache and predecodes some fields of each • 
instruction. It also conlrols the flow of data during cache 
misses so that instructions can be written into the cache. 
During a cache miss, the instruction is latched in the 
instruction register from the data bus while it is going to the 
cache memory array. This latch provides a very useful testing 
feature by allowing the processor to run with the cache 
disabled. 

The register file contains 31 general purpose registers and 
a hardwired constant zero register. It is useful to have a 
read-only register as a place to write unwanted data. The 
constant zero was chosen because it is used as a source value 
for many instructions such as loading immediate values by 
doing an add immediate to Register 0. Registers to handle 
two levels of bypassing and the memory data registers are 
also in this section. 

Shifting and ALU operations are done in the execute unit. 
It contains a 64-bit to 32-bit funnel shifter and a 32-bit ALU. 
There is also a special register, called the MD register, that is 
used during multiplication and division ins~'uctions. 
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The program counter, or PC unit, contains a displacement 
adder for branches, an incrementer and a chain of shift 
registers to save the PC values of the instructions currently in 
execution. Having both the displacement adder and the 
incrementer means that as soon as the branch condition is 
determined the PC bus can be driven with the correct value. 
The PC values in the shift chain are needed to restart the 
machine after an exception. 

In a small area above each section of the datapath is local 
instruction decoding and control for that section. The overall 
control of the machine is handled by two finite state machines 
located in the PC unit One of them is used to handle Icache 
misses and the other one does inslruction squashing during 
exceptions and branches. Squashing an inslruction converts it 
into a no-op instruction. 

Critical Paths 
To run the processor at or above 20 MHz meant that much 

attention had to be paid to possible critical paths. In each 
cycle, we tried to minimize the number of series operations as 
much as possible. Whenever feasible, a signal was given a 
full phase to be decoded and driven from one section to 
another. 

There were a few paths that we felt were most likely to be 
critical paths and we spent a lot of time concentrating on 
them. The most important of these involved external data 
fetches. In the specification for the pipeline, addresses would 
be computed during ~bl of the ALU cycle and driven to the 
address pads during 02. The Ecache would be accessed 
during the MEM cycle. Even assuming that the address could 
be driven off the chip by the end of ALU, completing a fetch 
in 50 ns would be tight because of the address buffer delay, 
memory access time and setup time for the fetched data. 
Getting the result of the tag compare back in a cycle seemed 
impossible since this would also involve delay through some 
comparators. To ease the conslraint on getting the tag 
compare back, we decided to use a late-miss signal. This 
meant that the cache would inform the processor at the 
beginning of the WB cycle whether the cache access during 
MEM was successful. If there was a miss, then the processor 
would effectively go back and re-execute ~b2 of MEM to try 
the access again. This loop would continue until the cache 
got the data and signaled a hit. Throughout the design we had 
to be careful not to unnecessarily add delay to the memory- 
fetch path. 

Other paths that we tried to optlmiTe included the path 
from branch condition generation to driving the PC Bus, 
instruction cache hit detection, squeezing the ALU time into 1 
phase to get the address out by the end of the cycle and doing 
register reads and writes in one cycle. The latter two were 
strictly circuit design issues and are not discussed any further 
here. 

The Instruction Cache 

Advances in processor architecture and VI_31 technology 
have increased faster than the improvements in packaging 
technology. This has meant that high-performance VLSI 
processors have become memory bandwidth limited. For 
example, if we assume that one instruction is fetched every 
cycle while, on average, data is only fetched every third cycle, 

then MIPS-X will have an average bandwidth of 26 
MWords/s and a peak bandwidth of 40 MWords/s. Clearly, 
on-chip memory would help to alleviate this bottleneck. For 
MIPS-X, we built an on-chip 512-word instruction cache and 
the tradeoffs made in its design are described in detail 
elsewhere 6. We will only discuss the salient features here. 

The instruction cache was the first part of the chip to be 
designed. We first fixed a die size that we felt had enough 
area to implement the functionality we desired yet small 
enough that we could expect a reasonable yield of working 
parts. The datapath and control would take about half of the 
area inside the padframe so the cache was allocated the 
remaining area fixing its area and aspect ratio. The other 
main constraint on the cache was that the cycle time had to be 
less than the 50ns clock cycle. Given these constraints we 
investigated many different floorplans and organizations, 
l~Jing to minimize the average cost of an instruction fetch. 
This cost is a function of the cache hit rate, the miss penalty, 
and the cache access time. 

We found that the performance of the cache was mere 
sensitive to the the miss service time than the miss ratio. This 
meant that the implementation details of the cache were more 
important than the cache organization because the 
implementation affected how quickly we could determine 
whether an address hit in the cache. With our pipelining, this 
meant the difference between stalling the machine for 2 or 3 
cycles on a cache miss. By placing the tag and valid-bit 
stores in the datapath close to the PC unit a 2-cycle miss could 
be realized. This lengthened the datapath by the number of 
cache tags and meant that we could not have smaller block 
sizes because more tags would make the datapath too long. 
However, the benefits of having fewer cache miss cycles far 
outweighed the slightly lower miss rates achievable by having 
smaller blocks. 

Initial simulations of this organization yielded 
disappointing results. Using a set of medium size programs 
we achieved miss rates that averaged over 20%. We felt that 
real programs would have worse miss rates, pushing the cost 
of an instruction fetch close to 1.5 cycles. We found a way to 
reduce the number of cache miss cycles to 1 by writing the 
missed instruction into the Icache as soon as it got back onto 
the chip, but since accessing external data was already one of 
the critical paths we did not want to risk extending the cycle 
time to complete the write. Instead we realized that the 2 
cache miss cycles could be used to fetch back 2 instructions, 
the one that missed and the next one to be executed. Doing 
this double fetch did not affect the critical path and, in feet, 
was easier to do than fetching back only one instruction 
because it minimized tile disruption of the pipeline. Fetching 
back 2 words almost halves the miss ratio, driving down the 
cost of an instruction fetch to that of a single-cycle miss. The 
key realization here was that there was extra cache bandwidth 
available and that we could use it to fetch back the next 
instruction, significantly improving the cache miss ratio 
without impacting the cycle time of the machine. Fetching 
back more words would not be advantageous because the 
bandwidth of the cache is fully used. 

Trace driven simulations show that with our set of large 
Pascal and Lisp benchmarks, the cache has an average miss 
rate of 12% resulting in an average instruction executing in 
1.24 cycles. 

302 



The Coprocessor Interface 

The coprocessor interface was considered from the very 
beginning of the design. It also led to some of the most 
interesting discussions within the MIPS-X design tean~ We 
spent considerable time trying to find an efficient interface 
that would give reasonable performance and still fit within the 
constraints of VLSI packaging and design. This problem was 
exacerbated by the presence of the on-chip instruction cache, 
since now all instructions would not he visible to the outside 
world. 

The proposal for the first instruction set had a single bit in 
every instruction to specify whether the instruction was for 
the CPU or a coprocessor. For instructions with the 
coprocessor bit set, MIPS-X would perform all the addressing 
calculations, but would not affect any of its stored data. That 
is, all coprocessor memory instructions still used the 
processor to generate the addresses and the required control 
signals, while the coprocessor either acted as a source or sink 
of the data. To make the coprocessor instructions visible 
outside of the processor, a dedicated bus was required to 
transfer the instruction off the processor chip. This schen~ 
had 2 disadvantages: all interprocessor communication had to 
go through memory, and a coprocessor bus was required. A 
minor concern was that half the opcode space was devoted to 
the coprocessor; there had to be a more efficient encoding. 

The next instruction format divided the opcode space into 
three instruction types: memory operations, branches and 
compute operations. The memory and compute instructions 
had a 3-bit field to specify the coprocessor number, branches 
were only done on the main processor. If Coprocessor 0 was 
specified then the instruction was for the main processor, 
otherwise the instruction was for one of the 7 available 
coprocessors. To branch on a coprocessor condition, the 
coprocessor would first be told to assert a single input to the 
main processor and a branch on coprocessor true or branch 
on coprocessor false would he executed to test the status of 
that input. Several coprocessors could he connected by wire- 
ofing their outputs. This scheme still had the problem that 
data transfers between processors must be done through 
memory. 

It was then proposed that all coprocessor instructions must 
be non-cached, removing the need for a coprocessor bus. The 
issue of pins and pin bandwidth was heavily debated within 
the MIPS-X design tean~ Pins on the processor were in short 
supply and devoting approximately 20 of them to the 
coprocessor interface seemed excessive. The question was 
not just whether there were enough pins available. Without 
the coprocessor bus, MIPS-X would need only about 90 
signal pins, a relatively small number by today's standards. 
Rather the argument focused on what would be the best use of 
these pins if we had them. It was not at all clear that using 
them for the coprocessor interface was the most effective use 
of the pins. To prevent coprocessor instructions from being 
cached, a bit in the instruction cache would be set when an 
instruction being loaded was detected to be a coprocessor 
instruction. If the bit was set during an instruction fetch that 
missed, the coprocessor would get the instruction off the 
memory bus as the main processor read the instruction from 
memory during the cache miss cycle. 

The obvious disadvantage of this approach was that all 
coprocessor operations incurred an overhead from the internal 

cache miss. Our initial benchmarks indicated that this would 
not cause a significant performance loss, but when we 
generated traces from some floating point intensive code we 
realized a significant percentage of the instructions were 
floating point instructions. This caused a re-examination of 
the decision to not cache coprocessor instructions, and led to 
the coprocessor scheme that was finally chosen. 

The opcode encoding of the machine was changed again, 
this time vnaklng coprocessor operations a form of memory 
operation or more accurately, memory instructions became a 
type of coproc~sor instruction. Coprocessor instructions 
work in[this scheme by using the address lines to transmit the 
coprocessor instruction. A memory insl~uction takes a 17-bit 
offset constant and adds it to the contents of a register to 
compute the memory address. If the memory system ignores 
the cycle, it is possible to pass the 17-bit offset constant to a 
coprocessor as an instruction. The instruction would include 
a 3-bit field to specify the coprocessor being addressed, 
although the processor does not need to know the format of 
these instructions. This scheme has several advantages over 
our earlier ideas. A coprocessor instruction bus is not 
required, since the instructions are sent out over the address 
pins. Only one extra pin is required to tell the memory 
system to ignore the cycle. Additional pins can now he used 
for alleviating the pin bandwidth problem in other parts of the 
system. Using coprocessor load and store instructions, data 
can be directly transferred between processors by making the 
coprocessor supply or read data on the data bus instead of the 
memory. Also, the coprocessor instructions can he cached 
just like all the other instructions. The disadvantages of this 
scheme are that there are fewer bits to specify the coprocessor 
instructions, and all data to and from the coprocessor's 
registers must be transferred through the main processor 
registers first before it can he sent to memory. 

Having to transfer all data through the main processor 
registers was still thought to be inefficient for heavy floating 
point computation. This lead to a further modification of the 
instruction set to add load floating and store floating 
instructions. These instructions provide one special 
coprocessor with its own loud and store instructions, which 
we assume will be a floating point unit (FPU). The interface 
now allows one special coprocessor to load and store its 
registers directly to memory, without passing through the 
main processor, in a single instruction. All other coprocessors 
require one extra cycle for memory loads/stores. 

One final tweaking of the interface was to remove the 
coprocessor branch instructions. The main reason for their 
removal was the problem of saving state in the coprocessors 
across exceptions. The solution was to just read a 
coprocessor status register into a main processor register and 
then branch according to the value of that register. This 
change eliminated the last set of problems we h~.d discovered 
with the coprocessor instructions. 

By using the address lines, the resulting coprocessor 
interface has instructions that can he cached, does not require 
a large coprocessor bus, allows efficient communication 
between the processor registers and the coprocessor registers, 
and lets a single coprocessor have direct access to memory. 
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Branches 

Having set out the initial architecture of the machine, we 
quickly ran into the problem of branches, and branch delays. 
Branches have a considerable effect on the performance of a 
computer especially one that is pipelined as deeply as MIPS- 
X. The effects of branches in a pipelined machine are 
particularly noticeable because branches interrupt the flow of 
the pipeline. Decisions about the design of the pipeline and 
the type of branch scheme used are not independent. Conlrol 
complexity is a serious issue. 

We very quickly decided to eliminate the use of condition 
codes in MIPS-X if possible. This decision was motivated by 
two facts. First, inslruction trace statistics indicated that a 
prior compute operation infrequently generated the condition 
code needed for a branch. In roughly 80% of the branches an 
explicit compare operation must be performed to set the 
condition codes. A previous analysis 7 of empirical data 
showed that the number of instructions saved by condition 
codes was very small and essentially useless. Second, 
condition codes generate state that needs to be saved and 
restored during exceptions. Handling condition codes in a 
pipelined machine is difficult because when an exception 
occurs, great care must be taken to ensure that the correct 
condition codes are saved. It seemed to us that condition 
codes provide little benefit and have potential complexity 
problems. In particular, generating code to use condition 
codes efficiently is not as slraightforwa~d as one might 
expect. All the branch schemes considered for MIPS-X 
contained an explicit compare in the branch. This actually 
reduces the amount of control logic required because there is 
no need to worry about how to save this state. 

Two arithmetic operations are required to execute a branch 
instruction. One is to compute the branch condition and the 
other is to compute the branch destination. A machine that 
uses condition codes computes the branch condition before 
the actual branch instruction and saves the condition in a 
condition code register. The first idea conceived for 
implementing branches in MIPS-X computed the condition in 
the branch instruction, but did not compute the branch 
destination. Instead the branch destination was made 
explicitly visible in the architecture. The user would have to 
load a register called PC+I with the branch destination. The 
branch instruction computes a condition and then selects 
PC+I or the next sequential instnmtion depending on the 
computed condition. An observation was made that many 
inner loops contain several forward branches due to constructs 
like if-then-else statements so it would be good to have 
several PC+I registers. Four was felt to be sufficient. This 
would allow the compiler to hoist the destination address 
calculations out of the loop. Without this feature, the contents 
of PC+I would have to be loaded from a register for each 
branch within the loop for each iteration of the loop. 

This scheme still had the problem that there was some state 
that must be saved (the PC+ 1 registers) when an exception 
occurred. Also, deciding how to use the PC +1 registers could 
be cumbersome for the compiler system- Finally, with four 
special registers, it was no longer clear that this solution was 
easier to implement than simply including a separate adder to 
compute the destination while the ALU performed the 
comparison. At this point in the design, adding a little 
hardware to the datapath to make the control simpler was the 

wisest choice so we added the separate adder to compute the 
destination. 

During this period we also became concerned about the 
effect of the branch delay slots on the machine's performance. 
Often in a pipelined machine one or more instructions 
following a branch are fetched before the result of the 
condition evaluation is known. If these inslructions are 
executed, then the machine is said to have a delayed branch 
meaning the effect of the branch occurs after the actual branch 
instruction. The number of cycles or delay slots that execute 
after the branch instruction and before the actual branch 
occurs is called the branch delay. Filling these delay slots is 
not a simple task s, 9,10 and affects the overall performance. 

In the MIPS-X pipeline, it is most straightforward to 
implement a branch with a delay of two. The ALU is used to 
compute the branch condition during the third (ALU) 
pipestage. Filfing two delay slots did not seem very 
promising. Using data from MIPS instruction traces, we 
expected over 50% of the slots to remain empty 8. This 
performance problem lead to discussions about how to reduce 
the branch delay to 1 cycle, and whether we could use branch 
prediction to help reduce the wasted cycles 11.12. 

A quick compare 3 was proposed as a method to reduce the 
branch delay. In this scheme, simple comparisons between 
the two source registers are done before the ALU cycle. This 
comparison would be performed at the end of the RF cycle by 
placing a comparator on the output of the register file. Only 
equality and sign comparisons can be obtained using this 
method since there is not enough time for an arithmetic 
operation. Other conditions such as greater than would 
require two steps. The ALU operation is done first and the 
result is stored in a register. This result is then used in a quick 
sign compare instruction. 

The main question that needed to be resolved initially was 
what percentage of branches could be handled by a quick 
compare. Statistics from Katevenis's thesis indicate that by 
changing the compiler slightly, about 80% of all branches can 
be converted into quick compares 3, but this means that 20% 
of all branches take two cycles. Our initial statistics indicated 
that the number of branches that could be handled using a 
quick compare was between 70% and 80%. 

The quick compare was eventually dropped because it 
could potentially lengthen the processor cycle time. The 
comparator circuit must operate on the source buses leading 
to the ALU and since the values on the buses could come 
from a bypass source it was possible that the buses would not 
be stable until late into that cycle, particularly for a previous 
memory fetch because the data would only be back at the very 
end of the cycle. For the quick compare to operate, we would 
need to perform a compare on these values and then use this 
result to select the correct address of the next inslruction. The 
potential increase in cycle time discounted its slight advantage 
in the average number of cycles it takes to complete a branch. 
In retrospect, our decision was correct. In the final machine, 
the delay from the generation of the branch signal to driving 
the correct value on the PC Bus is long (measured to be about 
20 ns). Even providing a full phase to drive this path leaves it 
on a critical path. 

Left with a branch delay of 2, we investigated branch 
prediction as a way to reduce the effective branch delay. 
There were two prediction algorithms tried: branch cache, and 
static prediction. The branch cache was quickly discarded 
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when we discovered that it had to be fairly large (much 
greater than 16 entries) to get a high hit rate. It would also 
affect the size of our instruction cache. Besides, it never did 
much better than static prediction and was much more 
complex. Static prediction would use information at compile 
time (possibly with profiling) to predict which way a branch 
would go. 

To make use of the prediction information we considered 
implementing squashing, the ability to convert an instruction 
into a no-op if the branch did not go in the predicted direction. 
In MIPS, the instructions in the branch delay slots are always 
executed. The strategy for choosing instructions is to first Iry 
to move an instruction from before the branch into the slot. If 
no instructions can be moved past the branch the next choice 
is to find inslructions from the destination or the sequential 
path that have no effect ff the branch goes the wrong way. 
Thus ff you predict correctly, the slot performs a useful 
instruction and if the branch goes the other way, the slot 
inslruction is simply wasted. The last alternative is to place a 
no-op instruction in the slot. Squashing relaxes the restriction 
on the second choice for inslxuctions. It allows any 
instruction from the branch destination to he placed in the 
slot, even when there is an adverse effect ff the branch goes 
the wrong way. The machine squashes the instruction (turns 
it into a no-op) ff the branch goes the wrong way. 

With squashing there are three options for dealing with the 
inslructions in the delay slots giving three possible branch 
types: no squash where the slot instructions are always 
executed, squash if don't go where the slot instrnetions are 
executed if the branch takes and squash if go where the slot 
instructions are executed ff the branch does not take. Since 
we decided to use static prediction, and in the static case most 
branches go, MIPS-X only has the first two types of branches. 
This requires only one bit in the instruction to specify how to 
deal with the instructions in the slots. 

Various combinations of one and two-slot schemes with 
and without squashing were evaluated. The results are shown 
in Table 1. The no squash scheme is the same as used in 
MIPS where the instructions in the slots are always executed. 
The always squash scheme only uses the squash if go and 
squash if don't go actions for the instructions in the branch 
slots. The squash optional scheme includes the use of 
branches with no squash instructions in the slots as well as 
having branches with squashing. It can be seen that by 
allowing squashing the efficiency of branches is much better. 

l~ranch Scheme Cycles/Branch 2 

2-slot no squash 2.0 
2-slot always squash 1-5 
2-slot squash optional 1.3 
1-slot no squash 1 A 
1-slot always squash 1.3 
1-slot squash optional 1.1 

Table 1: Average Cycles per Branch Instruction 
for Various Branch Schemes 

2If all of the branch delay slots could be filled with useful 
instructions, then we would achieve the ideal of a 1 cycle branch. 
Any no-op instructions in the branch delay slots are attributed to the 
cost of the branch so a branch with 2 no-ops in its two delay slots is 
deemed to have a cost of 3. 

The scheme we finally chose uses the full compare and 
squash optional with two slots. Our initial estimates about 
the cost of the double slots turned out to be slightly optimistic. 
Where we predicted the average branch would take 1.3 
cycles, results using the actual reorganizer shewed that the 
average branch took about 1.5 cycles for small benchmarks 
using traditional optimiT~tion. However, we have since 
developed better optimization techniques and our most recent 
results show that even with large Pascal and Lisp benchmarks 
the average branch takes 1.27 cycles. 

Implementing squashing was a gamble because we were 
not completely sure how it would affect exception handling at 
the time we made the commitment to use it. It turned out that 
they mesh together very well as described in the next section. 

Exception Handling 

As the design of the machine progressed, our concentration 
shifted from the functions the machine was going to perform 
to how these functions were going to be controlled. MIPS-X 
benefited greatly from the experience gained during the MIPS 
design. Handling exceptions in MIPS caused the most 
complexity in the machine because of the large number of 
possible states in the processor during an exception. These 
states were the result of the processor trying to complete the 
instructions that occurred conceptually before the fault but 
still in the pipeline, and reloading the partially full pipeline on 
a return from an exception. The goal for MIPS-X was to 
require as few states as possible to handle an exception so the 
state machine design would not be difficult. The underlining 
rule was to keep/t simple, stupid t3. 

In some ways exception handling in MIPS-X followed the 
MIPS model. Exceptions are not vectored so the exception 
handler must first determine the cause of the exception. On 
MIPS there was an on-chip surprise register where this 
information was stored. MIPS-X relies instead on a separate 
off-chip interrupt control unit that contains this information. 
The PSW does contain bits that determine whether the 
exception was caused by an interrupt, arithmetic overflow or a 
non-maskable interrupt. 

MIPS-X differed from MIPS in how exceptions affected 
the pipeline. The MIPS exception sequence started with the 
pipeline being flushed of as many instructions as possible that 
were already executing. Then the program counter (PC) was 
zeroed and the return PCs saved from the PC chain. The 
flushing of the pipeline caused a great many extra states and 
added a lot of complexity. 

In MIPS-X the pipeline is halted when an exception 
occurs. No instructions are completed. The PC is 
immediately set to zero and the shift chain of old PC values is 
frozen, saving the addresses of the instructions that are still in 
the pipeline. The current PSW is placed in PSWold, 
interrupts are turned off and the machine is placed into system 
mode. The exception routine, located at address zero in 
system space, begins execution by first saving the three PCs 
from the PC chain and PSWold onto the system stack. Once 
the state of the interrupted process is saved, then PC shifting 
can be enabled and interrupts unmasked if desired. The 
restart sequence involves reloading the PC chain with the 
three saved PCs and then doing three special jumps using the 
contents of the PC chain; the PC chain is used to store the 
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return addresses during the return sequence. Interrupts must 
be disabled both during machine state saving and restoring. 

During the discussions about how branches were to be 
implemented, there was some concern about the effects the 
branch implementation would have on exception handling. 
The original feeling was that having more branch slots would 
require more state in the machine and implementing 
squashing branches would make the state machine even more 
complicated. The squash proponents argued that the 
hardware needed to freeze the pipeline during an exception 
could be used to implement squashing branches. They not 
only convinced the design team, they also turned out to be 
correct. Squashing two branch slots only requires a single 
extra input to the squashing finite state machine that is used to 
handle exceptions. Branch squashing and squashing for 
exceptions are very similar. 

The general scheme used to no-op an instruction is quite 
simple. All that needs to be done is to set a bit in the 
destination specifier for that instruction. This bit is used by 
the register file to determine whether to perform a write or 
not. There are 2 lines in the machine that can set this bit, 
Exception and Squash. Exception no-ops the instructions in 
the ALU and MEM stages of the pipeline, while Squash 
no-ops the instructions currently in the IF and RF stages of 
the pipeline. The only added complexity occurs with the 
Mult/Div register and the PSW which contains the only 
visible state outside of the register file. Writes to these 
locations are also prevented by Exception and Squash. 

There is only one exception generated on chip and it is a 
Irap on overflow in the ALU or the multiplication/division 
hardware. At the start of the design it was felt that detecting 
overflows and generating a trap was too complex to do. The 
original solution was the concept of a st/cky overflow bit. If 
an overflow occurred then the sticky overflow bit would be 
set in the PSW. This bit could then be checked at a later time 
to determine whether an overflow had occurred. This meant 
that it would not be possible to precisely detect the occurrence 
of the overflow but at least it was possible to indicate the 
presence of an inconect result. We began looking for other 
overflow mechanisms when we discovered that the sticky 
overflow bit interacted badly with bypassing. Instead of 
making the hardware simple, it seemed to make the PSW 
harder to design. 

Several other simple schemes were then proposed. One 
was a SetOrtAddOverflow instruction that just routed the 
overflow bit from the ALU into the most significant bit of the 
ALU result. This instruction could then be used to determine 
whether the addition causes an overflow by simply testing for 
the sign of the result. Another suggestion was a Branch on 
Ov~f/ow instruction that caused a branch if the result of the 
branch comparison overflowed. These were minimal 
hardware solutions that would provide some small support for 
overflow detection. 

At this point the exception hardware had been designed 
and we observed that generating a true trap on overflow was 
not difficult; in fact it was simpler than the original sticky 
overflow bit. We decided to abandon the sticky overflow bit 
for a maskable trap on overflow. 

Control 

Our overriding goal for the control section was to keep it 
as simple as possible. In part we accomplished our goal by 
eliminating hardware features that would complicate the 
machine without providing significant performance 
advantages. We also tried to keep a uniform view of the 
hardware, frying to reuse the same control mechanism for 
many features. Merging exceptions and squashing, and 
merging memory instructions and coprocessor operations 
were examples of this slrategy. Finally, we eliminated the 
global controller for the machine and replaced it with a set of 
smaller controllers, one for each section of the datapath. We 
further partitioned the design so that a single designer was 
responsible for both the datapath and control in his section, 
giving each designer the incentive to make his conlrol section 
simpler. Most of the machine control is simple decoders, 
many generated automatically using PLA generators. 

One technique that MIPS-X used to great advantage was a 
qualified clock, called ¥1, to latch the control state of the 
machine. This clock is the 01 clock qualified with not 
external cache miss and not internal cache miss. When either 
cache misses, the V1 clock does not rise, and the control state 
does not shift down the pipeline conlzol latches. The lack of a 
¥1 clock causes the machine to execute the previous 02 phase 
before retrying the 01 phase. This simple technique made 
temporary stalling of the entire pipeline very easy, and 
allowed us to implement the late miss described earlier 
without greatly increasing the machine complexity. Since the 
V1 clock is only allowed to clock control state latches, its 
pulse width can be quite narrow (about lO ns). As long as the 
miss signal is monotonic, it is possible to detect a cache hit 
after the data has been latched in the machine without stalling 
the machine. 

Together these control techniques were quite successful. 
The control was nicely divided among the 4 main datapath 
sections, with the only two finite state machines (FSMs) 
residing in the PC unit. These FSMs handle insCuction cache 
misses and iuslruction squashing during exceptions and 
squashed branches. The state diagrams for the two machines 
are shown in Figures 3 and 4. These FSMs are implemented 
as simple shift registers with a very small amount of random 
logic and occupy less than 0.2% of the total area of the chip. 

Status and Conclusions 

The MIPS-X project began in earnest during the summer 
of 1984. By January 1985, we had settled on an initial 
version of the instruction set, and had written an instruction 
level simulator for the machine. We were able to use much of 
the software system that was created for MIPS for MIPS-X as 
well. This greatly reduced the software development effort. 
The compiler/simulator system generated instruction traces 
that we used to gather cache statistics and fine tune the 
architecture. By April 1985, the architecture had stabilized 
and work on the detailed design accelerated. We ran our first 
instruction through a detailed functional simulator of the 
entire processor during the summer. The final design was 
taped out at the end of April 1986 and we received first 
silicon back in October. 

The processor was designed to run at a clock rate of 20 
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MHz, executing an instruction every cycle, yielding a peak 
performance of 20 MlPs. Timing analysis showed that the 
version that was shipped in April would run at about 16 MHz. 
Initial timing tests have shown that the part is fully functional 
and it runs at the projected 16 MHz clock rate. We are now 
fixing the critical paths so that we can achieve our goal of 20 
MHz. The die is 8.5 mm by 8 m m  and has a total  of 108 pins 
of which 84 are for signals and 24 are for power and ground. 
There are about 150K transistors, two  thirds of which are in 
the instruction cache. The power dissipation is less than 1 W. 

Simulations of our large Pascal benchmarks show that 
15.6% of aLl instructions are no-ops due to unused branch 
delays or other pipeline interlocks that cannot be optimized 
away. For Lisp, this number increases slightly to 18.3% due 
to a larger number of jumps and many load-load interlocks 
caused by chasing car and cdr chains 14. When the memory 
system overhead is included (delays from Icache and Ecache 
misses), the average instruction requires about 1.7 cycles 
meaning MIPS-X should have a sustained throughput above 
11 MlPs. Our benchmark programs have static cede sizes in 
the range of 50 KBytes to 270 K.Bytes so we cannot get exact 
numbers for the effects of the external cache because most of 
the benchmarks fit entirely. Smith's numbers 15 are not large 
enough so we used much larger traces 16 to derive the Ecache 
effects. 

The performance of a machine is based on three factors: 
the number of instructions executed (path length), the number 
of cycles per instruction and the cycle time. Ideally, all three 
factors should be minimized but we have shown that by 
having simple instruction decode we can significantly 
decrease the latter two factors without adversely affecting the 
path length. Comparison of Pascal programs with a VAX 
11/780 shows that MIPS-X executes about 25% mote 
instructions but executes the programs about 14 times faster 
for unoptlmiTed code. The static code size for MIPS-X is also 
about 25% greater than VAX code. The Stanford compiler 
system was used and the only difference was in the back end 
code generators. However, when MIPS-X code is compared 
to the Berkeley Pascal compiler, the path length is 80% longer 
and the speedup is only 10 times faster than the VAX. Much 
of this difference may be due to poorer code from our VAX 
code generator. We feel that when we get the results for 
optimized code, the numbers will be somewhere inbetween. 

The goal of the MIPS-X project from the beginning was to 
learn from MIPS and design a simpler yet faster processor. 
The emphasis in all design decisions throughout the project 
was simplicity: minlmiT¢ state and keep the control simple. 
The implementation of MIPS-X has shown that it is possible 
to implement a high performance microprocessor that 
supports coprocessors, without requiring complex control or 
hundreds of pins. 
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Cache Memories 

ALAN JAY SMITH 

Unwersity of California, Berkeley, Californm 94720 

Cache memories are used in modern, medium and high-speed CPUs to hold temporarily 
those portions of the contents of main memory which are {believed to be) currently in 
use. Since instructions and data in cache memories can usually be referenced in 10 to 25 
percent of the time required to access main memory, cache memories permit the 
executmn rate of the machine to be substantially increased. In order to function 
effectively, cache memories must  be carefully designed and implemented. In this paper, 
we explain the various aspects of cache memorms and discuss in some detail the design 
features and trade-offs. A large number of original, trace-driven simulation results are 
presented. Consideration is given to practical implementatmn questions as well as to more 
abstract design issues. 

Specific aspects of cache memories tha t  are investigated include: the cache fetch 
algorithm (demand versus prefetch), the placement and replacement algorithms, line size, 
store-through versus copy-back updating of main memory, cold-start versus warm-start  
miss ratios, mulhcache consistency, the effect of input /output  through the cache, the 
behavior of split data/instruction caches, and cache size. Our discussion includes other 
aspects of memory system architecture, including translation lookaside buffers. 
Throughout the paper, we use as examples the implementation of the cache in the 
Amdahl 470V/6 and 470V/7, the IBM 3081, 3033, and 370/168, and the DEC VAX 11/780. 
An extensive bibliography is provided. 

Categories and Subject Descriptors: B.3.2 [Memory  S t ruc tu res ] :  Design Styles--cache 
memorws; B.3.3 [Memory  S t ruc tu res ] :  Performance Analysis and Design Aids; C.O. 
[Computer Systems Organization]: General; C.4 [Computer Systems Organiza- 
tion]: Performance of Systems 

General Terms: Design, Experimentation, Measurement, Performance 

Additional Key Words and Phrases'  Buffer memory, paging, prefetching, TLB, store- 
through, Amdah1470, IBM 3033, BIAS 

INTRODUCTION 

Definition and Rationale 

Cache memories are small, high-speed 
buffer memories used in modern computer 
systems to hold temporarily those portions 
of the contents of main memory which are 
(believed to be) currently in use. Informa- 
tion located in cache memory may be ac- 
cessed in much less time than that located 
in main memory (for reasons discussed 
throughout this paper}. Thus, a central 
processing unit (CPU) with a cache mem- 
ory needs to spend far less time waiting for 

instructions and operands to be fetched 
and/or stored. For exam,~le, in typical large, 
high-speed computers (e.g., Amdahl 470V/ 
7, IBM 3033), main memory can be ac- 
cessed in 300 to 600 nanoseconds; informa- 
tion can be obtained from a cache, on the 
other hand, in 50 to 100 nanoseconds. Since 
the performance of such machines is al- 
ready limited in instruction execution rate 
by cache memory access time, the absence 
of any cache memory at all would produce 
a very substantial decrease in execution 
speed. 

Virtually all modern large computer sys- 

Permission to copy without fee all or part  of this matenal  is granted provided that  the copies are not made or 
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copy otherwise, or to republish, requires a fee and/or  specific permission. 
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terns have cache memories; for example, 
the Amdahl 470, the IBM 3081 [IBM82, 
REIL82, GUST82], 3033, 370/168, 360/195, 
the Univac 1100/80, and the Honeywell 66/ 
80. Also, many medium and small size ma- 
chines have cache memories; for example, 
the DEC VAX 11/780, 11/750 [ARMS81], 
and PDP-11/70 [SIRE76, SNOW78], and 
the Apollo, which uses a Motorolla 68000 
microprocessor. We believe that within 

two to four years, circuit speed and density 
will progress sufficiently to permit cache 
memories in one chip microcomputers. 
(On-chip addressable memory is planned 
for the Texas Instruments 99000 [LAFF81, 
ELEC81].) Even microcomputers could 
benefit substantially from an on-chip cache, 
since on-chip access times are much smaller 
than off-chip access times. Thus, the ma- 
terial presented in this paper should be 
relevant to almost the full range of com- 
puter architecture implementations. 

The success of cache memories has been 
explained by reference to the "property of 
locality" [DENN72]. The property of local- 
ity has two aspects, temporal and spatial. 
Over short periods of time, a program dis- 
tributes its memory references nonuni- 
formly over its address space, and which 
portions of the address space are favored 
remain largely the same for long periods of 
time. This first property, called temporal 
locality, or locality by time, means that  the 
information which will be in use in the near 
future is likely to be in use already. This 
type of behavior can be expected from pro- 
gram loops in which both data and instruc- 
tions are reused. The second property, lo- 
cality by space, means that portions of the 
address space which are in use generally 
consist of a fairly small number of individ- 
ually contiguous segments of that address 
space. Locality by space, then, means that 
the loci of reference of the program in the 
near future are likely to be near the current 
loci of reference. This type of behavior can 
be expected from common knowledge of 
programs: related data items (variables, ar- 
rays) are usually stored together, and in- 
structions are mostly executed sequentially. 
Since the cache memory buffers segments 
of information that have been recently 
used, the property of locality implies that 
needed information is also likely to be 
found in the cache. 

Optimizing the design of a cache memory 
generally has four aspects: 

(1) Maximizing the probability of finding a 
memory reference's target in the cache 
(the hit ratio), 

(2) minimizing the time to access informa- 
tion that is indeed in the cache {access 
time), 

(3) minimizing the delay due to a miss, and 
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(4) minimizing the overheads of updating 
main memory, maintaining multicache 
consistency, etc. 

(All of these have to be accomplished 
under suitable cost constraints, of course.) 
There is also a trade-off between hit ratio 
and access time. This trade-offhas not been 
sufficiently stressed in the literature and it 
is one of our major concerns in this paper. 
In this paper, each aspect of cache memo- 
ries is discussed at length and, where avail- 
able, measurement results are presented. In 
order for these detailed discussions to be 
meaningful, a familiarity with many of the 
aspects of cache design is required. In the 
remainder of this section, we explain the 
operation of a typical cache memory, and 
then we briefly discuss several aspects of 
cache memory design. These discussions 
are expanded upon in Section 2. At the end 
of this paper, there is an extensive bibliog- 
raphy in which we have attempted to cite 
all relevant literature. Not all of the items 
in the bibliography are referenced in the 
paper, although we have referred to items 
there as appropriate. The reader may wish 
in particular to refer to BADE79, BARS72, 
GIBS67, and KAPL73 for other surveys of 
some aspects of cache design. CLAR81 is 
particularly interesting as it discusses the 
design details of a real cache. (See also 
LAMPS0.) 

Overview of Cache Design 

Many CPUs can be partitioned, concep- 
tually and sometimes physically, into three 
parts: the I-unit, the E-unit, and the S-unit. 
The I-unit (instruction) is responsible for 
instruction fetch and decode. It may have 
some local buffers for lookahead prefetch- 
ing of instructions. The E-unit (execution) 
does most of what is commonly referred to 
as executing an instruction, and it contains 
the logic for arithmetic and logical opera- 
tions. The S-unit (storage) provides the 
memory interface between the I-unit and 
E-unit. (IBM calls the S-unit the PSCF, or 
processor storage control function.) 

The S-unit is the part of the CPU of 
primary interest in this paper. It contains 
several parts or functions, some of which 
are shown in Figure 1. The major compo- 
nent of the S-unit is the cache memory. 
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I Moln Memory I 
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{I S-Unlt Tronslotor 
' ASrT I T-Unit E-Unlt " ~ r i t e  Through Buffers~ 

Figure 1. A typical CPU design and the S-unit. 

There is usually a translator, which trans- 
lates virtual to real memory addresses, and 
a TLB (translation lookaside buffer) which 
buffers (caches) recently generated (virtual 
address, real address) pairs. Depending on 
machine design, there can be an ASIT (ad- 
dress space identifier table), a BIAS (buffer 
invalidation address stack), and some write- 
through buffers. Each of these is discussed 
in later sections of this paper. 

Figure 2 is a diagram of portions of a 
typical S-unit, showing only the more im- 
portant parts and data paths, in particular 
the cache and the TLB. This design is 
typical of that used by IBM (in the 370/168 
and 3033) and by Amdahl (in the 470 series). 
Figure 3 is a flowchart that corresponds 
to the operation of the design in Figure 
2. A discussion of this flowchart follows. 

The operation of the cache commences 
with the arrival of a virtual address, gener- 
ally from the CPU, and the appropriate 
control signal. The virtual address is passed 
to both the TLB and the cache storage. 
The TLB is a small associative memory 
which maps virtual to real addresses. It is 
often organized as shown, as a number of 
groups (sets) of elements, each consisting 
of a virtual address and a real address. The 
TLB accepts the virtual page number, ran- 
domizes it, and uses that hashed number to 
select a set of elements. That set of ele- 
ments is then searched associatively for a 
match to the virtual address. If a match is 
found, the corresponding real address is 
passed along to the comparator to deter- 
mine whether the target line is in the cache. 
Finally, the replacement status of each en- 
try in the TLB set is updated. 

If the TLB does not contain the (virtual 
address, real address) pair needed for the 
translation, then the translator (not shown 
in Figure 2) is invoked. It uses the high- 
order bits of the virtual address as an entry 
into the segment and page tables for the 
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process and then returns the address pair 
to the TLB (which retains it for possible 
future use), thus replacing an existing TLB 
entry. 

The virtual address is also passed along 
initially to a mechanism which uses the 
middle part of the virtual address (the line 
number) as an index to select a set of entries 
in the cache. Each entry consists primarily 
of a real address tag and a line of data (see 
Figure 4). The line is the quantum of stor- 
age in the cache. The tags of the elements 
of all the selected set are read into a com- 
parator and compared with the real address 
from the TLB. (Sometimes the cache stor- 
age stores the data and address tags to- 
gether, as shown in Figures 2 and 4. Other 
times, the address tags and data are stored 
separately in the "address array" and "data 
array," respectively.) If a match is found, 
the line (or a part of it) containing the 
target locations is read into a shift register 
and the replacement status of the entries in 
the cache set are updated. The shift register 
is then shifted to select the target bytes, 
which are in turn transmitted to the source 
of the original data request. 

If a miss occurs (i.e., addresss tags in the 
cache do not match), then the real address 
of the desired line is transmitted to the 
main memory. The replacement status in- 
formation is used to determine which line 
to remove from the cache to make room for 
the target line. If the line to be removed 
from the cache has been modified, and main 
memory has not yet been updated with the 
modification, then the line is copied back to 
main memory; otherwise, it is simply de- 
leted from the cache. After some number of 
machine cycles, the target line arrives from 
main memory and is loaded into the cache 
storage. The line is also passed to the shift 
register for the target bytes to be selected. 

Cache Aspects 

The cache description given above is both 
simplified and specific; it does not show 
design alternatives. Below, we point out 
some of the design alternatives for the 
cache memory. 

Cache Fetch Algorithm. The cache fetch 
algorithm is used to decide when to bring 
information into the cache. Several possi- 
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bilities exist: information can be fetched on 
demand (when it is needed) or prefetched 
(before it is needed). Prefetch algorithms 
attempt to guess what information will soon 
be needed and obtain it in advance. It is 
also possible for the cache fetch algorithm 
to omit fetching some information (selec- 
tive fetch) and designate some information, 
such as shared writeable code (sema- 
phores), as unfetchable. Further, there may 
be no fetch-on-write in systems which use 
write-through (see below). 

Cache Placement Algorithm. Informa- 
tion is generally retrieved from the cache 
associatively, and because large associative 
memories are usually very expensive and 
somewhat slow, the cache is generally or- 
ganized as a group of smaller associative 
memories. Thus, only one of the associative 
memories has to be searched to determine 
whether the desired information is located 
in the cache. Each such (small) associative 
memory is called a set and the number of 
elements over which the associative search 
is conducted is called the set size. The 
placement algorithm is used to determine 
in which set a piece {line) of information 
will be placed. Later in this paper we con- 
sider the problem of selecting the number 
of sets, the set size, and the placement 
algorithm in such a set-associative memory. 

Line Size. The fixed-size unit of infor- 
mation transfer between the cache and 
main memory is called the line. The line 
corresponds conceptually to the page, 
which is the unit of transfer between the 
main memory and secondary storage. Se- 
lecting the line size is an important part of 
the memory system design. (A line is also 
sometimes referred to as a block.) 

Replacement Algorithm. When infor- 
mation is requested by the CPU from main 
memory and the cache is full, some infor- 
mation in the cache must be selected for 
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replacement. Various replacement algo- 
rithms are possible, such as FIFO (first in, 
first out), LRU (least recently used), and 
random. Later, we consider the first two of 
these. 

Main Memory Update Algorithm. When 
the CPU performs a write (store) to mem- 
ory, that  operation can actually be reflected 
in the cache and main memories in a num- 
ber of ways. For example, the cache mem- 
ory can receive the write and the main 
memory can be updated when that  line is 
replaced in the cache. This strategy is 
known as copy-back. Copy-back may also 
require that  the line be fetched if it is absent 
from the cache (i.e., fetch-on-write). An- 
other strategy, known as write-through, im- 
mediately updates main memory when a 
write occurs. Write-through may specify 
that if the information is in the cache, the 
cache be either updated or purged from 
main memory. If the information is not in 
the cache, it may or may not be fetched. 
The choice between copy-back and write- 
through strategies is also influenced by the 
need to maintain consistency among the 
cache memories in a tightly coupled multi- 
processor system. This requirement is dis- 
cussed later. 

Cold-Start versus Warm-Start Miss Ra- 
tios and Multiprogramming. Most com- 
puter systems with cache memories are 
multiprogrammed; many processes run on 
the CPU, though only one can run at a 
time, and they alternate every few millisec- 
onds. This means that  a significant fraction 
of the cache miss ratio is due to loading 
data and instructions for a new process, 
rather than to a single process which has 
been running for some time. Miss ratios 
that are measured when starting with an 
empty cache are called cold-start miss ra- 
tios, and those that  are measured from the 
time the cache becomes full are called 
warm-start miss ratios. Our simulation 
studies consider this multiprogramming en- 
vironment. 

User/Supervisor Cache. The frequent 
switching between user and supervisor 
state in most systems results in high miss 
ratios because the cache is often reloaded 
(i.e., cold-start). One way to address this is 
to incorporate two cache memories, and 
allow the supervisor to use one cache and 

the user programs to use the other. Poten- 
tially, this could result in both the super- 
visor and the user programs more fre- 
quently finding upon initiation what they 
need in the cache. 

Multicache Consistency. A multiproces- 
sor system with multiple caches faces the 
problem of making sure that  all copies of a 
given piece of information (which poten- 
tially could exist in every cache, as well as 
in the main memory) are the same. A mod- 
ification of any one of these copies should 
somehow be reflected in all others. A num- 
ber of solutions to this problem are possible. 
The three most popular solutions are essen- 
tially: (1) to transmit all stores to all caches 
and memories, so that  all copies are up- 
dated; (2) to transmit the addresses of all 
stores to all other caches, and purge the 
corresponding lines from all other caches; 
or (3) to permit data that  are writeable 
(page or line flagged to permit modifica- 
tion) to be in only one cache at a time. A 
centralized or distributed directory may be 
used to control making and updating of 
copies. 

Input/Output. Input/output  (from and 
to I/O devices) is an additional source of 
references to information in memory. It is 
important that  an output request stream 
reference the most current values for the 
information transferred. Similarly, it is also 
important that input data be immediately 
reflected in any and all copies of those lines 
in memory. Several solutions to this prob- 
lem are possible. One is to direct the I/O 
stream through the cache itself (in a single 
processor system); another is to use a write- 
through policy and broadcast all writes so 
as to update or invalidate the target line 
wherever found. In the latter case, the 
channel accesses main memory rather than 
the cache. 

Data/Instruction Cache. Another cache 
design strategy is to split the cache into two 
parts: one for data and one for instructions. 
This has the advantages that  the band- 
width of the cache is increased and the 
access time (for reasons discussed later) can 
be decreased. Several problems occur: the 
overall miss ratio may increase, the two 
caches must be kept consistent, and self- 
modifying code and execute instructions 
must be accommodated. 
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Virtual versus Real Addressing. In com- 
puter systems with virtual memory, the 
cache may potentially be accessed either 
with a real address (real address cache) or 
a virtual address (virtual address cache). If 
real addresses are to be used, the virtual 
addresses generated by the processor must 
first be translated as in the example above 
(Figure 2); this is generally done by a TLB. 
The TLB is itself a cache memory which 
stores recently used address translation in- 
formation, so that translation can occur 
quickly. Direct virtual address access is 
faster (since no translation is needed), but 
causes some problems. In a virtual address 
cache, inverse mapping (real to virtual ad- 
dress) is sometimes needed; this can be 
done by an RTB (reverse translation buffer). 

Cache Size. It is obvious that the larger 
the cache, the higher the probability of 
finding the needed information in it. Cache 
sizes cannot be expanded without limit, 
however, for several reasons: cost (the most 
important reason in many machines, espe- 
cially small ones), physical size (the cache 
must fit on the boards and in the cabinets), 
and access time. (The larger the cache, the 
slower it may become. Reasons for this are 
discussed in Section 2.12.). Later, we ad- 
dress the question of how large is large 
enough. 

Multilevel Cache. As the cache grows in 
size, there comes a point where it may be 
usefully split into two levels: a small, high- 
level cache, which is faster, smaller, and 
more expensive per byte, and a larger, sec- 
ond-level cache. This two-level cache struc- 
ture solves some of the problems that afflict 
caches when they become too large. 

Cache Bandwidth. The cache bandwidth 
is the rate at which data can be read from 
and written to the cache. The bandwidth 
must be sufficient to support the proposed 
rate of instruction execution and I/O. 
Bandwidth can be improved by increasing 
the width of the data path, interleaving the 
cache and decreasing access time. 

1. DATA AND MEASUREMENTS 

1.1 Rationale 

As noted earlier, our in-depth studies of 
some aspects of cache design and optimi- 
zation are based on extensive trace-driven 
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simulation. In this section, we explain the 
importance of this approach, and then dis- 
cuss the presentation of our results. 

One difficulty in providing definitive 
statements about aspects of cache opera- 
tion is that the effectiveness of a cache 
memory depends on the workload of the 
computer system; further, to our knowl- 
edge, there has never been any (public) 
effort to characterize that  workload with 
respect to its effect on the cache memory. 
Along the same lines, there is no generally 
accepted model for program behavior, and 
still less is there one for its effect on the 
uppermost level of the memory hierarchy. 
(But see AROR72 for some measurements, 
and LEHM78 and L~.HMS0, in which a model 
is used.) 

For these reasons, we believe that  it is 
possible for many aspects of cache design 
to make statements about relative perform- 
ance only when those statements are based 
on trace-driven simulation or direct mea- 
surement. We have therefore tried through- 
out, when examining certain aspects of 
cache memories, to present a large number 
of simulation results and, if possible, to 
generalize from those measurements. We 
have also made an effort to locate and 
reference other measurement and trace- 
driven simulation results reported in the 
literature. The reader may wish, for exam- 
ple, to read WIND73, in which that  author 
discusses the set of data used for his simu- 
lations. 

1.2 Trace-Driven Simulation 

Trace-driven simulation is an effective 
method for evaluating the behavior of a 
memory hierarchy. A trace is usually gath- 
ered by interpretively executing a program 
and recording every main memory location 
referenced by the program during its exe- 
cution. (Each address may be tagged in any 
way desired, e.g., instruction fetch, data 
fetch, data store.) One or more such traces 
are then used to drive a simulation model 
of a cache (or main) memory. By varying 
parameters of the simulation model, it is 
possible to simulate directly any cache size, 
placement, fetch or replacement algorithm, 
line size, and so forth. Programming tech- 
niques allow a range of values for many of 
these parameters to be measured simulta- 
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neously, during the same simulation run 
[GEcS74, MATT70, SLUT72]. Trace-driven 
simulation has been a mainstay of memory 
hierarchy evaluation for the last 12 to 15 
years; see BELA66 for an early example of 
this technique, or see POHM73. We assume 
only a single cache in the system, the one 
that we simulate. Note that  our model does 
not include the additional buffers com- 
monly found in the instruction decode and 
ALU portions of many CPUs. 

In many cases, trace-driven simulation is 
preferred to actual measurement. Actual 
measurements require access to a computer 
and hardware measurement tools. Thus, if 
the results of the experiments are to be 
even approximately repeatable, standalone 
time is required. Also, if one is measuring 
an actual machine, one is unable to vary 
most (if any) hardware parameters. Trace- 
driven simulation has none of these diffi- 
culties; parameters can be varied at will and 
experiments can be repeated and repro- 
duced precisely. The principal advantage of 
measurement over simulation is that  it re- 
quires 1 to 0.1 percent as much running 
time and is thus very valuable in establish- 
ing a genuine, workload-based, actual level 
of performance (for validation). Actual 
workloads also include supervisor code, in- 
terrupts, context switches, and other as- 
pects of workload behavior which are hard 
to imitate with traces. The results in 
this paper are mostly of the trace-driven 
variety. 

1.3 Simulation Evaluation 

There are two aspects to the performance 
of a cache memory. The first is access time: 
How long does it take to get information 
from or put information into the cache? It 
is very difficult to make exact statements 
about the effect of design changes on access 
time without specifying a circuit technology 
and a circuit diagram. One can, though, 
indicate trends, and we do that  throughout 
this paper. 

The second aspect of cache performance 
is the miss ratio: What fraction of all mem- 
ory references attempt to access something 
which is not resident in the cache memory? 
Every such miss requires that  the CPU wait 
until the desired information can be 
reached. Note that  the miss ratio is a func- 

tion not only of how the cache design affects 
the number of misses, but also of how the 
machine design affects the number of cache 
memory references. (A memory reference 
represents a cache access. A given instruc- 
tion requires a varying number of memory 
references, depending on the specific imple- 
mentation of the machine.) For example, a 
different number of memory references 
would be required if one word at a time 
were obtained from the cache than if two 
words were obtained at once. Almost all of 
our trace-driven studies assume a cache 
with a one-word data path (370 words = 4 
bytes, PDP-11 word ffi 2 bytes). The WA- 
TEX, WATFIV, FFT, and APL traces as- 
sume a two-word (eight-byte) data path. 
We measure the miss ratio and use it as the 
major figure of merit for most of our stud- 
ies. We display many of these results as 
x / y  plots of miss ratios versus cache size in 
order to show the dependence of various 
cache design parameters on the cache size. 

1.4 The Traces 

We have obtained 19 program address 
traces, 3 of them for the PDP-11 and the 
other 16 for the IBM 360/370 series of 
computers. Each trace is for a program 
developed for normal production use. 
(These traces are listed in the Appendix, 
with a brief description of each.) They have 
been used in groups to simulate multipro- 
gramming; five such groups were formed. 
Two represent a scientific workload (WFV, 
APL, WTX, FFT, and FGO1, FGO2, FGO3, 
FGO4), one a business (commercial) work- 
load (CGO1, CGO2, CGO3, PGO2), one a 
miscellaneous workload, including compi- 
lations and a utility program (PGO1, 
CCOMP, FCOMP, IEBDG), and one a 
PDP-11 workload (ROFFAS, EDC, 
TRACE). The miss ratio as a function of 
cache size is shown in Figure 5 for most of 
the traces; see SMIT79 for the miss ratios of 
the remaining traces. The miss ratios for 
each of the traces in Figure 5 are cold-start 
values based on simulations of 250,000 
memory references for the IBM traces, and 
333,333 for the PDP-11 traces. 

1.5 Simulation Methods 

Almost all of the simulations that were run 
used 3 or 4 traces and simulated multipro- 
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Figure 5. Individual  trace miss  ratios. 

gramming by switching the trace in use 
every Q time-units (where Q was usually 
10,000, a cache memory reference takes 1 
time-unit, and a miss requires 10). Multi- 
programmed simulations are used for two 
reasons: they are considered to be more 
representative of usual computer system 
operation than uniprogrammed ones, and 
they also allow many more traces to be 
included without increasing the number of 
simulation runs. An acceptable alternative, 
though, would have been to use unipro- 
gramming and purge the cache every Q 
memory references. A still better idea 
would have been to interleave user and 
supervisor code, but  no supervisor traces 
were available. 

All of the multiprogrammed simulations 
(i.e., Figures 6, 9-33) were run for one mil- 
lion memory references; thus approxi- 
mately 250,000 memory references were 
used from each of the IBM 370 traces, and 
333,333 from the PDP-11 traces. 

The standard number of sets in the sim- 
ulations was 64. The line size was generally 
32 bytes for the IBM traces and 16 bytes 
for the PDP-11 traces. 

2. ASPECTS OF CACHE DESIGN AND 
OPERATION 

2.1 Cache Fetch Algorithm 

2.1.1 Introduction 

As we noted earlier, one of the two aims of 
cache design is to minimize the miss ratio. 
Part of the approach to this goal is to select 
a cache fetch algorithm that is very likely 
to fetch the right information, if possible, 
before it is needed. The standard cache 
fetch algorithm is demand fetching, by 
which a line is fetched when and if it is 
needed. Demand fetches cannot be avoided 
entirely, but they can be reduced if we can 
sucessfully predict which lines will be 
needed and fetch them in advance. A cache 
fetch algorithm which gets information be- 
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fore it is needed is called a prefetch algo- 
rithm. 

Prefetch algorithms have been studied in 
detail in Smv78b. Below, we summarize 
those results and give one important exten- 
sion. We also refer the reader to several 
other works [AIcH76, BENN76, BEaG78, 
ENGE73, PERK80, and RAU76] for addi- 
tional discussions of some of these issues. 

We mention the importance of a tech- 
nique known as fetch bypass or load- 
through. When a miss occurs, it can be 
rectified in two ways: either the line desired 
can be read into the cache, and the fetch 
then reinitiated (this was done in the orig- 
inal Amdahl 470V/6 [SMIT78b]), or, better, 
the desired bytes can be passed directly 
from the main memory to the instruction 
unit, bypassing the cache. In this latter 
strategy, the cache is loaded, either simul- 
taneously with the fetch bypass or after the 
bypass occurs. This method is used in the 
470V/7,470V/8, and the IBM 3033. (A wra- 
paround load is usually used [KROFS0] in 
which the transfer begins with the bytes 
accessed and wraps around to the rest of 
the line.) 

2.1.2 Prefetching 

A prefetch algorithm must be carefully de- 
signed if the machine performance is to be 
improved rather than degraded. In order to 
show this more clearly, we must first define 
our terms. Let the prefetch ratio be the 
ratio of the number of lines transferred due 
to prefetches to the total number of pro- 
gram memory references. And let transfer 
ratio be the sum of the prefetch and miss 
ratios. There are two types of references to 
the cache: actual and prefetch lookup. Ac- 
tual references are those generated by a 
source external to the cache, such as the 
rest of the CPU (I-unit, E-unit) or the chan- 
nell.. A prefetch lookup occurs when the 
cache interrogates itself to see if a given 
line is resident or if it must be prefetched. 
The ratio of the total accesses to the cache 
(actual plus prefetch lookup) to the number 
of actual references is called the access 
ratio. 

There are costs associated with each of 
the above ratios. We can define these costs 
in terms of lost machine cycles per memory 

reference. Let D be the penalty for a de- 
mand miss (a miss that occurs because the 
target is needed immediately) which arises 
from machine idle time while the fetch 
completes. The prefetch cost, P, results 
from the cache cycles used (and thus other- 
wise unavailable) to bring in a prefetched 
line, used to move out (if necessary) a line 
replaced by a prefetch, and spent in delays 
while main memory modules are busy doing 
a prefetch move-in and move-out. The ac- 
cess cost, A, is the penalty due to additional 
cache prefetch lookup accesses which inter- 
fere with the executing program's use of the 
cache. A prefetch algorithm is effective only 
if the following equation holds: 

D * miss ratio (demand) 
> [D * miss ratio (prefetch) 

+ P * prefetch ratio 
+ A * (access ratio - 1)] (1) 

We should note also that the miss ratio 
when using prefetching may not be lower 
than the miss ratio for demand fetching. 
The problem here is cache memory pollu- 
tion; prefetched lines may pollute memory 
by expelling other lines which are more 
likely to be referenced. This issue is dis- 
cussed extensively and with some attempt 
at analysis in SMIT78c; in SMIT78b a num- 
ber of experimental results are shown. We 
found earlier [SMIT78b] that the major fac- 
tor in determining whether prefetching is 
useful was the line size. Lines of 256 or 
fewer bytes (such as are commonly used in 
caches) generally resulted in useful pre- 
fetching; larger lines (or pages) made pre- 
fetching ineffective.The reason for this is 
that a prefetch to a large line brings in a 
great deal of information, much or all of 
which may not be needed, and removes an 
equally large amount of information, some 
of which may still be in use. 

A prefetch algorithm has three major 
concerns: (1) when to initiate a prefetch, 
(2) which line(s) to prefetch, and (3) what 
replacement status to give the prefetched 
block. We believe that  in cache memories, 
because of the need for fast hardware im- 
plementation, the only possible line to pre- 
fetch is the immediately sequential one; 
this type of prefetching is also known as 
one block lookahead (OBL). That  is, if line 
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i is referenced, only line i + 1 is considered 
for prefetching. Other possibilities, which 
sometimes may result in a lower miss ratio, 
are not feasible for hardware implementa- 
tion in a cache at cache speeds. Therefore, 
we consider only OBL. 

If some lines in the cache have been 
referenced and others are resident only be- 
cause they were prefetched, then the two 
types of lines may be treated differently 
with respect to replacement. Further, a pre- 
fetch lookup may or may not alter the 
replacement status of the line examined. In 
this paper we have made no distinction 
between the effect of a reference or a pre- 
fetch lookup on the replacement status of 
a fine. That  is, a line is moved to the top of 
the LRU stack for its set if it is referenced, 
prefetched, or is the target of a prefetch 
lookup; LRU is used for replacement for all 
prefetch experiments in this paper. (See 
Section 2.2.2} The replacement status of 
these three cases was varied in SMIT78C, 
and in that  paper it was found that  such 
distinctions in replacement status had little 
effect on the miss ratio. 

There are several possibilities for when 
to initiate a prefetch. For example, a pre- 
fetch can occur on instruction fetches, data 
reads and/or data writes, when a miss oc- 
curs, always, when the last nth of a line is 
accessed, when a sequential access pattern 
has already been observed, and so on. Pre- 
fetching when a sequential access pattern 
has been observed or when the last nth 
segment (n = ½, ¼, etc.} of a line has been 
used is likely to be ineffective for reasons of 
timing: the prefetch will not be complete 
when the line is needed. In SMIT78b we 
showed that limiting prefetches only to in- 
struction accesses or only to data accesses 
is less effective than making all memory 
accesses eligible to start prefetches. See 
also BENN82. 

It is possible to create prefetch algo- 
rithms or mechanisms which employ infor- 
mation not available within the cache mem- 
ory. For example, a special instruction 
could be invented to initiate prefetches. No 
machine, to our knowledge, has such an 
instruction, nor have any evaluations been 
performed of this idea, and we are inclined 
to doubt its utility in most cases. A prefetch 
instruction that  specified the transfer of 
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large amounts of information would run the 
substantial risk of polluting the cache with 
information that  either would not be used 
for some time, or would not be used at all. 
If only a small amount of information were 
prefetched, the overhead of the prefetch 
might well exceed the value of the savings. 
However, some sophisticated versions of 
this idea might work. One such would be to 
make a record of the contents of the cache 
whenever the execution of a process was 
stopped, and after the process had been 
restarted, to restore the cache, or better, 
only its most recently used half. This idea 
is known as working set restoration and 
has been studied to some extent for paged 
main memories. The complexity of imple- 
menting it for cache makes it unlikely to be 
worthwhile, although further study is called 
for. 

Another possibility would be to recognize 
when a base register is loaded by the proc- 
ess and then to cause some number of lines 
(one, two, or three) following the loaded 
address to be prefetched [PoME80b, 
HoEv81a, HoEv81b]. Implementing this is 
easy, but architectural and software 
changes are required to ensure that the 
base registers are known or recognized, and 
modifications to them initiate prefetches. 
No evaluation of this idea is available, but 
a decreased miss ratio appears likely to 
result from its implementation. The effect 
could be very minor, though, and needs to 
be evaluated experimentally before any 
modification of current software or hard- 
ware is justified. 

We consider three types of prefetching in 
this paper: (1) always prefetch, (2) prefetch 
on misses, and (3) tagged prefetch. Always 
prefetch means that  on every memory ref- 
erence, access to line i (for all i) implies, a 
prefetch access for line i + 1. Thus the 
access ratio in this case is always 2.0. Pre- 
fetch on misses implies that  a reference to 
a block i causes a prefetch to block i + 1 if 
and only if the reference to block i itself 
was a miss. Here, the access ratio is 1 + 
miss ratio. Taggedprefetch is a little more 
complicated, and was first proposed by 
GIND77. We associate with each line a sin- 
gle bit called the tag, which is set to one 
whenever the line is accessed by a program. 
It is initially zero and is reset to zero when 
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the line is removed from the cache. Any 
line brought to the cache by a prefetch 
operation retains its tag of zero. When a tag 
changes from 0 to 1 (i.e., when the line is 
referenced for the first time after prefetch- 
ing or is demand-fetched), a prefetch is 
initiated for the next sequential line. The 
idea is very similar to prefetching on misses 
only, except that  a miss which did not occur 
because the line was prefetched (i.e., had 
there not been a prefetch, there would have 
been a miss to this line) also initiates a 
prefetch. 

Two of these prefetch algorithms were 
tested in SMIT78b: always prefetch and pre- 
fetch on misses. It was found that  always 
prefetching reduced the miss ratio by as 
much as 75 to 80 percent for large cache 
memory sizes, while increasing the transfer 
ratio by 20 to 80 percent. Prefetching only 
on misses was much less effective; it pro- 
duced only one half, or less, of the decrease 
in miss ratio produced by always prefetch- 
ing. The transfer ratio, of course, also in- 

creased by a much smaller amount, typi- 
cally 10 to 20 percent. 

The experiments in SMIT78b, while very 
thorough, used only one set of traces and 
also did not test the tagged prefetch algo- 
rithm. To remedy this, we ran additional 
experiments; the results are presented in 
Figure 6. (In this figure, 32-byte lines are 
used in all cases except for 16-byte lines for 
the PDP-11 traces, the task switch interval 
Q is 10K, and there are 64 sets in all cases.) 
It can be seen that  always prefetching cut 
the (demand) miss ratio by 50 to 90 percent 
for most cache sizes and tagged prefetch 
was almost equally effective. Prefetching 
only on misses was less than half as good as 
always prefetching or tagged prefetch in 
reducing the miss ratio. These results are 
seen to be consistent across all five sets of 
traces used. 

These experiments are confirmed by the 
results in Table 1. There we have tabulated 
the miss, transfer, and access ratios for the 
three prefetch algorithms considered, as 
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well as the demand miss ratio for each of 
the sets of traces used and for a variety of 
memory sizes. We observe from this table 
that always prefetch and tagged prefetch 
are both very successful in reducing the 
miss ratio. Tagged prefetch has the signifi- 
cant additional benefit of requiring only a 
small increase in the access ratio over de- 
mand fetching. The transfer ratio is com- 
parable for tagged prefetch and always pre- 
fetch. 

It is important to note that taking advan- 
tage of the decrease in miss ratio obtained 
by these prefetch algorithms depends 
very strongly on the effectiveness of the 
implementation. For example, the Amdahl 
470V/6-1 has a fairly sophisticated prefetch 
algorithm built in, but  because of the design 
architecture of the machine, the benefit of 
prefetch cannot be realized. Although the 
prefetching cuts the miss ratio in this ar- 
chitecture, it uses too many cache cycles 
and interferes with normal program ac- 
cesses to the cache. For that reason, pre- 
fetching is not used in the 470V/6-1 and is 
not available to customers. The more re- 
cent 470V/8, though, does contain a pre- 
fetch algorithm which is useful and im- 
proves machine performance. The V/8 
cache prefetch algorithm prefetches (only) 
on misses, and was selected on the basis 
that it causes very little interference with 
normal machine operation. (Prefetch is im- 
plemented in the Dorado [CLAR81], but  its 
success is not described.) 

The prefetch implementation must at all 
times minimize its interference with regular 
machine functioning. For example, prefetch 
lookups should not block normal program 
memory accesses. This can be accom- 
plished in three ways: (1) by instituting a 

second, parallel port to the cache, (2) by 
deferring prefetches until spare cache cy- 
cles are available, or (3) by not repeating 
recent prefetches. (Repeat prefetches can 
be eliminated by remembering the ad- 
dresses of the last n prefetches in a small 
auxiliary cache. A potential prefetch could 
be tested against this buffer and not issued 
if found. This should cut the number of 
prefetch lookups by 80 to 90 percent for 
small n). 

The move-in (transfer of a line from main 
to cache memory) and move-out (transfer 
from cache to main memory) required by a 

prefetch transfer can be buffered for per- 
formance during otherwise idle cache cy- 
cles. The main memory busy time engen- 
dered by a prefetch transfer seems unavoid- 
able, but  is not a serious problem. Also 
unavoidable is the fact that a prefetch may 
not be complete by the time the prefetched 
line is actually needed. This effect was ex- 
amined in SMIT78b and was found to be 
minor although noticeable. Further com- 
ments and details of a suggested implemen- 
tation are found in SMIT78b. 

We note briefly that it is possible to 
consider the successful use of prefetching 
as an indication that the line size is too 
small; prefetch functions much as a larger 
line size would. A comparison of the results 
in Figure 6 and Table I with those in Fig- 
ures 15-21 shows that prefetching on misses 
for 32-byte lines gives slightly better results 
than doubling the line size to 64 bytes. 
Always prefetching and tagged prefetch are 
both significantly better than the larger line 
size without prefetching. Therefore, it 
would appear that prefetching has benefits 
in addition to those that it provides by 
simulating a larger line size. 

2.2 Placement Algorithm 

The cache itself is not a user-addressable 
memory, but serves only as a buffer for 
main memory. Thus in order to locate an 
element in the cache, it is necessary to have 
some function which maps the main mem- 
ory address into a cache location, or to 
search the cache associatively, or to per- 
form some combination of these two. The 
placement algorithm determines the map- 
ping function from main memory address 
to cache location. 

The most commonly used form of place- 
ment algorithm is called set-associative 
mapping. It involves organizing the cache 
into S sets of E elements per set (see Figure 
7). Given a memory address r( i ) ,  a function 
f will map r( i )  into a set s( i ) ,  so that  
f ( r ( i ) )  ffi s ( i ) .  The reason for this type of 
organization may be oberved by letting 
either S or E become one. If S becomes 
one, then the cache becomes a fully asso- 
ciative memory. The problem is that the 
large number of lines in a cache would make 
a fully associative memory both slow and 
very expensive. (Our comments here apply 
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to non-VLSI implementations. VLSI MOS 
facilitates broad associative searches.) Con- 
versely, if E becomes one, in an organiza- 
tion known as direct mapping [CONT69], 
there is only one element per set. (A more 
general classification has been proposed by 
HARD75.) Since the mapping function f is 
many to one, the potential for conflict in 
this latter case is quite high: two or more 
currently active lines may map into the 
same set. It is clear that, on the average, 
the conflict and miss ratio decline with 
increasing E, (as S * E remains constant), 
while the cost and access time increase. An 
effective compromise is to select E in the 
range of 2 to 16. Some typical values de- 
pending on certain cost and performance 
tradeoffs, are: 2 (Amdahl 470V/6-1, VAX 
11/780, IBM 370/158-1}, 4 (IBM 370/168-1, 
Amdahl 470V/8, Honeywell 66/80, IBM 
370/158-3), 8 (IBM 370/168-3, Amdahl 
470V/7), 16 (IBM 3033). 

Another placement algorithm utilizes a 
sector buffer [CONT68], as in the IBM 360/ 
85. In this machine, the cache is divided 
into 16 sectors of 1024 bytes each. When a 
word is accessed for which the correspond- 
ing sector has not been allocated a place in 
the cache (the sector search being fully 
associative), a sector is made available (the 
LRU sector--see Section 2.4), and a 64- 
byte block containing the information ref- 
erenced is transferred. When a word is ref- 
erenced whose sector is in the cache but 
whose block is not, the block is simply 
fetched. The hit ratio for this algorithm is 
now generally known to be lower than that  
of the set-associative organization (Private 
Communication: F. Bookett) and hence we 
do not consider it further. (This type of 
design may prove appropriate for on-chip 
microprocessor caches, since the limiting 
factor in many microprocessor systems is 

Memory Address 
b I 

I I . . . I  !J . - ' l  I), I '"1 I !  
Set number Byte within hne 

Figure 8. The set is selected by the low-order bits of 
the line number. 

bus bandwidth. That  topic is currently un- 
der study.) 

There are two aspects to selecting a 
placement algorithm for the cache. First, 
the number of sets S must be chosen while 
S * E ffi M remains constant, where M is 
the number of lines in the cache. Second, 
the mapping function f, which translates a 
main memory address into a cache set, 
must be specified. The second question is 
most fully explored by SMIT78a; we sum- 
marize those results and present some new 
experimental measurements below. A num- 
ber of other papers consider one or both of 
these questions to some extent, and we refer 
to reader to those [CAMP76, CONT68, 
CONT69, FUKU77, KAPL73, LIPT68, 
MATT71, STRE76, THAK78] for additional 
information. 

2.2.1 Set Selection Algorithm 

Several possible algorithms are used or 
have been proposed for mapping an address 
into a set number. The simplest and most 
popular is known as bit selection, and is 
shown in Figure 8. The number of sets S is 
chosen to be a power of 2 (e.g., S = 2k). 
If there are 2 J bytes per line, the j bits 
1 . . .  j select the byte within the line, and 
bitsj  + 1 . . .  j + k select the set. Performing 
the mapping is thus very simple, since all 
that is required is the.decoding of a binary 
quantity. Bit-selection is used in all com- 
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puters to our knowledge, including partic- 
ularly all Amdahl and IBM computers. 

Some people have suggested that  be- 
cause bit selection is not random, it might 
result in more conflict than a random al- 
gorithm, which employs a pseudorandom 
calculation (hashing) to map the line into 
a set. It is difficult to generate random 
numbers quickly in hardware, and the usual 
suggestion is some sort of f o l d i n g  of the 
address followed by exclusive oring of the 
bits. That  is, if b i ts j  + 1 . . .  b are available 
for determining the line location, then these 
b - j bits are grouped into k groups, and 
within each group an Exclusive Or is per- 
formed. The resulting k bits then designate 
a set. (This algorithm is used in TLBs--see 
Section 2.16.) In our simulations discussed 
later, we have used a randomizing function 
of the form s ( i )  = a * r (i) mod 2 k. 

Simulations were performed to compare 
random and set-associative mapping. The 
results are shown in Figure 9. (32 bytes is 
the line size used in all cases except the 

PDP-11 traces, for which 16 bytes are used.) 
It can be observed that random mapping 
seems to have a small advantage in most 
cases, but that  the advantage is not signifi- 
cant. Random mapping would probably be 
preferable to bit-selection mapping if it 
could be done equally quickly and inexpen- 
sively, but several extra levels of logic apo 
pear to be necessary. Therefore, bit selec- 
tion seems to be the most desirable algo- 
rithm. 

2.2.2 Set Size and the Number of Sets 

There are a number of considerations in 
selecting values for the number of sets (S) 
and the set size (E). (We note that  S and E 
are inversely related in the equation S * E 
= M, where M is the number of lines in the 
cache (M ffi 2 m).) These considerations have 
to do with lookup time, expense, miss ratio, 
and addressing. We discuss each below. 

The first consideration is that  most cache 
memories (e.g., Amdahl, IBM) are ad- 
dressed using the real address of the data, 
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although the CPU produces a virtual ad- 
dress. The most common mechanism for 
avoiding the time to translate the virtual 
address to a real one is to overlap the cache 
lookup and the translation operation (Fig- 
ures 1 and 2). We observe the following: the 
only address bits that get translated in a 
virtual memory system are the ones that 
specify the page address; the bits that  spec- 
ify the byte within the page are invariant 
with respect to virtual memory translation. 
Let there be 2 j bytes per line and 2 k sets in 
the cache, as before. Also, let there be 2 p 
bytes per page. Then (assuming bit-selec- 
tion mapping), p - j bits are immediately 
available to choose the set. If (p - j )  _> k, 
then the set can be selected immediately, 
before translation; if (p - j )  < k, then the 
search for the cache line can only be nar- 
rowed down to a small number 2 (k-p +J) of 
sets. It is quite advantageous if the set can 
be selected before translation (since the 
associative search can be started immedi- 
ately upon completion of translation); thus 
there is a good reason to attempt to keep 
the number of sets less than or equal to 
2 (p-J) .  (We note, though, that there is an 
alternative. The Amdahl 470V/6 has 256 
sets, but only 6 bits immediately available 
for set selection. The machine reads out 
both elements of each of the four sets which 
could possibly be selected, then after the 
.translation is complete, selects one of those 
sets before making the associative search. 
See also LEE80.) 

S e t  s i z e  is just a different term for the 
scope of the associative search. The smaller 
the degree of associative search, the faster 
and less expensive the search (except, as 
noted above, for MOS VLSI). This is be- 
cause there are fewer comparators and sig- 
nal lines required and because the replace- 
ment algorithm can be simpler and faster 
(see Section 2.4). Our second consideration, 
expense, suggests that therefore the smaller 
the set size, the better. We repeat, though, 
that the set size and number of sets are 
inversely related. If the number of sets is 
less than or equal to 2 (p -J),then the set size 
is greater than or equal to 2 (m -P +J) lines. 

The third consideration in selecting set 
size is the effect of the set size on the miss 
ratio. In [SMIT78a] we developed a model 
for this effect. We summarize the results of 
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that model here, and then we present some 
new experimental results. 

A commonly used model for program 
behavior is what is known as the LRU 
Stack Model. (See COFF73 for a more thor- 
ough explanation and some basic results.) 
In this model, the pages or lines of the 
program's address space are arranged in a 
list, with the most recently referenced line 
at the top of the list, and with the lines 
arranged in decreasing recency of reference 
from top to bottom. Thus, referencing a 
line moves it to the top of the list and 
moves all of the lines between the one 
referenced and the top line down one posi- 
tion. A reference to a line which is the ith 
line in the list (stack) is referred to as a 
stack distance of i. This model assumes 
that the stack distances are independently 
and identically drawn from a distribution 
(q(j)), j ffi 1 , . . . ,  n. This model has been 
shown not to hold in a formal statistical 
sense [LEwI71, LEw173], but the author 
and others have used this model with good 
success in many modeling efforts. 

Each set in the cache constitutes a sepa- 
rate associative memory. If each set is man- 
aged with LRU replacement, it is possible 
to determine the probability of referencing 
the kth most recently used item in a given 
set as a function of the overall LRU stack 
distance probability distribution {q(j)}. 
Letp(i,  S) be the probability of referencing 
the ith most recently referenced line in a 
set, given S sets. Then, we show thatp(i ,  S) 
may be calculated from the {q(i)} with the 
following formula: 

p( i ,  S ) f l Y ,  ql ( l / S )  i-I (S  - l / S )  J-+ - 
J E t  

Note that p( i ,  1) ffi q(i) .  In SMIT78a this 
model was shown to give accurate predic- 
tions of the effect of set size. 

Experimental results are provided in Fig- 
ures 10-14. In each of these cases, the num- 
ber of sets has been varied. The rather 
curious shape of the curves (and the simi- 
larities between different plots) has to do 
with the task-switch interval and the fact 
that round-robin scheduling was used. 
Thus, when a program regained control of 
the processor, it might or might not, de- 
pending on the memory capacity, find any 
of its working set still in the cache. 
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Based on Figures 10-14, Figure 33, and 
the information given by SMIT78a, we be- 
lieve that the minimum number of elements 
per set in order to get an acceptable miss 
ratio is 4 to 8. Beyond 8, the miss ratio is 
likely to decrease very little if at all. This 
has also been noted for TLB designs 
[SATY81]. The issue of maximum feasible 
set size also suggests that a set size of more 
than 4 or 8 will be inconvenient and expen- 
sive. The only machine known to the author 
with a set size larger than 8 is the IBM 3033 
processor. The reason for such a large set 
size is that  the 3033 has a 64-kbyte cache 
and 64-byte lines. The page size is 4096 
bytes, which leaves only 6 bits for selecting 
the set, if the translation is to be over- 
lapped. This implies that  16 lines are 
searched, which is quite a large number. 
The 3033 is also a very performance-ori- 
ented machine, and the extra expense is 
apparently not a factor. 

Values for the set size (number of ele- 
ments per set) and number of sets for a 
number of machines are as follows: Amdahl 
470V/6 (2, 256), Amdahl 470V/7 (8, 128), 
Amdahl 470V/8 (4, 512), IBM 370/168-3 (8, 

128), IBM 3033 (16, 64), DEC PDP-11/70 
(2, 256), DEC VAX 11/780 (2, 512), Itel 
AS/6 (4, 128) [Ross78], Honeywell 66/60 
and 66/80 (4, 128) [DIET74]. 

2.3 Line Size 

One of the most visible parameters to be 
chosen for a cache memory is the line size. 
Just as with paged main memory, there are 
a number of trade-offs and no single crite- 
rion dominates. Below we discuss the ad- 
vantages of both small and large line sizes. 
Additional information relating to this 
problem may be found in other papers 
[ALSA78, ANAC67, GIBS67, KAPL73, 
MATT71, MEAD70, and STRE76]. 

Small line sizes have a number of advan- 
tages. The transmission time for moving a 
small line from main memory to cache is 
obviously shorter than that for a long line, 
and if the machine has to wait for the full 
transmission time, short lines are better. (A 
high-performance machine will use fetch 
bypass; see Section 2.1.1.) The small line is 
less likely to contain unneeded information; 
only a few extra bytes are brought in along 
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Figure 1 5. Miss  rat ios as a funct ion of the  line size and  m e m o r y  capacity.  

with the actually requested information. 
The data width of main memory should 
usually be at least as wide as the line size, 
since it is desirable to transmit an entire 
line in one main memory cycle time. Main 
memory width can be expensive, and short 
lines minimize this problem. 

Large line sizes, too, have a number of 
advantages. If more information in a line is 
actually being used, fetching it all at one 
time (as with a long line) is more efficient. 
The number of lines in the cache is smaller, 
so there are fewer logic gates and fewer 
storage bits (e.g., LRU bits} required to 
keep and manage address tags and replace- 
ment status. A larger line size permits fewer 
elements/set in the cache (see Section 2.2), 
which minimizes the associative search 
logic. Long lines also minimize the fre- 
quency of "line crossers," which are re- 
quests that span the contents of two lines. 
Thus in most machines, this means that 
two separate fetches are required within 
the cache (this is invisible to the rest of the 
machine.) 

Note that the advantages cited above for 

both long and short lines become disadvan- 
tages for the other. 

Another important criterion for selecting 
a line size is the effect of the line size on 
the miss ratio. The miss ratio, however, 
only tells part of the story. It is inevitable 
that longer lines make processing a miss 
somewhat slower (no matter how efficient 
the overlapping and buffering), so that  
translating a miss ratio into a measure of 
machine speed is tricky and depends on the 
details of the implementation. The reader 
should bear this in mind when examining 
our experimental results. 

Figures 15-21 show the miss ratio as a 
function of line size and cache size for five 
different sets of traces. Observe that  we 
have also varied the multiprogramming 
quantum time Q. We do so because the 
miss ratio is affected by the task-switch 
interval nonuniformly with line size. This 
nonuniformity occurs because long line 
sizes load up the cache more quickly. Con- 
sider two cases. First, assume that most 
cache misses result from task switching. In 
this case, long lines load up the cache more 
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quickly than small ones. Conversely, as- 
sume that most misses occur in the steady 
state; that is, that  the cache is entirely full 
most of the time with the current process 
and most of the misses occur in this state. 
In this latter case, small lines cause less 
memory pollution and possibly a lower miss 
ratio. Some such effect is evident when 
comparing Figures 18 and 19 with Figures 
20 and 21, but explanation is required. A 
quantum of 10,000 results not in a program 
finding an empty cache, but in it finding 
some residue of its previous period of activ- 
ity {since the degree of multiprogramming 
is only 3 or 4); thus small lines are relatively 
more advantageous in this case than one 
would expect. 

The most interesting number to be 
gleaned from Figures 15-21 is the line size 
which causes the minimum miss ratio for 
each memory size. This information has 
been collected in Table 2. The consistency 
displayed there for the 360/370 traces is 
surprising; we observe that one can divide 
the cache size by 128 or 256 to get the 
minimum miss ratio line size. This rule does 
not apply to the PDP-11 traces. Programs 
written for the PDP-11 not only use a dif- 
ferent instruction set, but they have been 
written to run in a small (64K) address 
space. Without more data, generalizations 
from Figures 20 and 21 cannot be made. 

In comparing the minimum miss ratio 
line sizes suggested by Table 2 and the 
offerings of the various manufacturers, one 
notes a discrepancy. For example, the IBM 
168-1 (32-byte line, 16K buffer) and the 
3033 (64-byte line, 64K buffer) both have 
surprisingly small line sizes. The reason for 
this is almost certainly that the transmis- 
sion time for longer lines would induce a 
performance penalty, and the main mem- 
ory data path width required would be too 
large and therefore too expensive. 

Kumar [KuMA79] also finds that  the line 
sizes in the IBM 3033 and Amdahl 470 are 
too small. He creates a model for the work- 
ing set size w of a program, of the form w ( k )  
= c / k  a, where k is the block size, and c and 
a are constants. By making some conven- 
ient assumptions, Kumar derives from this 
an expression for the miss ratio as a func- 
tion of the block size. Both expressions are 
verified for three traces, and a is measured 
to be in the range of 0.45 to 0.85 over the 
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Table 2. Line Size (in bytes) Giving Minimum Miss 
Rat=o, for Given Memory Capacity and Traces 

Minimum miss 
Memory size ratio line size 

Traces Quantum (kbytes) (bytes) 

CGO1 10,000 4 32 
CGO2 8 64 
CGO3 16 128 
PGO2 32 256 

64 256 
PGO 10,000 4 32 
CCOMP 8 64 
FCOMP 16 128 
IEBDG 32 256 

64 256 
FGO1 10,000 4 32 
FG02 8 64 
FG03 16 128 
FG04 32 256 

64 128 
WFV 10,000 4 32 
APL 8 64 
WTX 16 128 
FFT 32 256 

64 128 
250,000 4 32 

8 64 
16 64 
32 128 
64 256 

ROFFAS 10,000 2 16 
EDC 4 32 
TRACE 8 16 

16 32 
333,333 2 8 

4 16 
8 32 

16 64 

three traces and various working set win- 
dow sizes. He then found that  for those 
machines, the optimum block size lies in 
the range 64 to 256 bytes. 

It is worth considering the relationship 
between prefetching and line size. Prefetch- 
ing can function much as a larger line size 
would. In terms of miss ratio, it is usually 
even better; although a prefetched line that 
is not being used can be swapped out, a half 
of a line that is not being used cannot be 
removed independently. Comparisons be- 
tween the results in Section 2.1 and this 
section show that  the performance im- 
provement from prefetching is significantly 
larger than that  obtained by doubling the 
line size. 

Line sizes in use include: 128 bytes (IBM 
3081 [IBM82]), 64 bytes (IBM 3033), 32 
bytes (Amdahl 470s, Itel AS/6, IBM 370/ 
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168), 16 bytes (Honeywell 66/60 and 
66/80), 8 bytes (DEC VAX 11/780), 4 bytes 
(PDP-11/70). 

2.4 Replacement Algorithm 

2.4.1 Classification 

In the steady state, the cache is full, and a 
cache miss implies not only a fetch but also 
a replacement; a line must be removed from 
the cache. The problem of replacement has 
been studied extensively for paged main 
memories (see SMIT78d for a bibliography), 
but the constraints on a replacement algo- 
rithm are much more stringent for a cache 
memory. Principally, the cache replace- 
ment algorithm must be implemented en- 
tirely in hardware and must execute very 
quickly, so as to have no negative effect on 
processor speed. The set of feasible solu- 
tions is still large, but many of them can be 
rejected on inspection. 

The usual classification of replacement 
algorithms groups them into usage-based 
versus non-usage-based, and fixed-space 
versus variable-space. Usage-based algo- 
rithms take the record of use of the line (or 
page) into account when doing replace- 
ment; examples of this type of algorithm 
are LRU (least recently used) [COFF73] and 
Working Set [DEI~N68]. Conversely, non- 
usage-based algorithms make the replace- 
ment decision on some basis other than and 
not related to usage; FIFO and Rand {ran- 
dom or pseudorandom) are in this class. 
(FIFO could arguably be considered usage- 
based, but since reuse of a line does not 
improve the replacement status of that  line, 
we do not consider it as being such.) Fixed- 
space algorithms assume that  the amount 
of memory to be allocated is fixed; replace- 
ment simply consists of selecting a specific 
line. If the algorithm varies the amount of 
space allocated to a specific process, it is 
known as a variable-space algorithm, in 
which case, a fetch does not imply a re- 
placement, and a swap-out can take place 
without a corresponding fetch. Working Set 
and Page Fault Frequency [CHu76] are 
variable-space algorithms. 

The cache memory is fixed in size, and it 
is usually too small to hold the working set 
of more than one process (although the 
470V/8 and 3033 may be exceptions). For 

this reason, we believe that  variable-space 
algorithms are not suitable for a cache 
memory. To our knowledge, no variable- 
space algorithm has ever been used in a 
cache memory. 

It should also be clear that  in a set-asso- 
ciative memory, replacement must take 
place in the same set as the fetch. A line is 
being added to a given set because of the 
fetch, and thus a line must be removed. 
Since a line maps uniquely into a set, the 
replaced line in that set must be entirely 
removed from the cache. 

The set of acceptable replacement algo- 
rithms is thus limited to fixed-space algo- 
rithms executed within each set. The basic 
candidates are LRU, FIFO, and Rand. It is 
our experience (based on prior experiments 
and on material in the literature) that  non- 
usage-based algorithms all yield compara- 
ble performance. We have chosen FIFO 
within set as our example of a non-usage- 
based algorithm. 

2.4.2 Comparisons 

Comparisons between FIFO and LRU ap- 
pear in Table 3, where we show results 
based on each set of traces for varying 
memory sizes, quantum sizes, and set num- 
bers. We found (averaging over all of the 
numbers there) that  FIFO yields a miss 
ratio approximately 12 percent higher than 
LRU, although the ratios of FIFO to LRU 
miss ratio range from 0.96 to 1.38. This 12 
percent difference is significant in terms of 
performance, and LRU is clearly a better 
choice if the cost of implementing LRU is 
small and the implementation does not slow 
down the machine. We note that in mini- 
computers (e.g., PDP-11) cost is by far the 
major criterion; consequently, in such sys- 
tems, this performance difference may not 
be worthwhile. The interested reader will 
find additional performance data and dis- 
cussion in other papers [CHIA75, FURS78, 
GIBS67, LEE69, and SIRE76]. 

2.4.3 Implementation 

It is important to be able to implement 
LRU cheaply, and so that  it executes 
quickly; the standard implementation in 
software using linked lists is unlikely to be 
either cheap or fast. For a set size of two, 
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Cache Memories 

Table 3. • Miss Ratio Comparison for FIFO and LRU (within set) Replacement 

• 4 9 9  

Memory size Quantum Number of Miss ratio Miss ratio Ratio FIFO/ 
(kbytes) SLZe sets LRU FIFO LRU Traces 

16 10K 64 0.02162 0.02254 1.04 WFV 
32 10K 64 0 00910 0.01143 1.26 APL 
16 250K 64 0 00868 0.01036 1.19 WTX 
32 250K 64 0.00523 0.00548 1.05 FFT 
16 10K 256 0.02171 0.02235 1.03 
32 10K 256 0.01057 0.01186 1.12 
4 10K 64 0 00845 0.00947 1.12 ROFFAS 
8 10K 64 0 00255 0.00344 1.35 EDC 
4 333K 64 0.00173 0.00214 1.24 TRACE 
8 333K 64 0.00120 0.00120 1.00 
4 10K 256 0.0218 0.02175 0.998 
8 10K 256 0.00477 0 00514 1.08 
4 333K 256 0.01624 0.01624 1.00 
8 333K 256 0.00155 0.00159 1.03 

64 10K 64 0.01335 0.01839 1.38 COO1 
128 10K 64 0.01147 0.01103 0.96 COO2 
64 10K 256 0.01461 0.01894 1.30 CGO3 

128 10K 256 0.01088 0.01171 1.08 PGO2 
16 10K 64 0 01702 0.01872 1.10 FOOl 
32 10K 64 0.00628 0.00867 1.38 FGO2 
16 10K 256 0.01888 0.01934 1.02 FGO3 
32 10K 256 0.00857 0.00946 1.10 FGO4 
16 10K 64 0.03428 0.03496 1.02 POOl 
32 10K 64 0.02356 0.02543 1.08 CCOMP 
16 10K 256 0 03540 0.03644 1.03 FCOMP 
32 10K 256 0.02394 0.02534 1.06 IEBDG 

Average 1.116 

only a hot /co ld  (toggle) bit is required. 
More generally, replacement in a set of E 
elements can be effectively implemented 
with E ( E  - 1)/2 bits of status. (We note 
tha t  [log 2E!] bits of status are the theo- 
retical minimum.) One creates an upper- 
left triangular matrix (without the diagonal, 
tha t  is, i + j < E)  which we will call R and 
refer to as R ( i , j ) .  When line i is referenced, 
row i of R(i ,  j )  is set to 1, and column i of 
R(], i) is set to 0. The LRU line is the one 
for which the row is entirely equal to 0 (for 
those bits in the row; the row may be 
empty) and for which the column is entirely 
1 (for all the bits in the column; the column 
may be empty). This algorithm can be eas- 
ily implemented in hardware, and executes 
rapidly. See MARU75 for an extension and 
MARU76 for an alternative. 

The  above algorithm requires a number  
of LRU status bits tha t  increases with the 
square of the set size. This number  is ac- 
ceptable for a set size of 4 (470V/8, Itel A S /  
6), marginal for a set size of eight (470V/7), 
and unacceptable for a set size of 16. For 
tha t  reason, IBM has chosen to implement  

approximations to L R U  in the 370/168 and 
the 3033. In the 370/168-3 [IBM75], the set 
size is 8, with the 8 lines grouped in 4 pairs. 
The LRU pair of lines is selected, and then 
the LRU block of the pair is the one used 
for replacement. This algorithm requires 
only 10 bits, ra ther  than the 28 needed by 
the full LRU. A set size of 16 is found in 
the 3033 [IBM78]. The  16 lines tha t  make 
up a set are grouped into four groups of two 
pairs of two lines. The  line to be replaced is 
selected as follows: (1) find the L R U  group 
of four lines (requiring 6 bits of status), (2) 
find the LRU pair of the two pairs (1 bit 
per group, thus 4 more bits), and (3) find 
the LRU line of tha t  pair (1 bit  per pair, 
thus 8 more bits). In  all, 18 bits are used for 
this modified L R U  algorithm, as opposed 
to the 120 bits required for a full LRU. No 
experiments have been published compar- 
ing these modified L R U  algorithms with 
genuine LRU, but  we would expect to find 
no measurable difference. 

Implementing either FIFO or Rand is 
much easier than implementing LRU.  
FIFO is implemented by keeping a modulo 
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Table 4. Percentage of Memory References That Are Reads, Writes, and 
Instruction Fetches for Each Trace ~ 

Partial trace Full trace 

Trace Data  read Data  write I F E T C H  Data  read Da ta  write I F E T C H  

WATFIV 23.3 16.54 60.12 - -  15.89 - -  
APL 21.5 8.2 70.3 - -  8.90 - -  
W A T E X  24.5 9.07 66.4 - -  7.84 - -  
FFT1 23.4 7.7 68.9 - -  7.59 - -  
ROFFAS 37.5 4.96 57.6 38.3 5.4 56.3 
EDC 30 4 10.3 59.2 29.8 11.0 59.2 
TRACE 47.9 10.2 41.9 48.6 10.0 41.3 
CGO1 41.5 34.2 24.3 42.07 34.19 23.74 
CG02 41.1 32.4 26.5 36.92 15.42 47.66 
CGO3 37.7 22.5 39.8 37.86 22.55 39.59 
PG02 31.6 15.4 53.1 30.36 12.77 56.87 
FGO1 29.9 17.6 52.6 30.57 11.26 58.17 
FG02 30 6 5.72 63 7 32.54 10.16 57.30 
FG03 30.0 12.8 57.2 30.60 13.25 56.15 
FG04 28.5 17.2 54.3 28 38 17.29 54.33 
PGO1 29.7 19.8 50.5 28.68 16.93 54.39 
CCOMP1 30.8 9.91 59.3 33.42 17.10 49.47 
FCOMP1 29.5 20.7 50.0 30.80 15.51 53.68 
IEBDG 39.3 28.1 32.7 39.3 28.2 32.5 
Average 32.0 15.96 52 02 34.55 14.80 49.38 
Stand. Dev. 7.1 8.7 13.4 5.80 7.21 10.56 

a Partial trace results are for first 250,000 memory  references for IBM 370 traces, and 333,333 memory  
references for PDP-11 traces. Full trace results refer to entire length of memory  address trace (one to ten 
million memory  percent references). 

E (E elements/set) counter for each set; it 
is incremented with each replacement and 
points to the next line for replacement. 
Rand is simpler still. One possibility is to 
use a single modulo E counter, incremented 
in a variety of ways: by each clock cycle, 
each memory reference, or each replace- 
ment anywhere in the cache. Whenever a 
replacement is to occur, the value of the 
counter is used to indicate the replaceable 
line within the set. 

2.5 Write-Through versus Copy-Back 

When the CPU executes instructions that 
modify the contents of the current address 
space, those changes must eventually be 
reflected in main memory; the cache is only 
a temporary buffer. There are two general 
approaches to updating main memory: 
stores can be immediately transmitted to 
main memory (called write-through or 
store-through), or stores can initially only 
modify the cache, and can later be reflected 
in main memory (copy-back). There are 
issues of performance, reliability, and com- 
plexity in making this choice; these issues 
are discussed in this section. Further infor- 
mation can be found in the literature 

[AGRA77a, BELL74, POHM75, and R1s77]. A 
detailed analysis of some aspects of this 
problem is provided in SMIT79 and YEN81. 

To provide an empirical basis for our 
discussion in this section, we refer the 
reader to Table 4. There we show the per- 
centage of memory references that  resulted 
from data reads, data writes, and instruc- 
tion fetches for each of the traces used in 
this paper. The leftmost three columns 
show the results for those portions of the 
traces used throughout this paper; that  is, 
the 370 traces were run for the first 250,000 
memory references and the PDP-11 traces 
for 333,333 memory references. When avail- 
able, the results for the entire trace (1 to 10 
million memory references) are shown in 
the rightmost columns. The overall average 
shows 16 percent of the references were 
writes, but the variation is wide (5 to 34 
percent) and the values observed are clearly 
very dependent on the source language and 
on the machine architecture. In SMIT79 we 
observed that  the fraction of lines from the 
cache that  had to be written back to main 
memory (in a copy-back cache) ranged 
from 17 to 56 percent. 

Several issues bear on the trade-off be- 
tween write-through and copy-back. 
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1. Main Memory Traffic. Copy-back al- 
most always results in less main memory 
traffic since write-through requires a main 
memory access on every store, whereas 
copy-back only requires a store to main 
memory if the swapped out line {when a 
miss occurs) has been modified. Copy-back 
generally, though, results in the entire line 
being written back, rather than just one or 
two words, as would occur for each write 
memory reference (unless "dirty bits" are 
associated with partial lines; a dirty bit, 
when set, indicates the line has been mod- 
ified while in the cache). For example, as- 
sume a miss ratio of 3 percent, a line size of 
32 bytes, a memory module width of 8 
bytes, a 16 percent store frequency, and 30 
percent of all cache lines requiring a copy- 
back operation. Then the ratio of main 
memory store cycles to total memory ref- 
erences is 0.16 for write-through and 0.036 
for copy-back. 

2. Cache Consistency. If store-through is 
used, main memory always contains an up- 
to-date copy of all information in the sys- 
tem. When there are multiple processors in 
the system (including independent chan- 
nels), main memory can serve as a common 
and consistent storage place, provided that 
additional mechanisms are used. Other- 
wise, either the cache must be shared or a 
complicated directory system must l~e em- 
ployed to maintain consistency. This sub- 
ject is discussed further in Section 2.7, but 
we note here that store-through simplifies 
the memory consistency problem. 

3. Complicated Logic. Copy-back may 
complicate the cache logic. A dirty bit is 
required to determine when to copy a line 
back. In addition, arrangements have to be 
made to perform the copy-back before the 
fetch (on a miss) can be completed. 

4. Fetch-on-write. Using either copy- 
back or write-through still leaves undecided 
the question of whether to fetch-on-write 
or not, if the information referenced is not 
in the cache. With copy-back, one will usu- 
ally fetch-on-write, and with write-through, 
usually not. There are additional related 
possibilities and problems. For example, 
when using write-through, one could not 
only not fetch-on-write but one could 
choose actually to purge the modified line 
from the cache should it be found there. If 
the line is found in the cache, its replace- 
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ment status (e.g., LRU) may or may not be 
updated. This is considered in item 6 below. 

5. Buffering. Buffering is required for 
both copy-back and write-through. In copy- 
back, a buffer is required so that  the line to 
be copied back can be held temporarily in 
order to avoid interfering with the fetch. 
One optimization worth noting for copy- 
back is to use spare cache/main memory 
cycles to do the copy-back of "dirty" {mod- 
ified) fines [BALZ81b]. For write-through, it 
is important to buffer several stores so that  
the CPU does not have to wait for them to 
be completed. Each buffer consists of a data 
part (the data to be stored) and the address 
part (the target address). In SMIT79 it was 
shown that a buffer with capacity of four 
provided most of the performance improve- 
ment possible in a write-through system. 
This is the number used in the IBM 3033. 
We note that  a great deal of extra logic may 
be required if buffering is used. There is not 
only the logic required to implement the 
buffers, but also there must be logic to test 
all memory access addresses and match 
them against the addresses in the address 
part of the buffers. That  is, there may be 
accesses to the material contained in the 
store buffers before the data in those 
buffers has been transferred to main mem- 
ory. Checks must be made to avoid possible 
inconsistencies. 

6. Reliability. If store-through is used, 
main memory always has a valid copy of 
the total memory state at any given time. 
Thus, if a processor fails (along with its 
cache), a store-through system can often be 
restored more easily. Also, if the only valid 
copy of a line is in the cache, an error- 
correcting code is needed there. If a cache 
error can be corrected from main memory, 
then a parity check is sufficient in the 
cache. 

Some experiments were run to look at 
the miss ratio for store-through and copy- 
back. A typical example is shown in Figure 
22; the other sets of traces yield very similar 
results. (In the case of write-through, we 
have counted each write as a miss.) It is 
clear that write-through always produces a 
much higher miss ratio. The terms reorder 
and no reorder specify how the replace- 
ment status of the lines were updated. 
Reorder means that  a modified line is 
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moved to the top of the LRU stack within 
its set in the cache. No reorder implies that  
the replacement status of the line is not 
modified on write. From Figure 22, it can 
be seen that  there is no significant differ- 
ence in the two policies. For this reason, 
the IBM 3033, a write-through machine, 
does not update the LRU status of lines 
when a write occurs. 

With respect to performance, there is no 
clear choice to be made between write- 
through and copy-back. This is because a 
good implementation of write-through sel- 
dom has to wait for a write to complete. A 
good implementation of write-through re- 
quires, however, both sufficient buffering of 
writes and sufficient interleaving of main 
memory so that  the probability of the CPU 
becoming blocked while waiting on a store 
is small. This appears to be true in the IBM 
3033, but at the expense of a great deal of 
buffering and other logic. For example, in 
the 3033 each buffered store requires a dou- 
ble-word datum buffer, a single buffer for 
the store address, and a 1-byte buffer to 

Computing Surveys, Vol 14, No. 3, September 1982 

indicate which bytes have been modified in 
the double-word store. There are also com- 
parators to match each store address 
against subsequent accesses to main mem- 
ory, so that references to the modified data 
get the updated values. Copy-back could 
probably have been implemented much 
more cheaply. 

The Amdahl Computers all use copy- 
back, as does the IBM 3081. IBM uses 
store-through in the 370/168 [IBM75] and 
the 3033 [IBM78], as does DEC in the 
PDP-11/70 [SIRE76] and VAX 11/780 
[DEC78], Honeywell in the 66/60 and 66/ 
80, and Itel in the AS/6. 

2.6 Effect of Multiprogramming: Cold-Start 
and Warm-Start 

A significant factor in the cache miss ratio 
is the frequency of task switching, or in- 
versely, the value of the mean intertask 
switch time, Q. The problem with task 
switching is that  every time the active task 
is changed, a new process may have to be 
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loaded from scratch into the cache. This 
issue was discussed by EAST75, where the 
terms warm-s tar t  and cold-start  were 
coined to refer to the miss ratio starting 
with a full memory and the miss ratio start- 
ing with an empty memory, respectively. 
Other papers which discuss the problem 
include EAST78, KOBA80, MACD79, 
PEUT77, POHM75, SCHR71, and SIRE76. 

Typically, a program executes for a pe- 
riod of time before an interruption (I/O, 
clock, etc.) of some type invokes the super- 
visor. The supervisor eventually relin- 
guishes control of the processor to some 
user process, perhaps the same one as was 
running most recently. If it is not the same 
user process, the new process probably does 
not find any lines of its address space in the 
cache, and starts immediately with a num- 
ber of misses. If the most recently executed 
process is restarted, and if the supervisor 
interruption has not been too long, some 
useful information may still remain. In 
PEUT77, some figures are given about the 
length of certain IBM operating system 
supervisor interruptions and what fraction 
of the cache is purged. (One may also view 
the user as interrupting the supervisor and 
increasing the supervisor miss ratio.) 

The effect of the task-switch interval on 
the miss ratio cannot be easily estimated. 
In particular, the effect depends on the 
workload and on the cache size. We also 
observe that  the proportion of cache misses 
due to task switching increases with in- 
creasing cache size, even though the abso- 
lute miss ratio declines. This is because a 
small cache has a large inherent miss ratio 
(since it does not hold the program's work- 
ing set) and this miss ratio is only slightly 
augmented by task-switch-induced misses. 
Conversely, the inherent low miss ratio of 
a large cache is greatly increased, in relative 
terms, by task switching. We are not aware 
of any current machine for which a break- 
down of the miss ratio into these two com- 
ponents has been done. 

Some experimental results bearing on 
this problem appear in Figures 23 and 24. 
In each, the miss ratio is shown as a func- 
tion of the memory size and task-switch 
interval Q (Q is the number of memory 
references). The figures presented can be 
understood as follows. A very small Q (e.g., 
100, 1,000) implies that the cache is shared 

between all of the active processes, and that  
when a process is restarted it finds a sig- 
nificant fraction of its previous information 
still in the cache. A very large Q (e.g., 
100,000, 250,000) implies that  when the pro- 
gram is restarted it finds an empty cache 
(with respect to its own working set), but 
that the new task runs long enough first to 
fill the cache and then to take advantage of 
the full cache. Intermediate values for Q 
result in the situation where a process runs 
for a while but does not fill the cache; 
however, when it is restarted, none of its 
information is still cache resident (since the 
multiprogramming degree is four). These 
three regions of operation are evident in 
Figures 23 and 24 as a function of Q and of 
the cache size. (In SATY81, Q is estimated 
to be about 25,000.) 

There appear to be several possible so- 
lutions to the problem of high cache miss 
ratios due to task switching. (1) It may be 
possible to lengthen the task-switch inter- 
val. (2) The cache can be made so large 
that several programs can maintain infor- 
mation in it simultaneously. (3) The sched- 
uling algorithm may be modified in order 
to give preference to a task likely to have 
information resident in the cache. (4) If the 
working set of a process can be identified 
(e.g., from the previous period of execu- 
tion), it might be reloaded as a whole; this 
is called work ing  set  restoration.  (5) Mul- 
tiple caches may be created; for example, a 
separate cache could be established for the 
supervisor to use, so that, when invoked, it 
would not displace user data from the 
cache. This idea is considered in Section 
2.10, and some of the problems of the ap- 
proach are indicated. 

A related concept is the idea of bypassing 
the cache for operations unlikely to result 
in the reuse of data. For example, long 
vector operations such as a very long move 
character (e.g., IBM MVCL) could bypass 
the cache entirely [LOSQ82] and thereby 
avoid displacing other data more likely to 
be reused. 

2.7 Multicache Consistency 

Large modern computer systems often have 
several independent processors, consisting 
sometimes of several CPUs and sometimes 
of just a single CPU and several channels. 
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Each processor may have zero, one, or sev- 
eral caches. Unfortunately, in such a mul- 
tiple processor system, a given piece of in- 
formation may exist in several places at a 
given time, and it is important that all 
processors have access (as necessary) to the 
same, unique (at a given time) value. Sev- 
eral solutions exist and/or have been pro- 
posed for this problem. In this section, we 
discuss many of these solutions; the in- 
terested reader should refer to BEAN79, 
CENS78, DRIM81a, DUBO82, JONE76, 
JONE77a, MAZA77, McWI77, NGAI81, and 
TANG76 for additional explanation. 

As a basis for discussion, consider a single 
CPU with a cache and with a main memory 
behind the cache. The CPU reads an item 
into the cache and then modifies it. A sec- 
ond CPU (of similar design and using the 
same main memory) also reads the item 
and modifies it. Even if the CPUs were 
using store-through, the modification per- 
formed by the second CPU would not be 
reflected in the cache of the first CPU 
unless special steps were taken. There are 
several possible special steps. 

1. Shared Cache. All processors in the 
system can use the same cache. In general, 
this solution is infeasible because the band- 
width of a single cache usually is not suffi- 
cient to support more than one CPU, and 
because additional access time delays may 
be incurred because the cache may not be 
physically close enough to both (or all) 
processors. This solution is employed suc- 
cessfully in the Amdahl 470 computers, 
where the CPU and the channels all use 
the same cache; the 470 series does not, 
however, permit tightly coupled CPUs. The 
UNIVAC 1100/80 [BORG79] permits two 
CPUs to share one cache. 

2. Broadcast Writes. Every time a CPU 
performs a write to the cache, it also sends 
that write to all other caches in the system. 
If the target of the store is found in some 
other cache, it may be either updated or 
invalidated. Invalidation may be less likely 
to create inconsistencies, since updates can 
possibly "cross," such that  CPU A updates 
its own cache and then B's cache. CPU B 
simultaneously updates its own cache and 
then A's. Updates also require more data 
transfer. The IBM 370/168 and 3033 proc- 
essors use invalidation. A store by a CPU 

or channel is broadcast to all caches sharing 
the same main memory. This broadcast 
store is placed in the buffer invalidation 
address stack (BIAS) which is a list of 
addresses to be invalidated in the cache. 
The buffer invalidation address stack has a 
high priority for cache cycles, and if the 
target line is found in that  cache, it is in- 
validated. 

The major difficulty with broadcasting 
store addresses is that  every cache memory 
in the system is forced to surrender a cycle 
for invalidation lookup to any processor 
which performs a write. The memory inter- 
ference that occurs is generally acceptable 
for two processors (e.g., IBM's current MP 
systems), but significant performance deg- 
radation is likely with more than two proc- 
essors. A clever way to minimize this prob- 
lem appears in a recent patent [BEA~79]. 
In that  patent, a BIAS Filter Memory 
(BFM) is proposed. A BFM is associated 
with each cache in a tightly coupled MP 
system. This filter memory works by filter- 
ing out repeated requests to invalidate the 
same block in a cache. 

3. Software Control. If a system is being 
written from scratch and the architecture 
can be designed to support it, then software 
control can be used to guarantee consist- 
ency. Specifically, certain information can 
be designated noncacheable, and can be 
accessed only from main memory. Such 
items are usually semaphores and perhaps 
data structures such as the job queue. For 
efficiency, some shared writeable data has 
to be cached. The CPU must therefore be 
equipped with commands that  permit it to 
purge any such information from its own 
cache as necessary. Access to shared write- 
able cacheable data is possible only within 
critical sections, protected by noncacheable 
semaphores. Within the critical regions, the 
code is responsible for restoring all modified 
items to main memory before releasing the 
lock. Just such a scheme is intended for the 
S-1 multiprocessor system under construc- 
tion at the Lawrence Livermore Laboratory 
[HAIL79, McWI77]. The Honeywell Series 
66 machines use a similar mechanism. In 
some cases, the simpler alternative of mak- 
ing shared writeable information noncache- 
able may be acceptable. 

4. Directory Methods. It is possible to 
keep a centralized and/or distributed direc- 
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tory of all main memory lines, and use it to 
ensure that  no lines are write-shared. One 
such scheme is as follows, though several 
variants are possible. The main memory 
maintains k + 1 bits for each line in main 
memory, when there are k caches in the 
system. Bit i, i -- 1 , . . . ,  k is set to 1 if the 
corresponding cache contains the line. The 
(k + 1)th bit is I if the line is being or has 
been modified in a cache, and otherwise is 
0. If the (k + 1)th bit is on, then exactly 
one of the other bits is on. Each CPU has 
associated with each line in its cache a 
single bit (called thepr ivate  bit). If that bit 
is on, that  CPU has the only valid copy of 
that line. If the bit is off, other caches and 
main memory may also contain current 
copies. Exactly one private bit is set if and 
only if the main memory directory bit k + 
I is set. 

A CPU can do several things which pro- 
voke activity in this directory system. If a 
CPU attempts to read a line which is not in 
its cache, the main memory directory is 
queried. There are two possibilities: either 
but k + 1 is off, in which case the line is 
transferred to the requesting cache and the 
corresponding bit set to indicate this; or, bit 
k + 1 is on, in which case the main memory 
directory must recall the line from the 
cache which contains the modified copy, 
update main memory, invalidate the copy 
in the cache that  modified it, send the line 
to the requesting CPU/cache and finally 
update itself to reflect these changes. (Bit 
k + 1 is then set to zero, since the request 
was a read.) 

An attempt to perform a write causes one 
of three possible actions. If the line is al- 
ready in cache and has already been modi- 
fied, the private bit is on and the write 
takes place immediately. If the line is not 
in cache, then the main memory directory 
must be queried. If the line is in any other 
cache, it must be invalidated (in all other 
caches), and main memory must be up- 
dated if necessary. The main memory di- 
rectory is then set to reflect the fact that  
the new cache contains the modified copy 
of the data, the line is transmitted to the 
requesting cache, and the private bit is set. 
The third possibility is that  the cache al- 
ready contains the line but that  it does not 
have its private bit set. In this case, per- 
mission must be requested from the main 

memory directory to perform the write. 
The main memory directory invalidates 
any other copies of the line in the system, 
marks its own directory suitably, and then 
gives permission to modify the data. 

The performance implications of this 
method are as follows. The cost of a miss 
may increase significantly due to the need 
to query the main memory directory and 
possibly retrieve data from other caches. 
The use of shared writeable information 
becomes expensive due to the high miss 
ratios that are likely to be associated with 
such information. In CENS78, there is some 
attempt at a quantitative analysis of these 
performance problems. 

Another problem is that  I /O overruns 
may occur. Specifically, an I/O data stream 
may be delayed while directory operations 
take place. In the meantime, some I/O data 
are lost. Care must be taken to avoid this 
problem. Either substantial I/O buffering 
or write-through is clearly needed. 

Other variants of method 4 are possible. 
(1) The purpose of the central directory is 
to minimize the queries to the caches of 
other CPUs. The central directory is not 
logically necessary; sufficient information 
exists in the individual caches. It is also 
possible to transmit information from cache 
to cache, without going through main mem- 
ory. (2) If the number of main memory 
directory bits is felt to be too high, locking 
could be on a page instead of on a line basis. 
(3) Store-through may be used instead of 
copy-back; thus main memory always has 
a valid copy and data do not have to be 
fetched from the other caches, but can sim- 
ply be invalidated in these other caches. 

The IBM 3081D, which contains two 
CPUs, essentially uses the directory 
scheme described. The higher performance 
3081K functions similarly, but passes the 
necessary information from cache to cache 
rather than going through main memory. 

Another version of the directory method 
is called the broadcast search [DRIM81b]. 
In this case, a miss is sent not only to the 
main memory but to all caches. Whichever 
memories (cache or main) contain the de- 
sired information send it to the requesting 
processor. 

Liu [LItT82] proposes a multicache 
scheme to minimize the overhead of direc- 
tory operations. He suggests that all CPUs 
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have two caches, only one of which can 
contain shared data. The overhead of direc- 
tory access and maintenance would thus 
only be incurred when the shared data 
cache is accessed. 

There are two practical methods among 
the above alternatives: method 4 and the 
BIAS Filter Memory version of method 2. 
Method 4 is quite general, but is potentially 
very complex. It may also have perform- 
ance problems. No detailed comparison ex- 
ists, and other and better designs may yet 
remain to be discovered. For new machines, 
it is not known whether software control is 
better than hardware control; clearly, for 
existing architectures and software, hard- 
ware control is required. 

2.8 Data/Instruction Cache 

Two aspects of the cache having to do with 
its performance are cache bandwidth and 
access time. Both of these can be improved 
by splitting the cache into two parts, one 
for data and one for instructions. This dou- 
bles the bandwidth since the cache can now 
service two requests in the time it formerly 
required for one. In addition, the two re- 
quests served are generally complementary. 
Fast computers are pipelined, which means 
that  several instructions are simultaneously 
in the process of being decoded and exe- 
cuted. Typically, there are several stages in 
a pipeline, including instruction fetch, in- 
struction decode, operand address genera- 
tion, operand fetch, execution, and trans- 
mission of the results to their destination 
(e.g., to a register). Therefore, while one 
instruction is being fetched (from the in- 
struction cache), another can be having its 
operands fetched from the operand cache. 
In addition, the logic that arbitrates priority 
between instruction and data accesses to 
the cache can be simplified or eliminated. 

A split instruction/data cache also pro- 
vides access time advantages. The CPU of 
a high-speed computer typically contains 
(exclusive of the S-unit) more than 100,000 
logic gates and is physically large. Further, 
the logic having to do with instruction fetch 
and decode has little to do with operand 
fetch and store except for execu te  in- 
structions and possibly for the targets of 
branches. With a single cache system, it is 
not always possible simultaneously to place 
the cache immediately adjacent to all of the 
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logic which will access it. A split cache, on 
the other hand, can have each of its halves 
placed in the physical location which is 
most useful, thereby saving from a fraction 
of a nanosecond to several nanoseconds. 

There are, of course, some problems in- 
troduced by the split cache organization. 
First, there is the problem of consistency. 
Two copies now exist of information which 
formerly existed only in one place. Specifi- 
cally, instructions can be modified, and this 
modification must be reflected before the 
instructions are executed. Further, it is pos- 
sible that even if the programs are not self- 
modifying, both data and instructions may 
coexist in the same line, either for reasons 
of storage efficiency or because of immedi- 
ate operands. The solutions for this prob- 
lem are the same as those discussed in the 
section on multicache consistency (Section 
2.7), and they work here as well. It  is im- 
perative that  they be implemented in such 
a way so as to not impair the access time 
advantage given by this organization. 

Another problem of this cache organiza- 
tion is that  it results in inefficient use of the 
cache memory. The size of the working set 
of a program varies constantly, and in par- 
ticular, the fraction devoted to data and to 
instructions also varies. (A dynamically 
split design is suggested by FAVR78.) If the 
instructions and data are not stored to- 
gether, they must each exist within their 
own memory, and be unable to share a 
larger amount of that  resource. The extent 
of this problem has been studied both ex- 
perimentally and analytically. In SHED76, 
a set of formulas are provided which can be 
used to estimate the performance of the 
unified cache from the performance of the 
individual ones. The experimental results 
were not found to agree with the mathe- 
matical ones, although the reason was not 
investigated. We believe that  the nonsta- 
tionarity of the workload was the major 
problem. 

We compared the miss ratio of the split 
cache to that  of the unified cache for each 
of the sets of traces; some of the results 
appear in Figures 25-28. (See BP.LL74 and 
THAK78 for additional results.) We note 
that there are several possible ways to split 
and manage the cache and the various al- 
ternatives have been explored. One could 
split the cache in two equal parts (labeled 
"SPLIT EQU. AL"), or the observed miss 
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ratios could be used (from this particular 
run) to determine the optimal static split 
("SPLIT OPT"). Also, when a line is found 
to be in the side of the cache other than the 
one currently accessed, it could either be 
duplicated in the remaining side of the 
cache or it could be moved; this latter case 
is labeled "NO DUPLICATES." (No spe- 
cial label is shown if duplicates are permit- 
ted.) The results bearing on these distinc- 
tions are given in Figures 25-28. 

We observe in Figures 25 and 26 that  the 
unified cache, the equally split cache, and 
the cache split unequally (split optimally) 
all perform about equally well with respect 
to miss ratio. Note that  the miss ratio for 
the instruction and data halves of the cache 
individually are also shown. Further, com- 
paring Figures 25 and 26, it seems that 
barring duplicate lines has only a small 
negative effect on the miss ratio. 

In sharp contrast to the measurements of 
Figures 25 and 26 are those of Figures 27 
and 28. In Figure 27, although the equally 
and optimally split cache are comparable, 
the unified cache is significantly better. The 
unified cache is better by an order of mag- 
nitude when duplicates are not permitted 
(Figure 28), because the miss ratio is 
sharply increased by the constant move- 
ment of lines between the two halves. It 
appears that  lines sharing instruction and 
data are very common in programs com- 
piled with IBM's FORTRAN G compiler 
and are not common in programs compiled 
using the IBM COBOL or PL/ I  compiler. 
(Results similar to the FORTRAN case 
have been found for the two other sets of 
IBM traces, all of which include FOR- 
TRAN code but are not shown.) 

Based on these experimental results, we 
can say that  the miss ratio may increase 
significantly if the caches are split, but that  
the effect depends greatly on the workload. 
Presumably, compilers can be designed to 
minimize this effect by ensuring that data 
and instructions are in separate lines, and 
perhaps even in separate pages. 

Despite the possible miss ratio penalty of 
splitting the cache, there are at least two 
experimental machines and two commer- 
cial ones which do so. The S-1 [HAIL79, 
McWI77] at Lawrence Livermore Labora- 
tory is being built with just such a cache; it 
relies on (new) software to minimize the 

problems discussed here. The 801 minicom- 
puter, built at IBM Research (Yorktown 
Heights) [ELEC76, RADI82] also has a 
split cache. The Hitachi H200 and Itel 
AS/6 [Ross79] both have a split data/in- 
struction cache. No measurements have 
been publicly reported for any of these 
machines. 

2.9 Virtual Address Cache 

Most cache memories address the cache 
using the real address (see Figure 2). As the 
reader recalls, we discussed (Introduction, 
Section 2.3) the fact that  the virtual address 
was translated by the TLB to the real ad- 
dress, and that  the line lookup and readout 
could not be completed until the real ad- 
dress was available. This suggests that  the 
cache access time could be significantly re- 
duced if the translation step could be elim- 
inated. The way to do this is to address the 
cache directly with the virtual address. We 
call a cache organized this way a virtual 
address cache. The MU-5 [IBBE77] uses 
this organization for its name store. The 
S-l, the IBM 801, and the ICL 2900 series 
machines also use this idea. It is discussed 
in BEDE79. See also OLBE79. 

There are some additional considerations 
in building a virtual address cache, and 
there is one serious problem. First, all ad- 
dresses must be tagged with the identifier 
of the address space with which they are 
associated, or else the cache must be purged 
every time task switching occurs. Tagging 
is not a problem, but the address tag in the 
cache must be extended to include the ad- 
dress space ID. Second, the translation 
mechanism must still exist and must still be 
efficient, since virtual addresses must be 
translated to real addresses whenever main 
memory is accessed, specifically for misses 
and for writes in a write-through cache. 
Thus the TLB cannot be eliminated. 

The most serious problem is that  of 
"synonyms," two or more virtual addresses 
that  map to the same real address. Syn- 
onyms occur whenever two address spaces 
share code or data. (Since the lines have 
address space tags, the virtual addresses 
are different even if the line occurs in the 
same place in both address spaces.) Also, 
the supervisor may exist in the address 
space of each user, and it is important that  
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only one copy of supervisor tables be kept. 
The only way to detect synonyms is to take 
the virtual address, map it into a real ad- 
dress, and then see if any other virtual 
addresses in the cache map into the same 
real address. For this to be feasible, the 
inverse mapping must be available for every 
line in the cache; this inverse mapping is 
accessed on real address and indicates all 
virtual addresses associated with that real 
address. Since this inverse mapping is the 
opposite of the TLB, we choose to call the 
inverse mapping buffer (if a separate one is 
used) the RTB or reverse translation 
buffer. When a miss occurs, the virtual ad- 
dress is translated into the real address by 
the TLB. The access to main memory for 
the miss is overlapped with a similar search 
of the RTB to see if that line is already in 
the cache under a different name (virtual 
address). If it is, it must be renamed and 
moved to its new location, since multiple 
copies of the same line in the cache are 
clearly undesirable for reasons of consist- 
ency. 

The severity of the synonym problem can 
be decreased if shared information can be 
forced to have the same location in all 
address spaces. Such information can be 
given a unique address space identifier, and 
the lookup algorithm always considers such 
a tag to match the current address space 
ID. A scheme like this is feasible only for 
the supervisor since other shared code 
could not conceivably be so allocated. 
Shared supervisor code does have a unique 
location in all address spaces in IBM's MVS 
operating system. 

The RTB may or may not be a simple 
structure, depending on the structure of the 
rest of the cache. In one case it is fairly 
simple: if the bits used to select the set of 
the cache are the same for the real and 
virtual address (i.e., if none of the bits used 
to select the set undergo translation}, the 
RTB can be implemented by associating 
with each cache line two address tags 
[BEDE79]. If a match is not found on the 
virtual address, then a search is made in 
that set on the real address. If that  search 
finds the line, then the virtual address tag 
is changed to the current virtual address. A 
more complex design would involve a sep- 
arate mapping buffer for the reverse trans- 
lation. 

Cache  M e m o r i e s  • 511 

2.10 User/Supervisor Cache 

It was suggested earlier that  a significant 
fraction of the miss ratio is due to task- 
switching. A possible solution to this prob- 
lem is to use a cache which has been split 
into two parts, one of which is used only by 
the supervisor and the other of which is 
used primarily by the user state programs. 
If the scheduler were programmed to re- 
start, when possible, the same user program 
that was running before an interrupt, then 
the user state miss ratio would drop appre- 
ciably. Further, if the same interrupts recur 
frequently, the supervisor state miss ratio 
may also drop. In particular, neither the 
user nor the supervisor would purge the 
cache of the other's lines. (See PEUT77 for 
some data relevant to this problem.) The 
supervisor cache may have a high miss ratio 
in any case due to its large working set. 
(See MILA75 for an example.) 

Despite the appealing rationale of the 
above comments, there are a number of 
problems with the user/supervisor cache. 
First, it is actually unlikely to cut down the 
miss ratio. Most misses occur in supervisor 
state [MILA75] and a supervisor cache half 
as large as the unified cache is likely to be 
worse since the maximum cache capacity is 
no longer available to the supervisor. Fur- 
ther, it is not clear what fraction of the time 
the scheduling algorithm can restart the 
same program. Second, the information 
used by the user and the supervisor are not 
entirely distinct, and cross-access must be 
permitted. This overlap introduces the 
problem of consistency. 

We are aware of only one evaluation of 
the split user/supervisor cache [RossS0]. 
In that case, an experiment was run on an 
Hitatchi M180. The results seemed to show 
that the split cache performed about as well 
as a unified one, but poor experimental 
design makes the results questionable. We 
do not expect that  a split cache will prove 
to be useful. 

2.11 Input/Output through 
the Cache 

In Section 2.7, the problem of mu]ticache 
consistency was discussed. We noted that 
if all accesses to main memory use the same 
cache, then there would be no consistency 
problem. Precisely this approach has been 
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used in one manufacturer's computers 
(Amdahl Corporation). 

2.1 1. I Overruns 

While putting all input/output through the 
cache solves the consistency problem, it 
introduces other difficulties. First, there is 
the overrun problem. An overrun occurs 
when for some reason the I/O stream can- 
not be properly transmitted between the 
memory (cache or main) and the I/O de- 
vice. Transmitting the I/O through the 
cache can cause an overrun when the line 
accessed by the I/O stream is not in the 
cache (and is thus a miss) and for some 
reason cannot be obtained quickly enough. 
Most I /O devices involve physical move- 
ment, and when the buffering capacity 
embedded in the I/O path is exhausted, the 
transfer must be aborted and then re- 
started. Overruns can be provoked when: 
(1) the cache is already processing one or 
more misses and cannot process the current 
{additional) one quickly enough; (2) more 
than one I/O transfer is in progress, and 
more active (in use) lines map into one set 
than the set size can accommodate; or (3) 
the cache bandwidth is not adequate to 
handle the current burst of simultaneous 
I/O from several devices. Overruns can be 
minimized if the set size of the cache is 
l a rgeenough ,  the bandwidth is high 
enough, and the ability to process misses is 
sufficient. Sufficient buffering should also 
be provided in the I/O paths to the devices. 

2.1 1.2 Miss Ratio 

Directing the input/output data streams 
through the cache also has an effect on the 
miss ratio. This I /O data occupies some 
fraction of the space in the cache, and this 
increases the miss ratio for the other users 
of the cache. Some experiments along these 
lines were run by the author and results are 
shown in Figures 29-32. IORATE is the 
ratio of the rate of I/O accesses to the cache 
to the rate of CPU accesses. (I/O activity 
is simulated by a purely sequential syn- 
thetic address stream referencing a distinct 
address space from the other programs.) 
The miss ratio as a function of memory size 
and I/O transfer rate is shown in Figures 
29 and 30 for two of the sets of traces. The 

data has been rearranged to show more 
directly the effect on the miss ratio in Fig- 
ures 31 and 32. The results displayed here 
show no clear mathematical pattern, and 
we were unable to derive a useful and ver- 
ifiable formula to predict the effect on the 
miss ratio by an I/O stream. 

Examination of the results presented in 
Figures 29-32 suggests that  for reasonable 
I/O rates (less than 0.05; see PowE77 for 
some I/O rate data) the miss ratio is not 
affected to any large extent. This observa- 
tion is consistent with the known perform- 
ance of the Amdahl computers, which are 
not seriously degraded by high I/O rates. 

2.12 Cache Size 

Two very important questions when select- 
ing a cache design are how large should the 
cache be and what kind of performance can 
we expect. The cache size is usually dictated 
by a number of criteria having to do with 
the cost and performance of the machine. 
The cache should not be so large that  it 
represents an expense out of proportion to 
the added performance, nor should it oc- 
cupy an unreasonable fraction of the phys- 
ical space within the processor. A very large 
cache may also require more access cir- 
cuitry, which may increase access time. 

Aside from the warnings given in the 
paragraph above, one can generally assume 
that  the larger the cache, the higher the hit 
ratio, and therefore the better the perform- 
ance. The issue is then one of the relation 
between cache size and hit ratio. This is a 
very difficult problem, since the cache hit 
ratio varies with the workload and the ma- 
chine architecture. A cache that  might yield 
a 99.8 percent hit ratio on a PDP-11 pro- 
gram could result in a 90 percent or lower 
hit ratio for IBM (MVS) supervisor state 
code. This problem cannot be usefully stud- 
ied using trace-driven simulation because 
the miss ratio varies tremendously from 
program to program and only a small num- 
ber of traces can possibly be analyzed. Typ- 
ical trace-driven simulation results appear 
throughout this paper, however, and the 
reader may wish to scan that  data for in- 
sight. There is also a variety of data avail- 
able in the literature and the reader may 
wish to inspect the results presented in 
ALSA78, BELL74, BERG76, GIBS67, LEE69, 
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MEAD70, STRE76, THAK78, and YUVA75. 
Some direct measurements of cache miss 
ratios appear in CLAR81 and CLAR82. In the 
former, the Dorado was found to have hit 
ratios above 99 percent. In the latter, the 
VAX 11/780 was found to have hit ratios 
around 90 percent. 

Another problem with trace-driven sim- 
ulation is that  in general user state pro- 
grams are the only ones for which many 
traces exist. In IBM MVS systems, the 
supervisor typically uses 25 to 60 percent of 
the CPU time, and provides by far the 
largest component of the miss ratio 
[MILA75]. User programs generally have 
very low miss ratios, in our experience, and 
many of those misses come from task 
switching. 

Two models have been proposed in the 
literature for memory hierarchy miss ratios. 
Saltzer [SALT74] suggested, based on his 
data, that the mean time between faults 
was linearly related to the capacity of the 
memory considered. But later results, taken 
on the same system [GREE74] contradict 

Saltzer's earlier findings. [CHow75 and 
CHOW76] suggest that  the miss ratio curve 
was of the form m ffi a(cb), where a and b 
are constants, m is the miss ratio, and c is 
the memory capacity. They  show no exper- 
imental results to substantiate this model, 
and it seems to have been chosen for math- 
ematical convenience. 

Actual cache miss ratios, from real ma- 
chines running "typical" workloads, are the 
most useful source of good measurement 
data. In Figure 33 we show a set of such 
measurements taken from Amdahl 470 
computers running a standard Amdahl in- 
ternal benchmark. This data is reproduced 
from HARD80a. Each digit represents a 
measurement point, and shows either the 
supervisor or problem state miss ratio for a 
specific cache size and set size; the value of 
the digit at each point is the set size. Ex- 
amination of the form of the measurements 
from Figure 33 suggest that  the miss ratio 
can be approximated over the range shown 
by an equation of the form m = a(k b) 
(consistent with CHOW75 and CHow76), 
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where m is the miss ratio, a and b are 
constants (b < 0), and k is the cache capac- 
ity in kilobytes. The values of a and b are 
shown for four cases in Figure 33; supervi- 
sor and user state for a set size of two, and 
supervisor and user state for all other set 
sizes. We make no claims for the validity of 
this function for other workloads and/or 
other architectures, nor for cache sizes be- 
yond the range shown. From Figure 33 it is 
evident, though, that the supervisor con- 
tributes the largest fraction of the miss 
ratio, and the supervisor state measure- 
ments are quite consistent. Within the 
range indicated, therefore, these figures can 
probably be used for a first approximation 
at estimating the performance of a cache 
design. 

Typical cache sizes in use include 128 
kbytes (NEC ACOS 9000), 64 kbytes (Am- 
dahl 470V/8, IBM 3033, IBM 3081K per 
CPU), 32 kbytes (IBM 370/168-3, IBM 
3081D per CPU, Amdahl 470V/7, Magnu- 
son M80/43), 16 kbytes (Amdahl 470V/6, 
Itel AS/6, IBM 4341, Magnuson M80/42, 
M80/44, DEC VAX 11/780), 8 kbytes (Hon- 
eywell 66/60 and 66/80, Xerox Dorado 
[CLAR81]), 4 kbytes (VAX 11/750, IBM 
4331), 1 kbyte (PDP-11/70). 

2.13. Cache Bandwidth, Data Path Width, 
and Access Resolution 

2.13.1 Bandwidth 

For adequate performance, the cache band- 
width must be sufficient. Bandwidth refers 
to the aggregate data transfer rate, and is 
equal to data path width divided by access 
time. The bandwidth is important as well 
as the access time, because (1) there may 
be several sources of requests for cache 
access (instruction fetch, operand fetch and 
store, channel activity, etc.), and (2) some 
requests may be for a large number of bytes. 
If there are other sources of requests for 
cache cycles, such as prefetch lookups and 
transfers, it must be possible to accommo- 
date these as well. 

In determining what constitutes an ade- 
quate data transfer rate, it is not sufficient 
that the cache bandwidth exceed the aver- 
age demand placed on it by a small amount. 
It is important as well to avoid contention 
since if the cache is busy for a cycle and one 
or more requests are blocked, these blocked 

requests can result in permanently wasted 
machine cycles. In the Amdah1470V/8 and 
the IBM 3033, the cache bandwidth ap- 
pears to exceed the average data rate by a 
factor of two to three, which is probably 
the minimum sufficient margin. We note 
that in the 470V/6 {when prefetch is used 
experimentally) prefetches are executed 
only during otherwise idle cycles, and it has 
been observed that not all of the prefetches 
actually are performed. (Newly arrived pre- 
fetch requests take the place of previously 
queued but  never performed requests.) 

For some instructions, the cache band- 
width can be extremely important. This is 
particularly the case for data movement 
instructions such as: (1) instructions which 
load or unload all of the registers (e.g., IBM 
370 instructions STM, LM); (2) instructions 
which move long character strings (MVC, 
MVCL); and (3) instructions which operate 
on long character strings (e.g., CLC, OC, 
NC, XC). In these cases, especially the first 
two, there is little if any processing to be 
done; the question is simply one of physical 
data movement, and it is important that  
the cache data path be as wide as possible-- 
in large machines, 8 bytes (3033, 3081, Itel 
AS/6) instead of 4 (470V/6, V/7, V/8); in 
small machines, 4 bytes (VAX 11/780) in- 
stead of 2 (PDP-11/70). 

It is important to note that cache data 
path width is expensive. Doubling the path 
width means doubling the number of lines 
into and out of the cache (i.e., the bus 
widths) and all of the associated circuitry. 
This frequently implies some small increase 
in access time, due to larger physical pack- 
aging and/or additional levels of gate delay. 
Therefore, both the cost and performance 
aspects of cache bandwidth must be consid- 
ered during the design process. 

Another approach to increasing cache 
bandwidth is to interleave the cache 
[DRIS80, YAMO80]. If the cache is required 
to serve a large number of small requests 
very quickly, it may be efficient to replicate 
the cache (e.g., two or four times) and ac- 
cess each separately, depending on the low- 
order bits of the desired locations. This 
approach is very expensive, and to our 
knowledge, has not been used on any exist- 
ing machine. (See POHM75 for some addi- 
tional comments.) 
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An issue related to cache bandwidth is what 
to do when the cache has several requests 
competing for cache cycles and only one 
can be served at a given time. There are 
two criteria for making the choice: (1) give 
priority to any request that is "deadline 
scheduled" (e.g., an I/O request that would 
otherwise abort); and (2) give priority (after 
(1)) to requests in order to enhance ma- 
chine performance. The second criterion 
may be sacrificed for implementation con- 
venience, since the optimal scheduling of 
cache accesses may introduce unreasonable 
complexity into the cache design. Typically, 
fixed priorities are assigned to competing 
cache requests, but dynamic scheduling, 
though complex, is possible [BLOC80]. 

An an illustration of cache priority reso- 
lution, we consider two large, high-speed 
computers: the Amdahl 470V/7 and the 
IBM 3033. In the Amdahl machine, there 
are five "ports" or address registers, which 
hold the addresses for cache requests. Thus, 
there can be up to five requests queued for 
access. These ports are the operand port, 
the instruction port, the channel port, the 
translate port, and the prefetch port. The 
first three are used respectively for operand 
store and fetch, instruction fetch, and chan- 
nel I/O (since channels use the cache also). 
The translate port is used in conjunction 
with the TLB and translator to perform 
virtual to real address translation. The pre- 
fetch port is for a number of special func- 
tions, such as setting the storage key or 
purging the TLB, and for prefetch opera- 
tions. There are sixteen priorities for the 
470V/6 cache; we list the important ones 
here in decreasing order of access 
priority: (1) move line in from main stor- 
age, (2) operand store, (3) channel store, 
(4) fetch second half of double word re- 
quest, (5) move line out from cache to main 
memory, (6) translate, (7) channel fetch, (8) 
operand fetch, (9) instruction fetch, (10) 
prefetch. 

The IBM 3033 has a similar list of cache 
access priorities [IBM78]: (1) main memory 
fetch transfer, (2) invalidate line in cache 
modified by channel or other CPU, (3) 
search for line modified by channel or other 
CPU, (4) buffer reset, (5) translate, (6) redo 
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(some cache accesses are blocked and have 
to be restarted), and (7) normal instruction 
or operand access. 

2.14 Multilevel Cache 

The largest existing caches (to our knowl- 
edge} can be found in the NEC ACOS 9000 
(128 kbytes), and the Amdahl 470V/8 and 
IBM 3033 processors (64 kbytes). Such 
large caches pose two problems: (1) their 
physical size and logical complexity in- 
crease the access time, and (2) they are 
very expensive. The cost of the chips in the 
cache can be a significant fraction (5-20 
percent) of the parts cost of the CPU. The 
reason for the large cache, though, is to 
decrease the miss ratio. A possible solution 
to this problem is to build a two-level cache, 
in which the smaller, faster level is on the 
order of 4 kbytes and the larger, slower 
level is on the order of 64-512 kbytes. In 
this way, misses from the small cache could 
be satisfied, not in the six to twelve machine 
cycles commonly required, but in two to 
four cycles. Although the miss ratio from 
the small cache would be fairly high, the 
improved cycle time and decreased miss 
penalty would yield an overall improve- 
ment in performance. Suggestions to this 
effect may be found in BENN82, OHNO77, 
and SPAR78. It has also been suggested for 
the TLB [NGAI82]. 

As might be expected, the two-level or 
multilevel cache is not necessarily desira- 
ble. We suggested above that  misses from 
the fast cache to the slow cache could be 
serviced quickly, but detailed engineering 
studies are required to determine if this is 
possible. The five-to-one or ten-to-one ratio 
of main memory to cache memory access 
times is not wide enough to allow another 
level to be easily placed between them. 

Expense is another consideration. A two- 
level cache implies another level of access 
circuitry, with all of the attendant compli- 
cations. Also, the large amount of storage 
in the second level, while cheaper per bit 
than the low-level cache, is not inexpensive 
on the whole. 

The two-level or multilevel cache repre- 
sents a possible approach to the problem of 
an overlarge single-level cache, but further 
study is needed. 
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2.15 Pipelining 

Referencing a cache memory is a multistep 
process. There is the need to obtain priority 
for a cache cycle. Then the TLB and the 
desired set are accessed in parallel. After 
this, the real address is used to select the 
correct line from the set, and finally, after 
the information is read out, the replace- 
ment bits are updated. In large, high-speed 
machines, it is common to pipeline the 
cache, as well as the rest of the CPU, so 
that more than one cache access can be in 
progress at the same time. This pipelining 
is of various degrees of sophistication, and 
we illustrate it by discussing two machines: 
the Amdahl 470V/7 and the IBM 3033. 

In the 470V/7, a complete read requires 
four cycles, known as the P, B1, B2, and R 
cycles [SMIT78b]. The P {priority) cycle is 
used to determine which of several possible 
competing sources of requests to the cache 
will be permitted to use the next cycle. The 
B1 and B2 {buffer 1, buffer 2) cycles are 
used actually to access the cache and the 
TLB, to select the appropriate line from 
the cache, to check that the contents of the 
line are valid, and to shift to get the desired 
byte location out of the two-word (8-byte) 
segment fetched. The data are available at 
the end of the B2 cycle. The R cycle is used 
for "cleanup" and the replacement status is 
updated at that time. It is possible to have 
up to four fetches active at any one time in 
the cache, one in each of the four cycles 
mentioned above. The time required by a 
store is longer since it is essentially a read 
followed by a modify and write-back; it 
takes six cycles all together, and one store 
requires two successive cycles in the cache 
pipeline. 

The pipeline in the 3033 cache is similar 
[IBM78]. The cache in the 3033 can service 
one fetch or store in each machine cycle, 
where the turnaround time from initial re- 
quest for priority until the data is available 
is about 2½ cycles (½-cycle transmission 
time to S-unit, 1½ cycles in S-unit, ½ cycle 
to return data to instruction unit). An im- 
portant feature of the 3033 is that the cache 
accesses do not have to be performed in the 
order that  they are issued. In particular, if 
an access causes a miss, it can be held up 
while the miss is serviced, and at the same 
time other requests which are behind it in 

the pipeline can proceed. There is an elab- 
orate mechanism built in which prevents 
this out-of-order operation from producing 
incorrect results. 

2.16 Translation Lookaside Buffer 

The translation lookaside buffer {also 
called the translation buffer [DEC78], the 
associative memory [SCHR71], and the di- 
rectory lookaside table [IBM78]), is a small, 
high-speed buffer which maintains the 
mapping between recently used virtual and 
real memory addresses (see Figure 2). The 
TLB performs an essential function since 
otherwise an address translation would re- 
quire two additional memory references: 
one each to the segment and page tables. 
In most machines, the cache is accessed 
using real addresses, and so the design and 
implementation of the TLB is intimately 
related to the cache memory. Additional 
information relevant to TLB design and 
operation may be found in JONE77b, 
LUDL77, RAMA81, SAT¥81, SCHR71, and 
WILK71. Discussions of the use of TLBs 
(TLB chips or memory management units) 
in microcomputers can be found in JOHN81, 
STEVS1, and ZOLN81. 

The TLB itself is typically designed to 
look like a small set-associative memory. 
For example, the 3033 TLB {called the 
DLAT or directory lookaside table) is set- 
associative, with 64 sets of two elements 
each. Similarly, the Amdahl 470V/6 uses 
128 sets of two elements each and the 470V/ 
7 and V/8 have 256 sets of 2 elements each. 
The IBM 3081 TLB has 128 entries. 

The TLB differs in some ways from the 
cache in its design. First, for most processes, 
address spaces start at zero and extend 
upward as far as necessary. Since the TLB 
translates page addresses from virtual to 
real, only the high-order {page number) 
address bits can be used to access the TLB. 
If the same method was used as that  used 
for accessing the cache (bit selection using 
lower order bits), the low-order TLB entries 
would be used disproportionately and 
therefore the TLB would be used ineffi- 
ciently. For this reason, both the 3033 and 
the 470 hash the address before accessing 
the TLB (see Figure 2). Consider the 24-bit 
address used in the System/370, with the 
bits numbered from 1 to 24 (high order to 
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low order). Then the bits 13 to 24 address 
the byte within the page (4096-byte page) 
and the remaining bits (1 to 12) can be used 
to access the TLB. The 3033 contains a 6- 
bit index into the TLB computed as follows. 
Let @ be the Exclusive OR operator; a 6- 
bit quantity is computed [7, (8 @ 2), (9 @ 
3), (10 @ 4), (11 @ 5), (12 @ 6)], where 
each number refers to the input bit it des- 
ignates. 

The Amdahl 470V/7 and 470V/8 use a 
different hashing algorithm, one which pro- 
vides much more thorough randomization 
at the cost of significantly greater complex- 
ity. To explain the hashing algorithm, we 
first explain some other items. The 470 
associates with each address space an 8-bit 
tag field called the address space identifier 
(ASID) (see Section 2.19.1). We refer to the 
bits that make up this tag field as $1, 
. . . .  $8. These bits are used in the hashing 
algorithm as shown below. Also, the 470V/ 
7 uses a different algorithm to hash into 
each of the two elements of a set; the TLB 
is more like a pair of direct mapping buffers 
than a set-associative buffer. The first half 
is addressed using 8 bits calculated as fol- 
lows: [(6 @ 1 @ $8), 7, (8 @ 3 @ $6), 9, (10 
@ $4), 11, (12 @ $2), 5]; and the second 
half is addressed as [6, (7 @ 2 @ $7), 8, (9 
@ 4 @ $5), I0, (11 @ $3), 12, (5 @ SI)]. 
There are no published studies that indi- 
cate whether the algorithm used in the 3033 
is sufficient or whether the extra complex- 
ity of the 470V/7 algorithm is warranted. 

There are a number of fields in a TLB 
entry (see Figure 34). The virtual address 
presented for translation is matched against 
the virtual address tag field (ASID plus 
virtual page address) in the TLB to ensure 
that the right entry has been found. The 
virtual address tag field must include 
the address space identifier (8 bits in the 
470V/7, 5 bits in the 3033) so that entries 
for more than one process can be in the 
TLB at one time. A protection field (in 370- 
type machines) is also included in the TLB 
and is checked to make sure that the access 
is permissible. (Since keys are associated 
on a page basis in the 370, this is much 
more efficient than placing the key with 
each line in the cache.) The real address 
corresponding to the virtual address is the 
primary output of the TLB and occupies a 
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Figure 34 .  Structure of translation lookaslde buffer 
(TLB) entry and TLB set. 

field. There are also bits that indicate 
whether a given entry in the TLB is valid 
and the appropriate bits to permit LRU- 
like replacement. Sometimes, the modify 
and reference bits for a page are kept in the 
TLB. If so, then when the entry is removed 
from the TLB, the values of those bits must 
be stored. 

It may be necessary to change one or 
more entries in the TLB whenever the vir- 
tual to real address correspondence changes 
for any page in the address space of any 
active process. This can be accomplished in 
two ways: (1) if a single-page table entry is 
changed (in the 370), the IPTE (insert page 
table entry) instruction causes the TLB to 
be searched, and the now invalid entry 
purged; (2) if the assignment of address 
space IDs is changed, then the entire TLB 
is purged. In the 3033, purging the TLB is 
slow (16 machine cycles) since each entry 
is actually invalidated. The 470V/7 does 
this in a rather clever way. There are two 
sets of bits used to denote valid and invalid 
entries, and a flag indicating which set is to 
be used at any given time. The set not in 
use is supposed to be set to zero (invalid). 
The purge TLB command has the effect of 
flipping this flag, so that  the set of bits 
indicating that  all entries are invalid are 
now in use. The set of bits no longer in use 
is reset to zero in the background during 
idle cycles. See Cosc81 for a similar idea. 

The cache on the DEC VAX 11/780 
[DEC78] is similar to but simpler than that  
in the IBM and Amdahl machines. A set- 
associative TLB (called the translation 
buffer) is used, with 64 sets of 2 entries 
each. (The VAX 11/750 has 256 sets of 2 
entries each.) The set is selected by using 
the high-order address bit and the five low- 
order bits of the page address, so the ad- 
dress need not be hashed at all. Since the 
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higher order  address bit  separa tes  the user  
f rom the supervisor  address  space, this 
means  tha t  the  user  and supervisor  T L B  
entries never  m a p  into the same locations. 
This  is convenient  because the user pa r t  of 
the T L B  is purged on a task switch. (There  
are no address space IDs.) T h e  T L B  is also 
used to hold the dir ty bit, which indicates 
if the page has  been  modified, and the  
protect ion key. 

Publ ished figures for T L B  per formance  
are not  generally available. T h e  observed 
miss rat io for the  Amdah l  470V/6 T L B  is 
about  0.3 to 0.4 percent  (Pr ivate  C om m u-  
nication: W. J. Harding).  Simulat ions  of the  
VAX 11/780 T L B  [SATY81] show miss ra- 
tios of 0.1 to 2 percent  for T L B  sizes of 64 
to 256 entries. 

2.17 Translator 

When a vir tual  address  mus t  be t rans la ted  
into a real  address  and the t ransla t ion does 
not  a l ready exist in the TLB,  the  translator 
must  be used. T h e  t rans la tor  obta ins  the  
base of the  segment  table f rom the appro-  
pr iate  place (e.g., control register 1 in 370 
machines) ,  adds the  segment  n u m b e r  f rom 
the vir tual  address  to obta in  the  page table  
address, then  adds the page n u m b e r  (from 
the vir tual  address) to the page table  ad- 
dress to get the real  page address. Th is  real  
address  is passed along to the cache so tha t  
the access can be made,  and s imultane-  
ously, the vir tual  address / rea l  address  pair  
is entered in the  TLB.  T h e  t rans la tor  is 
basically an adder  which knows wha t  to 
add. 

I t  is impor tan t  to note  tha t  the t rans la tor  
requires access to the segment  and page 
table entries, and these entr ies  m a y  be 
ei ther  in the cache or in ma in  memory .  
Provision mus t  be made  for the t rans la tor  
accesses to proceed unimpeded,  independ-  
ent  of whether  ta rge t  addresses are cache 
or main  m e m o r y  resident.  

We also observe another  p rob lem rela ted 
to translation: "page crossers." T h e  ta rge t  
of  a fetch or store m a y  cross f rom one page 
to another ,  in a similar way as for "line 
crossers." T h e  p rob lem here  is considerably 
more  compl ica ted than  tha t  of line crossers 
since, a l though the  vir tual  addresses  are 
contiguous, the real  addresses m a y  not  be. 
Therefore ,  when a page crosser occurs, two 
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Figure 35. Diagram of computer system m whmh 
caches are associated with memorms rather than with 
processors. 

separa te  t ransla t ions  are required; these  
m a y  occur in the T L B  a n d / o r  t rans la tor  as 
the  occasion demands.  

2.18 Memory-Based Cache 

I t  was s ta ted  at  the  beginning of this pape r  
tha t  caches are generally associated with 
the processor  and  not  with the main  m e m -  
ory. A different design would be to place 
the cache in the main  m e m o r y  itself. One 
way to do this is with a shared bus  interfac- 
ing be tween one or more  CPUs  and several  
main  m e m o r y  modules,  each with its own 
cache (see Figure 35). 

The re  are two reasons for this approach.  
First, the access t ime at  the  m e m o r y  mod-  
ule is decreased f rom the typical  200-500 
nanoseconds  (given high-densi ty MOS 
RAM) to the  50-100 nanoseconds  possible 
for a high-speed cache. Second, there  is no 
consistency p rob lem even though there  are 
several  CPUs.  All accesses to da ta  in m e m -  
ory module  i go th rough  cache i and thus  
there  is only one copy of a given piece of 
data.  

Unfor tunate ly ,  the advantages  men-  
t ioned are not  near ly sufficient to compen-  
sate  for the  shor tcomings  of this design. 
First, the design is too slow; with the  cache 
on the  far side of the  m e m o r y  bus, access 
t ime is not  cut  sufficiently. Second, it is too 
expensive; there  is one cache per  m e m o r y  
module.  Third,  if there  are mult iple  CPUs,  
there  will be m e m o r y  bus  contention.  This  
slows down the sys tem and causes m e m o r y  
access t ime to be highly variable.  

Overall,  the  scheme of associating the  
cache with the  m e m o r y  modules  is very  
poor  unless bo th  the ma in  m e m o r y  and the  
processors  are relat ively slow. In tha t  case, 
a large n u m b e r  of processors could be 
served by  a small  n u m b e r  of m e m o r y  mod-  
ules with built-in caches, over  a fast  bus. 
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2.19 Specialized Caches and Cache 
Components 

This paper has been almost entirely con- 
cerned with the general-purpose cache 
memory found in most large, high-speed 
computers. There are other caches and 
buffers that can be used in such machines 
and we briefly discuss them in this section. 

2. 19. 1 Address Space Identifier Table 

In many computers, the operating system 
identifier for an address space is quite long; 
in the IBM-compatible machines discussed 
{370/168, 3033, 470V), the identifier is the 
contents of control register 1. Therefore, 
these machines associate a much shorter 
tag with each address space for use in the 
TLB and/or the cache. This tag is assigned 
on a temporary basis by the hardware, and 
the correspondence between the address 
space and the tag is held in a hardware 
table which we name the Address Space 
Identifier Table (ASIT). It is also called 
the Segment Base Register Table in the 
470V/7, the Segment Table Origin Address 
Stack in the 3033 [IBM78] and 370/168 
[IBM75], and the Segment Base Register 
Stack in the 470V/6. 

The 3033 ASIT has 32 entries, which are 
assigned starting at 1. When the table be- 
comes full, all entries are purged and IDs 
are reassigned dynamically as address 
spaces are activated. (The TLB is also 
purged.) When a task switch occurs, the 
ASIT in the 3033 is searched starting at 1; 
when a match is found with control register 
1, the index of that location becomes the 
address space identifier. 

The 470V/6 has a somewhat more com- 
plex ASIT. The segment table origin ad- 
dress is hashed to provide an entry into the 
ASIT. The tag associated with that address 
is then read out. If the address space does 
not have a tag, a previously unused tag is 
assigned and placed in the ASIT. Whenever 
a new tag is assigned, a previously used tag 
is made available by deleting its entry in 
the ASIT and (in the background) purging 
all relevant entries in the TLB. (A complete 
TLB purge is not required.) Thirty-two 
valid tags are available, but the ASIT has 
the capability of holding up to 128 entries; 
thus, all 32 valid tags can usually be used, 
with little fear of hashing conflicts. 
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2.19 2 Execution Unit Buffers 

In some machines, especially the IBM 360/ 
91 [ANDE67b, IBM71, TOMA67], a number 
of buffers are placed internally in the exe- 
cution unit to buffer the inputs and outputs 
of partially completed instructions. We re- 
fer the reader to the references just cited 
for a complete discussion of this. 

2.19.3 Instruction Lookahead Buffers 

In several machines, especially those with- 
out general-purpose caches, a buffer may 
be dedicated to lookahead buffering of in- 
structions. Just such a scheme is used on 
the Cray I [CRAY76], the CDC 6600 
[CDC74], the CDC 7600, and the IBM 
360/91 [ANDE67a, BOLA67, IBM71]. These 
machines all have substantial buffers, and 
loops can be executed entirely within these 
buffers. Machines with general-purpose 
caches usually do not have much instruc- 
tion lookahead buffering, although a few 
extra bytes are frequently fetched. See also 
BLAZ80 and KONE80. 

2.19 4 Branch Target Buffer 

One major impediment to high perform- 
ance in pipelined computer systems is the 
existence of branches in the code. When a 
branch occurs, portions of the pipeline must 
be flushed and the correct instruction 
stream fetched. To minimize the effect of 
these disruptions, it is possible to imple- 
ment a branch target buffer (BTB) which 
buffers the addresses of previous branches 
and their target addresses. The instruction 
fetch address is matched against the con- 
tents of the branch target buffer and if a 
match occurs, the next instruction fetch 
takes place from the {previous} target of 
the branch. The BTB can correctly predict 
the correct branch behavior more than 90 
percent of the time [LEE82]. Something like 
a branch target buffer is used in the MU-5 
[IBBE72, MORR79], and the S-1 [McWI77]. 

2 19.5 Microcode Cache 

Many modern computer systems are micro- 
coded and in some cases the amount of 
microcode is quite large. If the microcode 
is not stored in sufficiently fast storage, it 
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is possible to build a special cache to buffer 
the microcode. 

2.19.6 Buffer Invahdation Address Stack 
(BIAS) 

The I B M  370/168 and 3033 both use a 
store-through mechanism in which any 
store to main memory causes the line af- 
fected to be invalidated in the caches of all 
processors other than the one which per- 
formed the store. Addresses of lines which 
are to be invalidated are kept in the buffer 
invalidation address stack (BIAS) in each 
processor, which is a small hardware imple- 
mented queue inside the S-unit. The DEC 
VAX 11/780 functions in much the same 
way, although without a BIAS to queue 
requests. That  is, invalidation requests in 
the VAX have high priority, and only one 
may be outstanding at a time. 

2 19.7 Input~Output Buffers 

As noted earlier, input/output streams 
must be aborted if the processor is not 
ready to accept or provide data when they 
are needed. For this reason, most machines 
have a few words of buffering in the I/O 
channels or l,/O channel controller(s). This 
is the case in the 370/168 [IBM75] and the 
3033 [IBM78]. 

2.19.8 Write-Through Buffers 

In a write-through machine, it is important 
to buffer the writes so that the CPU does 
not become blocked waiting for previous 
writes to complete. In the IBM 3033 
[IBM78], four such buffers, each holding 
a double word, axe provided. The VAX 
11/780 [DEC78], on the other hand, buffers 
one write. {Four buffers were recommended 
in SMIT79.) 

2.19.9 Register Cache 

It has been suggested that  registers be au- 
tomaticaUy stacked, with the top stack 
frames maintained in a cache [DITz82]. 
While this is much better (faster) than im- 
plementing registers as part of memory, as 
with the Texas Instruments 9900 micropro- 
cessor, it is unlikely to be as fast as regular, 
hardwired registers. The specific cache de- 
scribed, however, is not general purpose, 

but is dedicated to holding registers; it 
therefore should be much faster than a 
larger, general-purpose cache. 

3. DIRECTIONS FOR RESEARCH AND 
DEVELOPMENT 

Cache memories are moderately well un- 
derstood, but there are problems which in- 
dicate directions both for research and de- 
velopment. First, we note that technology 
is changing; storage is becoming cheaper 
and faster, as is processor logic. Cost/per- 
formance trade-offs and compromises will 
change with technology and the appropri- 
ate solutions to the problems discussed will 
shift. In addition to this general comment, 
we see some more specific issues. 

3.1 On-Chip Cache and Other Technology 
Advances 

The number of gates that can be placed on 
a microcomputer chip is growing quickly, 
and within a few years, it will be feasible to 
build a general-purpose cache memory on 
the same chip as the processor. We expect 
that  such an on-chip cache will occur. 
There is research to be done in designing 
this within the constraints of the VLSI state 
of the art. (See LIND81 and POHM82.) 

Cache design is also affected by the im- 
plementation technology. MOS VLSI, for 
example, permits wide associative searches 
to be implemented easily. This implies that 
parameters such as set size may change 
with changing technology. This related as- 
pect of technological change also needs to 
be studied. 

3.2 Multicache Consistency 

The problem of multicache consistency was 
discussed in Section 2.7 and a number of 
solutions were indicated. Additional com- 
mercial implementations are needed, espe- 
cially of systems with four or more CPUs, 
before the cost/performance trade-offs can 
be evaluated. 

3.3 Implementation Evaluation 

A number of new or different cache designs 
were discussed earlier, such as the split 
instruction/data cache, the supervisor/user 
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cache, the multilevel cache, and the virtual 
address cache. One or more implementa- 
tions of such designs are required before 
their desirability can be fully evaluated. 

3.4 Hit Ratio versus Size 

There is no generally accepted model for 
the hit ratio of a cache as a function of its 
size. Such a model is needed, and it will 
probably have to be made specific to each 
machine architecture and workload type 
(e.g., 370 commercial, 370 scientific, and 
PDP-11). 

3.5 TLB Design 

A number of different TLB designs exist, 
but there are almost no published evalua- 
tions (but see SATY81). It would be useful 
to know what level of performance can be 
expected from the various designs and, in 
particular, to know whether the complexity 
of the Amdahl TLB is warranted. 

3.6 Cache Parameters versus Architecture 
and Workload 

Most of the studies in this paper have been 
based on IBM System 370 user program 
address traces. On the basis of that data, 
we have been able to suggest desirable pa- 
rameter values for various aspects of the 
cache. Similar studies need to be performed 
for other machines and workloads. 

APPENDIX. EXPLANATION OF TRACE 
NAMES 

1. EDC PDP-11 trace of text editor, 
written in C, compiled with C compiler 
on PDP-11. 

2. ROFFAS PDP-11 trace of text output 
and formatting program. (called ROFF 
or runoff). 

3. TRACE PDP-11 trace of program 
tracer itself tracing EDC. (Tracer is 
written in assembly language.) 

4. FGO1 FORTRAN Go step, factor 
analysis (1249 lines, single precision). 

5. FGO2 FORTRAN Go step, double- 
precision analysis of satellite informa- 
tion, 2057 lines, FortG compiler. 

6. FGO3 FORTRAN Go step, double- 

precision numerical analysis, 840 lines, 
FortG compiler. 

7. FGO4 FORTRAN Go step, FFT of 
hole in rotating body. Double-precision 
FortG. 

8. CGO1 COBOL Go step, fixed-assets 
program doing tax transaction selec- 
tion. 

9. CGO2 COBOL Go step, "fixed assets: 
year end tax select." 

10. CGO3 COBOL Go step, projects de- 
preciation of fixed assets. 

11. PGO2 PL/I  Go step, does CCW anal- 
ysis. 

12. IEBDG IBM utility that  generates 
test data that  can be used in program 
debugging. It will create multiple data 
sets of whatever form and contents are 
desired. 

13. PGO1 PLI Go step, SMF billing pro- 
gram. 

14. FCOMP FORTRAN compile of pro- 
gram that solves Reynolds partial dif- 
ferential equation (2330 lines). 

15. CCOMP COBOL compile. 240 lines, 
accounting report. 

16. WATEX Execution of a FORTRAN 
program compiled using the WATFIV 
compiler. The program is a combina- 
torial search routine. 

17. WATFIV FORTRAN compilation 
using the WATFIV compiler. (Com- 
piles the program whose trace is the 
WATEX trace.) 

18. APL Execution of APL program 
which does plots at a terminal. 

19. FFT Execution of an FFT program 
written in ALGOL, compiled using AL- 
GOLW compiler at Stanford. 
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