Eavesdropping Attacks on High-Frequency RFID Tokens

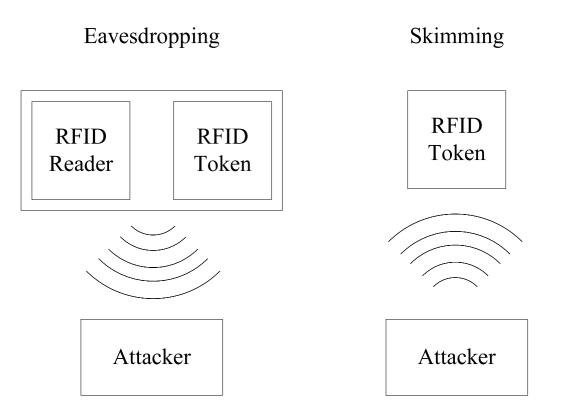
Gerhard P. Hancke

July 11, 2008

Eavesdropping Attacks on High-Frequency RFID Tokens – p. 1

What is the talk about?

- NOT presenting a new attack method
 - Overall eavesdropping is a straight forward attack
- NOT announcing that HF RFID can be eavesdropped
 - Already a recognised threat
- Look at issues around RFID eavesdropping
 - Ambiguities, perceptions and relevance (past and present)
- Discuss our eavesdropping experiment
 - Provide details method, observations and experiences
 - It is NOT all about the distance results (which can be affected by various variables)
- Some points in the talk might appear obvious:-)

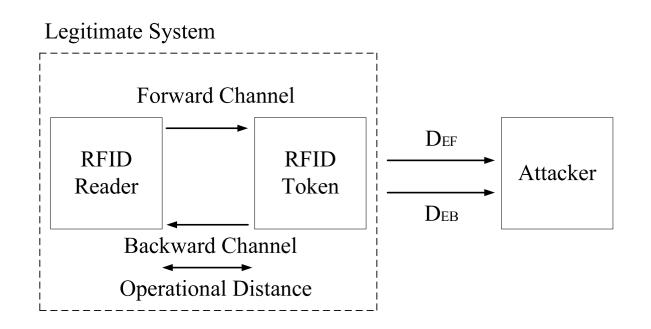

Why is eavesdropping still important?

- Credit Cards
 - Reported cases of personal information sent in the clear
- e-Passports
 - Some issues surrounding the entropy of the key
- Travel/Ticketing
 - Mifare Classic Crypto1 recently reverse engineered and shown to exhibit weaknesses
- Access Control
 - Some systems still use simple IDs or minimal crypto
- It seems that various end users still care...

Attack background

- Eavesdropping scenarios are well known
 - Government/public sector reports(e.g. NIST, DHS, BSI), academic papers, press report etc
- Practical results are limited to a few publications
 - T. Finke and H. Kelter(BSI). RFID Abhörmöglichkeiten der Kommunikation zwischen Lesegerät und Transponder am Beispiel eines ISO 14443-Systems
 - J. Guerrieri and D. Novotny (NIST). *HF RFID Eavesdropping and Jamming Tests*
 - W. Tobergte and R. Bienert (NXP). Eavesdropping and activation distance for ISO/IEC 14443 devices
- Mains points of interest
 - Distance still an issue being debated/reported
 - Is it feasible in terms of cost and effort for an attacker?

Ambiguity: Type of attack?

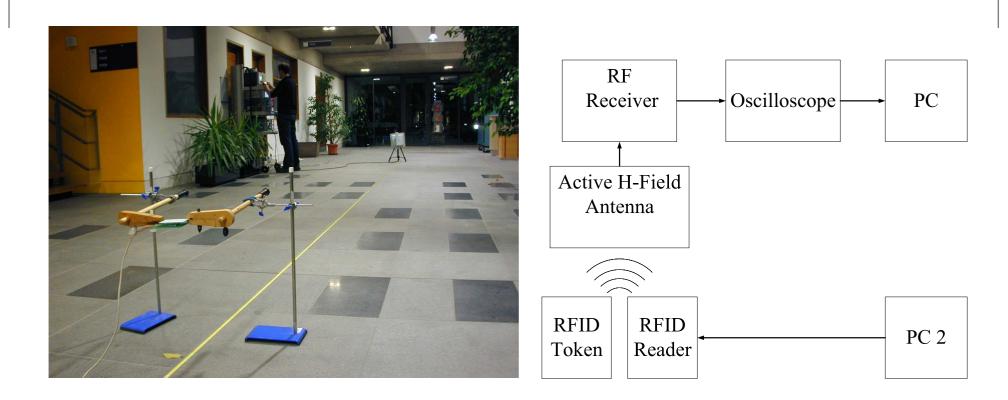


- Eavesdropping and skimming often listed as threats to RFID
- Some semantics: 'Recovered' or 'Retrieved' data sounds like eavesdropping while 'Read' should imply skimming

Ambiguity: What is 'RFID'?

- Several technologies
 - ISO 14443 A/B
 - ISO 15693
 - ISO 18000
 - ISO 18092
 - EPC
- Different applications
 - product tags
 - tickets single/multi-use
 - credit cards
 - travel documents

Ambiguity: What 'distance'?

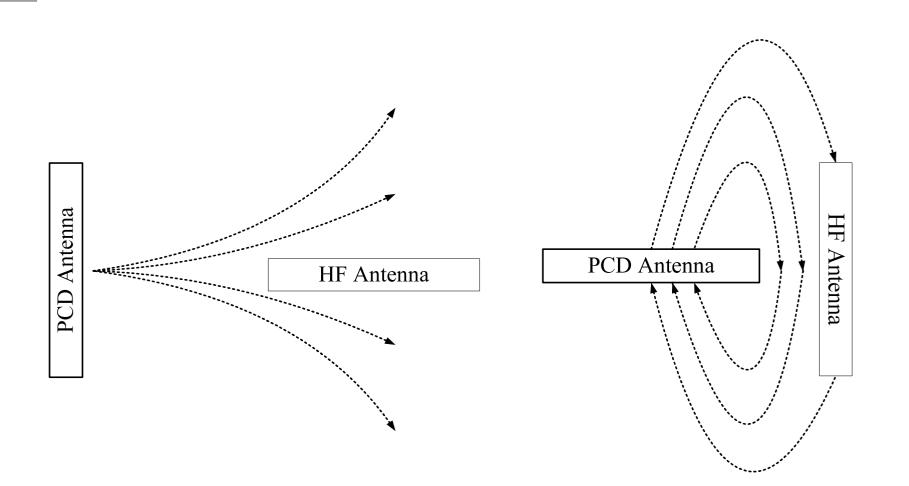


- The distance at which an attacker can detect a transaction
- The distance at which an attacker can reliably recover the data sent on the forward channel
- The distance at which an attacker can reliably recover the data sent on the backward channel

Other Issues

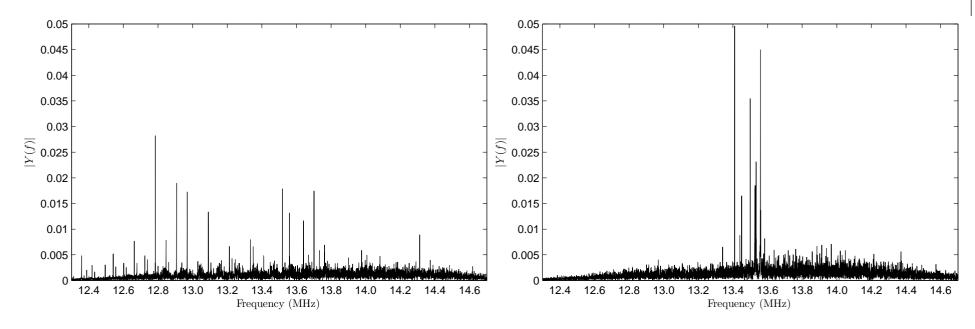
- Document the method equipment, setup, data recovery?
 - Simulation/calculation still requires a well documented and substantiated model
 - Practical implementation and results probably more trusted
- What is the attack environment in a field, noisy lab, shielded chamber?
- Put the report somewhere accessible rumours are often worse than facts

Experimental Setup


RF Equipment

- Dynamic Sciences R-1250 Wide Range Receiver (100 Hz to 1 GHz)
 - Selectable bandwidth (50 Hz to 200 MHz), AM/FM/IF output
 - RF and pre-detection gain (50 dB and 30 dB respectively)
- R-1150-10A Portable Antenna Kit
 - H-field ferrite core antenna (10 MHz to 30 MHz)

Antenna Orientation

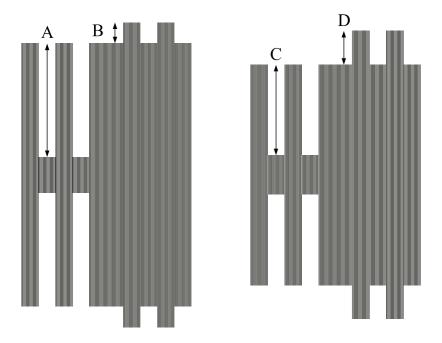


Ideally H-field lines should go though the antenna...leads to decent directional effect

HF RFID Readers/Tokens

- Reader
 - ACG Multi-ISO RFID Reader
 - Antenna dimension: 9 cm \times 6 cm
- Tokens
 - 14443A: NXP Mifare Classic
 - 14443B: Contactless payment card (unknown manufacturer)
 - 15693: NXP I-Code
- These specific products are not especially vulnerable just what I had available

Environment

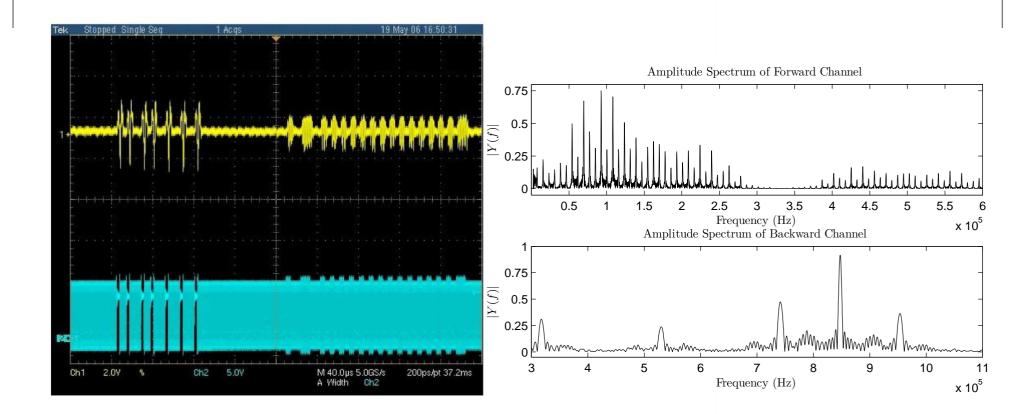


Hardware lab corridor

Main entrance hall

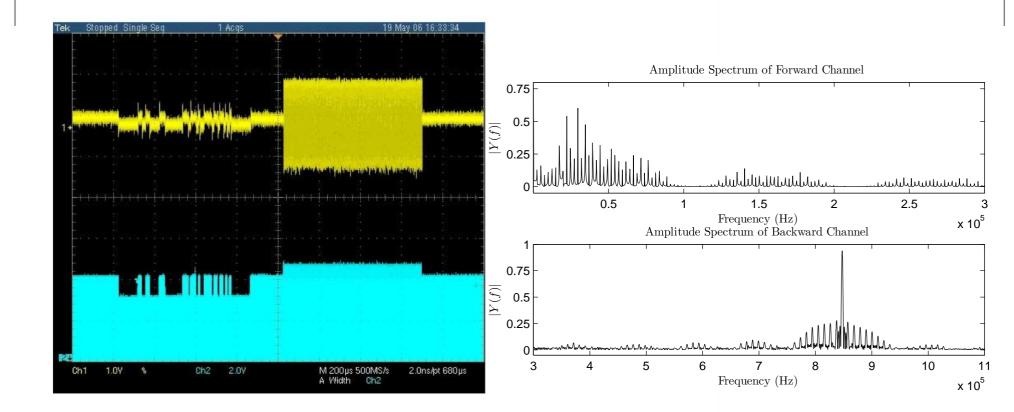
- Locations have different background noise profiles
- This effects eavesdropping success...

Additional experimental variation

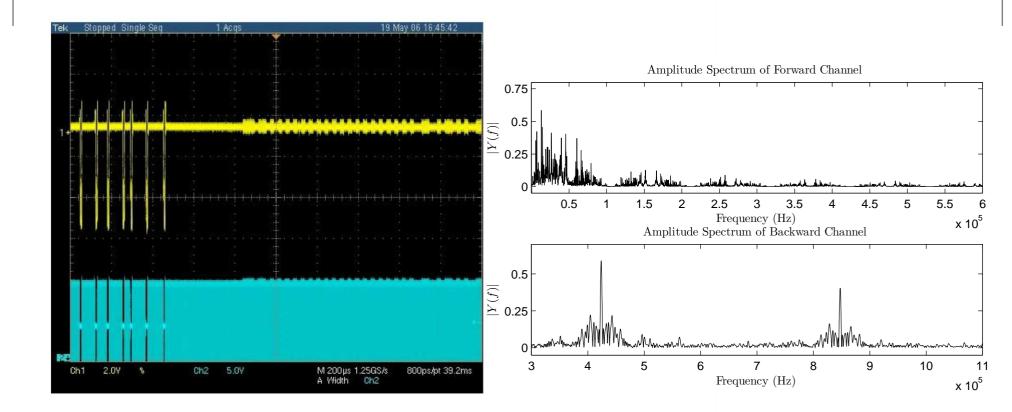


- Influences on carrier amplitude and modulation index/depth
 - Coupling token orientation, antenna tuning
 - Power Consumption
- Parameters of the reader antenna size, transmitted power
- Have not yet investigated this fully...

Method


- Generate reference data
 - Identify spectrum of interest
 - Determine whether the experiment was successful
- Calibration and signal capture
 - Set up the receiver
 - Capture and store output of the receiver
- Data recovery
 - Implement some signal processing

Reference Data: ISO 14443 A


- **•** Forward: 106 kbit/s Modified Miller ($3\mu s$ pulses), 100% ASK
- Backward: 106 kbit/s Manchester, ASK onto 847 kHZ sub-carrier, carrier modulation index of 8–12%

Reference Data: ISO 14443 B

- Forward: 106 kbit/s NRZ, 10% ASK
- Backward: 106 kbit/s NRZ, BPSK onto 847 kHZ sub-carrier, carrier modulation index of 8–12%

Reference Data: ISO 15693

- Forward: 26.48 kbit/s '1 of 4' PPM (9.44 μspulse), 100% ASK
- Backward: 26.48 kbit/s NRZ, ASK onto 423 kHZ sub-carrier, carrier modulation index of 8–12%

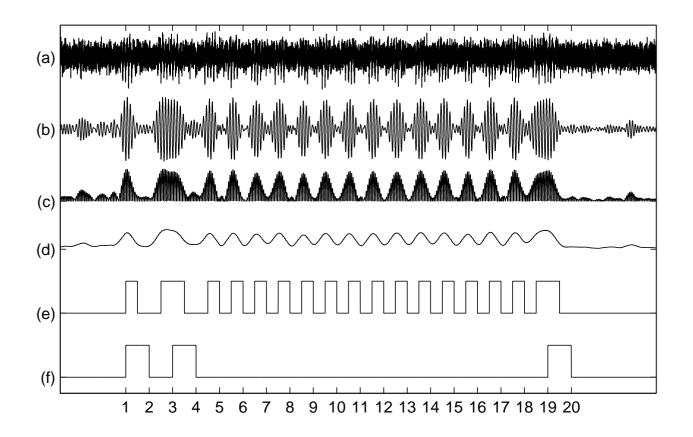
Capture and Calibration

- Oscilloscope Settings
 - Sample 30 MHz IF output at 100 MS/s for a duration of 320 ms
 - Manual trigger
- Receiver Settings
 - $f_c = 13.56 \text{ MHz}, \text{ BW} = 2 \text{ MHz}$ (try filter side-bands in software)
 - $f_c = 14.4$ MHz and 13.98 MHz, BW = 500 kHz and 200 kHz

Calibration

 Receiver gain adjusted with analog knob (gain therefore measured with a reference input signal)

Data Recovery


N correlators project the received signal r(t) onto base functions $f_k(t)$ $y_k = \int_0^T r(t) f_k(t) d_t, \ k = 1, 2, ..., N$

Rectangular base function simplifies to integrator: $y_k = \frac{1}{\sqrt{T}} \int_0^T r(t) d_t$

ISO 14443A: Forward channel $T = 3 \ \mu s$, backward channel $T = \frac{1}{212 \ \text{kHz}} = 4.72 \ \mu s$ ISO 14443B: Forward channel $T = \frac{1}{106 \ \text{kHz}} = 9.44 \ \mu s$, backward channel $T = \frac{1}{106 \ \text{kHz}} = 9.44 \ \mu s$

ISO 15693: Forward channel $T = 9.44 \ \mu s$, backward channel $T = \frac{1}{52.96 \ \text{kHz}} = 18.88 \ \mu s$

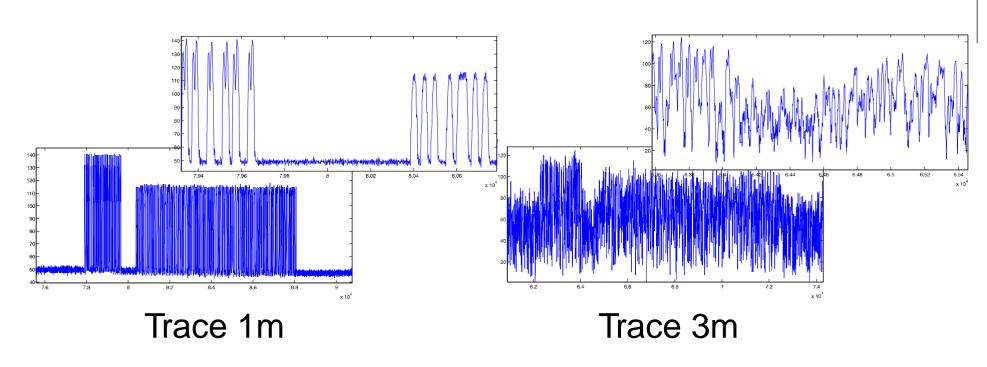
Data Recovery(2)

Example of recovering data from a noisy signal

Results

	ISO 14443A	ISO 14443B	ISO 15693
Entrance hall			
1 m	FB	FB	FB
3 m	Fx	хB	Fx
5 m	Fx	XX	Fx
10 m ^a	Fx	XX	Fx
Lab corridor			
3 m	FB	FB	Fx
4 m	Fx	хB	Fx

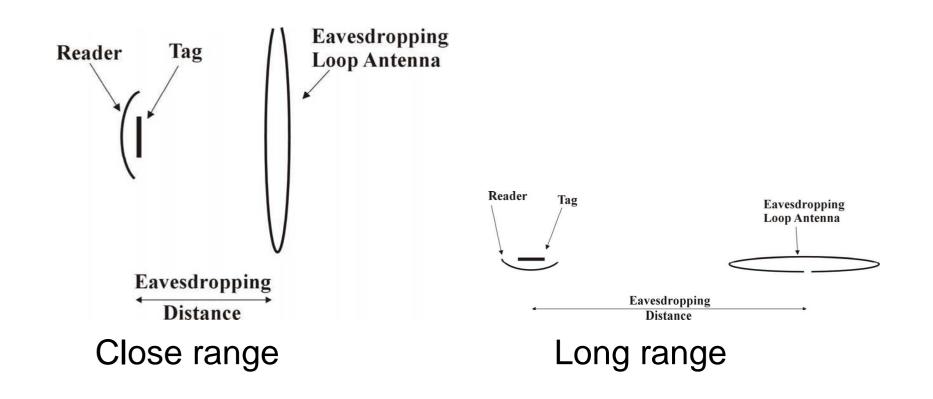
● F – Forward channel, B – Backward channel


a: Reader/Antenna in same horizontal plane

Finke and Kelter (2006)

- H-field loop, receiver ($f_c \approx$ 14.50 MHz, BW = 300 kHz)
- NXP Pegoda Reader, ISO 14443 A token
- Environment: Office/lab

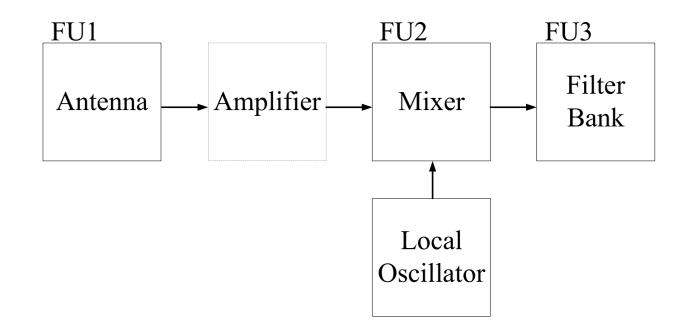
Finke and Kelter (2006)


- Eavesdropping successful to 2 m
- If implemented additional data recovery could be 3 m?

Guerrieri and Novotny (2006)

Equipment is documented but not in too much detail

Guerrieri and Novotny (2006)


Experimented with two antenna/reader orientations

Guerrieri and Novotny (2006)

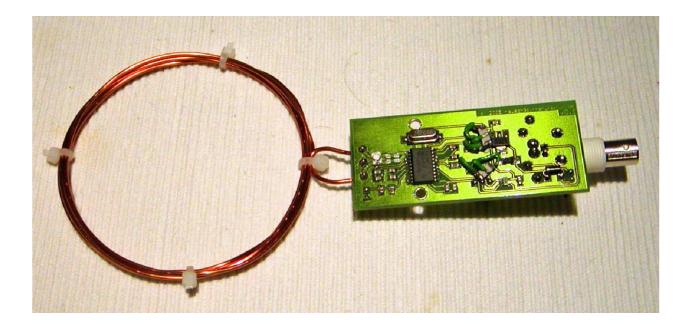
RFID equipment

- NXP Pegoda reader
- Seven ISO 14443A tokens (4 manufacturers)
- Data recovery
 - Receiver connected to protocol analyser
 - Eavesdropping successful if SNR > 6 dB
- Results
 - Close range setup: 6–6.5 m
 - Long range setup: 8–15 m
- Open questions
 - What is the environment? Noise figures very good...
 - What would the distance be with better data recovery?


Build your own receiver

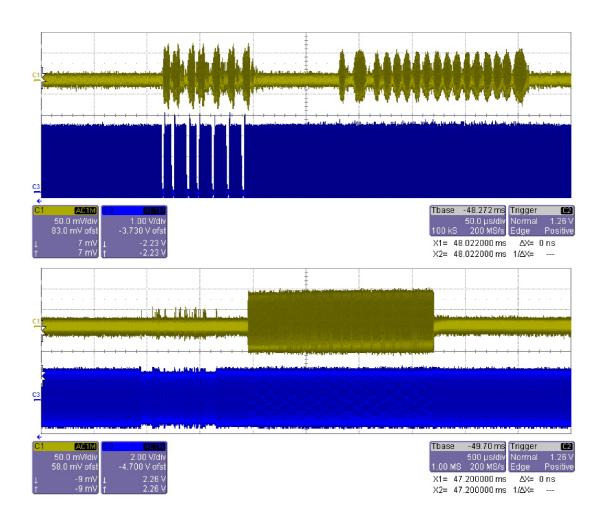
- Is the attack really feasible for attackers?
- RFID at the easier side of the RF design space
- No need to spend much money on commercial receivers for simple experiments/attacks
- Building a receiver for 50–60cm range relatively simple

Making Antennas


Instructions

- Books: J.J. Carr. Practical Antenna Handbook
- Application notes: TI's Antenna Cookbook

Mixer and Filters


- RF Mixers
 - Buy a suitable IC, cheap and easy to use e.g. NXP SA615
 - Mix to an IF suitable for filters
- Filters
 - Selection of off-the-shelf solutions e.g. 10.7 MHz SAW filters
 - Else design and build your own, there are a number of free filter design tools

Reference Designs

Last resort, use designs that are already available... for example Sniffer at www.opendpcd.org?

Sample Traces

Backward channel for ISO 14443 A and B

Signal Capture and Data Recovery

- Sampling rate is dependent on the output of the receiver
 - Need to sample at least $2 \times IF$
 - Directly influences the complexity and cost
 i.e. Cost 2 MS/s ADC < 100 MS/s ADC
- Final signal processing to recover data
 - Store and process later, 8-bit samples at 2 MS/s for 10 s \rightarrow 20 MB
 - 'Real-time' demodulator/decoder \rightarrow How quick can it be done?
 - Basically a storage vs processing speed trade-off
- Hardware requirements are not unrealistic

Conclusion

Presented details of a possible eavesdropping setup

- Hope this helps understanding of the attack
- Not claiming this is the best or only approach but provides a reference, which aid others to're-create' similar experiments
- I hope someone improves on it!
- Focus less on absolute distance
 - Just too many variables involved
 - Researcher with the best equipment wins
- Concentrate on feasibility and environmental parameters
 - Cost/size/skill required by attacker to practically implement
 - To what extent do external factors hinder or aid an attack?

Future Work

- Novel hardware implementation
 - Can you achieve the same performance as a commercial receiver in less space, for less money?
- Data recovery routines
 - Noise resistant receivers, hardware implementation, etc.
- Are E-field measurements useful?
- Eavesdropping for other RFID standards?
 - NFC Active mode → Effectively two forward channels Is this mode more vulnerable to eavesdropping?
 - Similar experiments for UHF (and other) RFID

Thank you, and any questions?

gerhard.hancke@rhul.ac.uk