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We derive a formula for the time-energy costs of general quantum channels proposed

in [Phys. Rev. A 88, 012307 (2013)]. This formula allows us to numerically find the
time-energy cost of any quantum channel using positive semidefinite programming. We

also derive a lower bound to the time-energy cost for any channels and the exact the

time-energy cost for a class of channels which includes the qudit depolarizing channels
and projector channels as special cases.
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1 Introduction

A time-energy cost of a unitary matrix U ∈ U(r) is defined as [1]

‖U‖max = max
1≤j≤r

|θj | (1)

where U has eigenvalues exp(iθj) for j = 1, . . . , r. Here, we denote by U(r) the group of

r× r unitary matrices, and we take the convention that θj ∈ (−π, π]. This definition of time-

energy cost was motivated [1, 2] from time-energy uncertainty relations [3, 4]. Essentially,

this time-energy cost captures the idea that time and energy are a trade-off against each other

and may be used as an indicator for the resource used by a quantum system. In particular,

a closed quantum system with a time-independent Hamiltonian H evolves from the initial

state |ψi〉 to the final state |ψf〉 according to the Schrödinger equation: |ψf〉 = U |ψi〉 where

U = exp(−iHt/~) and t is the evolution time. The eigenvalues of the Hamiltonian H are
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686 Solution to time-energy costs of quantum channels

the energies and thus the eigenvalues of logU correspond to the time-energy products, the

absolute maximum of which is the time-energy cost ‖U‖max defined above. Note that to

implement the same information processing task characterized by U , one may use a high

energy H run for a short time or a low energy H run for a long time. The time-energy

products in both cases are the same.

The definition for ‖U‖max in Eq. (1) is for unitary quantum channels. The time-energy

cost has been extended to cover general quantum channels [2]. A quantum channel mapping

n-dimensional density matrices to n-dimensional density matrices can be written as

K(ρ) =

d∑
j=1

KjρK
†
j , (2)

where Kj ∈ Cn×n are the Kraus operators and
∑d
j=1K

†
jKj = In. In this paper, we only

consider finite dimensional systems. The time-energy cost for quantum channel K is defined

as the time-energy cost of the most efficient unitary extension that implements K [2]:

‖K‖max ≡ min
U
‖U‖max (3)

s.t. K(ρ) = TrB [UBA(|0〉B〈0| ⊗ ρA)U†BA] ∀ρ,

where the channel K acts on quantum state ρ in system A and the unitary extension UBA
includes system B prepared in a standard state.

The time-energy cost has an interesting informational meaning. The cosine of this cost

for a general quantum channel is exactly the worst-case entanglement fidelity of the chan-

nel [5], establishing a connection between the physical aspect (the time-energy cost) and the

information aspect (the fidelity) of quantum channels. Fidelity is a popular quantity often

used to characterize the performance of information processing tasks including quantum key

distribution (as a security measure [6, 7]) and state discrimination (as the inconclusive prob-

ability [8, 9, 10]). Thus the study of the time-energy cost is important from a quantum

information theoretical perspective. To be specific, the result of Ref. [5] shows that for any

quantum channel K, the worst-case entanglement fidelity Fmin(K) of the channel is related to

the time-energy cost byb

Fmin(K) = cos ‖K‖max . (4)

Here, the worst-case entanglement fidelity Fmin(K) is defined as

Fmin(K) ≡ min
|Ψ〉

F
(
|Ψ〉AC〈Ψ|, (KA ⊗ IC)(|Ψ〉AC〈Ψ|)

)
, (5)

where the channel acts on system A and the fidelity is taken between the channel input state

(allowed to be entangled in systems A and C) and the corresponding output state. Here,

F (ρ, ρ′) ≡ Tr
√
ρ1/2ρ′ρ1/2 is the fidelity between two mixed quantum states ρ and ρ′ [11, 12].

This paper derives a formula for the time-energy cost ‖K‖max defined in Eq. (3) and

provides a numerical solution method via semidefinite programming. This in turn allows us

bNote that Ref. [5] originally shows that Fmin(K) = max(cos ‖K‖max , 0). However, we should always con-
sider taking the freedom of including an all-zero Kraus operator in the channel representation. In this case,
cos ‖K‖max is never negative. See Theorem 1 and its proof.
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to compute the the worst-case entanglement fidelity using Eq. (4). The difficulty in solving

for ‖K‖max stems from the freedom in the unitary extension. All the freedom we have for

choosing different U without changing the channel consists of the following operations:

1. Change the last (d+ 1)n− n columns of U .

2. Apply V ⊗ In to U on the left, where V ∈ U(d+ 1).

It turns out that one can apply an abstract mathematical result in unitary dilation theory [13]

to solve the problem. One can then determine the optimal solution using semidefinite pro-

gramming. Thus, we have a theoretical optimal solution that can be determined by numerical

method. This is one of the best scenarios in solving an optimization problem if there is a

closed form for the optimal solution of the given problem.

The organization of this paper is as follows. We solve problem (3) for ‖K‖max in Sec. 2,

and we derive a lower bound to the time-energy cost for any channels and compute the exact

time-energy costs for special channels in Sec. 3. We formulate in Sec. 4 the problem of finding

the time-energy cost as a semidefinite program (SDP) which can be solved numerically and

efficiently. We give some mathematical remarks in Sec. 5 and conclude in Sec. 6

2 Main result

Theorem 1

‖K‖max = cos−1
[
max
v

1

2
λmin

(
Kv +K†v

)]
(6)

where v ∈ Cd has `2-norm ‖v‖ ≤ 1, Kv =
∑d
j=1 vjKj , λmin(·) denotes the minimum eigen-

value of its argument, and we take the convention that cos−1 returns an angle in the range

[0, π].

Proof: The most general form of U in Eq. (3) is

U = (V ⊗ In)


K1 ∗ ∗ · · · ∗
K2 ∗ ∗ · · · ∗
...

...
Kd ∗ ∗ · · · ∗
Kd+1 ∗ ∗ · · · ∗


︸ ︷︷ ︸

U ′

(7)

where V ∈ U(d+ 1) and only the first n columns of U ′ are fixed. Here, we append an all-zero

Kraus operator Kd+1 = 0 in order to make U the most general unitary implementing the

channel K. Certainly, both {K1, . . . ,Kd} and {K1, . . . ,Kd+1} are valid representations of K.

As we shall see, there is no need to add more than one extra all-zero operator.

We first consider the freedom in U ′. Let d′ = d + 1. We want to choose the last d′n − n
columns of U ′ so that its norm is the smallest. This is described as an optimization problem

as follows:

ϕ ≡ min
U ′
‖U ′‖max

s.t. U ′i1 = Ki for all i = 1, . . . , d′,

with U ′ ∈ U(d′n) (8)
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where U ′ij denotes the (i, j) block of size n× n.

By the result in Ref. [13], we know that there is a unitary matrix Ũ = (Ũrs)1≤r,s≤2 ∈ U(2n)

with eigenvalues e±iθj for j = 1, . . . , n, such that Ũ11 = K1 and Ũ21 =

√
In −K†1K1 where

π ≥ θ1 ≥ · · · ≥ θn ≥ 0 and cos(θ1) = λmin(K1+K†1)/2. Note that there exists W ∈ U(d′n−n)

such that (In ⊕W )(Ũ ⊕ Id′n−2n)(In ⊕W )† satisfies the constraints in Eq. (8) and thus

ϕ ≤
∥∥∥Ũ∥∥∥

max
= cos−1

[
1

2
λmin

(
K1 +K†1

)]
. (9)

Next, we lower bound ϕ. Consider U ′ satisfying the constraints in Eq. (8). By the

interlacing inequalities (see, e.g., Ref. [14]), because (K1 +K†1)/2 is the principal submatrix of

(U ′+U ′†)/2, the eigenvalues a1 ≥ · · · ≥ ad′n of (U ′+U ′†)/2 and the eigenvalues b1 ≥ · · · ≥ bn
of (K1 +K†1)/2 satisfy

ad′n ≤ bn ≤ an,

and so

cos−1(ad′n) ≥ cos−1(bn).

If U ′ has eigenvalues exp(iθj), where j = 1, . . . , d′n and θj ∈ (−π, π], then ad′n = cos(maxj |θj |),
giving

max
j
|θj | ≥ cos−1

[
1

2
λmin

(
K1 +K†1

)]
.

Thus, (8) is bounded by

ϕ ≥ cos−1
[

1

2
λmin

(
K1 +K†1

)]
. (10)

Combining with Eq. (9) gives

ϕ = cos−1
[

1

2
λmin

(
K1 +K†1

)]
. (11)

Finally, we optimize V in Eq. (7) to obtain ‖K‖max. Note that ϕ which corresponds to the

optimal solution of U ′ after adjusting the last d′n− n columns depends only on the principal

submatrix of U ′. Thus,

‖K‖max = cos−1
[

max
v: ‖v‖=1

1

2
λmin

(
Kv +K†v

)]
(12)

where v ∈ Cd+1 is the first row of V . Here, Kv =
∑d+1
j=1 vjKj represents the principal

submatrix of U , where v = [v1, . . . , vd+1]. Taking into account Kd+1 = 0 gives the claim of

the theorem.

We remark that cos ‖K‖max ≥ 0.

3 Time-energy costs for special channels

In this section, we use Theorem 1 to compute the time-energy costs for a class of channels

which includes the qudit depolarizing channels and projector channels as special cases.
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Lemma 1 Any channel K can be described by an equivalent form with the Kraus operators

{Kj ∈ Cn×n : j = 1, . . . , d} satisfying

Tr(Kj) = 0, j = 2, . . . , d.

Proof: Two sets of Kraus operators {K1, . . . ,Kd} and {K̃1, . . . , K̃d} describe the same quan-

tum channel if and only if

Ki =

d∑
j=1

wijK̃j , for i = 1, . . . , d (13)

and for some unitary matrix W ≡ [wij ] of dimension d (see, e.g., Theorem 8.2 of Ref. [15]).

By taking the trace of Eq. (13), we see that there must exist W that can bring d − 1 terms

to zero. In particular, we have

K1 =

 d∑
j=1

|Tr(K̃j)|2
− 1

2 d∑
j=1

Tr†(K̃j)K̃j . (14)

(If d = 1, we can pad the channel with K2 = 0 to make Lemma 1 automatically hold.)

Lemma 2 For any channel K that can be described by Kraus operators {Kj ∈ Cn×n : j =

1, . . . , d} of the form

Tr(Kj) = 0, j = 2, . . . , d,

we have

cos−1
[

1

n
|Tr (K1)|

]
≤ ‖K‖max . (15)

Proof: We consider the middle term of Eq. (6):

1

2
λmin

(
Kv +K†v

)
≤ 1

2n

n∑
i=1

λi
(
Kv +K†v

)
=

1

2n
Tr
(
Kv +K†v

)
=

1

n
Re [Tr (Kv)]

=
1

n
Re [v1Tr (K1)]

where the first line is because the minimum is no greater than the average and λi denotes the

ith eigenvalue. Maximizing over v gives the claim.

Theorem 2 (Time-energy lower bound) For any channel K described by Kraus op-

erators {Kj ∈ Cn×n : j = 1, . . . , d}, we have

cos−1

 1

n

√√√√ d∑
j=1

|Tr (Kj)|2
 ≤ ‖K‖max . (16)
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Proof: This follows from Lemma 1 and Lemma 2.

Theorem 3 (Time-energy for special channels) For any channel K that can be de-

scribed by Kraus operators {Kj ∈ Cn×n : j = 1, . . . , d} of the form

K1 = αI where α ∈ C
Tr(Kj) = 0, j = 2, . . . , d,

(17)

its time-energy cost is

‖K‖max = cos−1|α|. (18)

Proof: ¿From Eq. (15), we have cos−1 |α| ≤ ‖K‖max.

On the other hand, by choosing a particular v,

max
v

1

2
λmin

(
Kv +K†v

)
≥max

θ1

1

2
λmin

(
eiθ1K1 + e−iθ1K†1

)
=|α|.

Therefore, ‖K‖max ≤ cos−1 |α| and the claim is proved.

Note that this theorem is slightly more general than Eq. (52) of Ref. [2] in which α is real

and positive. As noted in Ref. [2], channels satisfying Eq. (17) include the qudit depolarizing

channels. In the following, we show that projector channels also satisfy Eq. (17).

In general, given a channel, we can find an equivalent form according to Lemma 1 and

compute the new K1 using Eq. (14). If this new K1 satisfies Eq. (17), then the time-energy

cost of the channel is immediately given by Theorem 3. Otherwise, we can lower bound it

using Theorem 2.

Theorem 4 (Projector channels) For any channel K that can be described by Kraus

operators {Kj ∈ Cn×n : j = 1, . . . , d} of the form Kj = sjPj with Pj = P 2
j = P †j being a

projector of rank r and sj ∈ C, we have

‖K‖max = cos−1
(√

r

n

)
. (19)

Proof: Note that Tr(Kj) = sjr for all j. Using Lemma 1 and Eq. (14), an equivalent

description of K satisfies

K ′1 =
1√∑d
i=1 |si|2

I,

Tr(K ′j) = 0, j = 2, . . . , d.

Next, note that the trace-preserving constraint of quantum channels implies that In =∑d
j=1K

†
jKj =

∑d
j=1 |sj |2Pj and taking the trace of it gives n/r =

∑d
j=1 |sj |2. Then by

Theorem 3, the claim is proved.



C.-H. F. Fung, H. F. Chau, C.-K. Li, and N.-S. Sze 691

4 Efficient numerical solution using semidefinite programming

Our main result (6) in Theorem 1 can be formulated as an SDP. We can write Kj = Aj + iBj ,

where Aj , Bj ∈ Cn×n are Hermitian, and also write vj = aj − ibj with aj , bj ∈ R for j =

1, . . . , d. Then the problem is equivalent to

max λmin

(
d∑
i=1

(ajAj + bjBj)

)

s.t.

d∑
j=1

(a2j + b2j ) ≤ 1

(20)

where the maximization is over a1, b1, . . . , ad, bd ∈ R. We show that this problem can be cast

as a complex SDP which has the following form:

min gTx

s.t. x1G1 + · · ·+ xmGm +H � 0
(21)

where the minimization is over x ∈ Rm. Here, g ∈ Rm, and G1, . . . , Gm, H are complex

Hermitian matrices. Note that a complex SDP can always be cast as a real SDP in which

G1, . . . , Gm, H are real symmetric matrices.

Note that we can rewrite the objective function as follows:

min − λ

s.t.

d∑
j=1

(a2j + b2j ) ≤ 1

d∑
i=1

(ajAj + bjBj) � λI

(22)

where the maximization is over a1, b1, . . . , ad, bd, λ ∈ R. Next, we convert this inequality

constraint to a positive semidefinite constraint. Let c =
√∑d

j=1(a2j + b2j ). Consider the

matrix

C =

[
1 c
c 1

]
which has eigenvalues 1± c. Thus, the constraint c ≤ 1 is equivalent to the constraint C � 0.

Note that C ⊕ I2d−1 is unitarily similar to

a1F1 + . . . adFd + b1Fd+1 + · · ·+ bdF2d + I2d+1

where Fj = Ej,2d+1 +E2d+1,j and Ei,j is an (2d+ 1)× (2d+ 1) matrix with one at the (i, j)

position. Then, the problem becomes

min − λ
s.t. a1F1 + . . . adFd + b1Fd+1 + · · ·+ bdF2d + I2d+1 � 0

d∑
i=1

(ajAj + bjBj)− λI � 0

(23)
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where the maximization is over a1, b1, . . . , ad, bd, λ ∈ R. This is in the SDP form (21). Thus,

one can apply standard positive semidefinite programming to determine the time-energy cost

of a general quantum channel given in Eq. (6).

5 Mathematical remarks

• We may replace K1 by eiθ1K1 without affecting the quantum channel. Thus, we can

select θ1 ∈ [0, 2π) to maximize the smallest eigenvalue of eiθ1K1 +e−iθ1K†1 . To this end,

we can use the numerical range of K1 defined as

W (K1) = {〈x|K1|x〉 : |x〉 ∈ Cn, 〈x|x〉 = 1}.

This is a compact convex set in C, and can be obtained as the intersection of the half

spaces

Qθ1 =
{
µ ∈ C : eiθ1µ+ e−iθ1 µ̄ ≥

λmin(eiθ1K1 + e−iθ1K†1)
}
, θ1 ∈ [0, 2π).

So, maximizing the smallest eigenvalue of eiθ1K1 + e−iθ1K†1 corresponds to finding the

half space Qθ1 whose intersection with the unit disk has the smallest area.

• A heuristic approach to upper bound Eq. (6) is as follows. We separately consider

vjKj , j = 1, . . . , d and let vj = cj exp(iθj) where cj ∈ R+. Choose θj ∈ [0, 2π) to

maximize the smallest eigenvalue σj of eiθjKj + e−iθjK†j . This is equivalent to rotating

the numerical range W (Kj) so that the left support line is as close to the right side as

possible. Then choose a nonnegative unit vector (c1, . . . , cd) to maximize
∑d
j=1 cjσj .

If Kv =
∑d
j=1 cj exp(iθj)Kj , then λmin

(
Kv +K†v

)
≥
∑d
j=1 cjσj . Thus, ‖K‖max ≤

cos−1(
∑d
j=1 cjσj/2).

6 Conclusions

The physical meaning of the time-energy cost is its relation with the channel fidelity [5]. In

this paper, we show that the time-energy cost of any general quantum channel is given by

Eq. (6). It has closed formulas for special channels. For general channels, the problem of

finding the time-energy cost can be formulated as an SDP which can be solved efficiently on

computers.
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