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We present a multi-core reconfigurable quantum processor architecture, called Requp,
which supports a hierarchical approach to mapping a quantum algorithm while sharing
physical and logical ancilla qubits. Each core is capable of performing any quantum
instruction. Moreover, we introduce a scalable quantum mapper, called Squash 2, which
divides a given quantum circuit into a number of quantum modules—each module is
divided into k parts such that each part will run on one of k available cores. Experimental
results demonstrate that Squash 2 can handle large-scale quantum algorithms while
providing an effective mechanism for sharing ancilla qubits.
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1 Introduction

Mapping quantum circuits directly to a quantum fabric is a challenging task due to the gigantic
size of quantum circuits. These circuits comprise of two parts: a netlist of quantum logical
operations followed by the quantum error correction (QEC) circuit. The QEC increases the
circuit size by one or two orders of magnitude depending on the decoherence degree and the
desired fidelity of results. To handle this growth in the size, circuits are mapped in two levels.
The lower-level mapping, which is done by the physical-level mapper, maps a universal set of
quantum operations in a fault-tolerant fashion followed by an appropriate QEC circuit to a
given physical machine description (PMD). In the higher-level mapping, which is performed by
the logical-level mapper, the logical circuit is mapped to an abstraction of the PMD assuming
that the universal set of fault-tolerant quantum operations is provided by the lower level. This
approach addresses the increase in size by the QEC in the first level very well, but it does not
help for the second level. Real-size quantum circuits (even without QEC) are so large that
traditional mappers introduced by previous researchers cannot efficiently handle them [1].

Reference [2] shows that Shor’s factorization algorithm for a 1024-bit integer has 1.35 × 1015

physical instructions. Assuming that the one-level J7,1,3K Steane code is used in this im-
plementation, each logical operation results in about 105 physical instructions. Hence, this
algorithm has almost 1.35 × 1010 logical operations. As can be seen, the physical-level mapper
can handle the low-level QEC in a reasonable time as the number of physical instructions is
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not so high (∼105 physical instructions) [3]. On the other hand, mapping 1.35 × 1010 logical
operations is very time consuming.

Fortunately, quantum circuits can be partitioned into repetitively-used quantum modules.
This means that mapping one instance of these modules is sufficient. For instance, Fig. 1 shows
the phase estimation algorithm which is the core of several well-known and useful quantum
algorithms such as Shor’s factorization algorithm [4] and quantum random walk [5]. As can be
seen, in this circuit the controlled unitary is a module which is repeated 𝑛 times throughout
the circuit with different exponents (in modules 2 to 𝑛 + 1). The exponent denotes the number
of repetitions for the corresponding circuit. Clearly, identifying the quantum modules and
avoiding the remapping can exponentially improve the mapping speed for this circuit.
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Fig. 1. Quantum circuit representation of the phase estimation algorithm [4]. Modules are identified
in this circuit.

Another major stumbling block for realizing a scalable quantum computer is the limited
amount of physical qubits. Each logical operation is implemented in a fault-tolerant manner
based on the adopted QEC code, and using a certain amount of physical data qubits and
physical ancilla qubits. Physical data qubits uniquely belong to their corresponding logical
qubits, and hence cannot be shared. However, physical ancilla qubits, which are used to store
intermediate information, may participate in the QEC circuit of various logical operations at
different time instances. Similarly, logical ancilla qubits are used as scratch pads in the logical
level, and can be reused in different quantum modules. This reuse of ancilla qubits is referred
to as ancilla sharing. Escalating the ancilla sharing increases the latency of the entire circuit
while saving the precious quantum resources and vice versa. This trade-off is similar to the
well-known area-delay trade-off in VLSI circuits.

This paper introduces a novel quantum architecture, called reconfigurable quantum processor
architecture (Requp), in order to address the problem of ancilla sharing. Requp has 𝑘 quantum
cores each of which contains a quantum reconfigurable compute region (QRCR) and dedicated
level one and two quantum caches and is surrounded by a quantum memory. Quantum
cores are arranged on a 2-D mesh topology. Each QRCR has a constrained amount of
physical ancilla qubits while trying to share this limited resource among several quantum
operations so as to minimize the latency. The major contribution of this architecture lies in
its reconfigurability where it supports quantum operations with different number of physical
ancilla qubits. Moreover, it can be reconfigured to host various number of cores with different
amounts of logical ancilla which enables logical ancilla sharing. These differences are quite
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substantial and neglecting them leads to over provisioning of quantum physical qubits.
Using the module extraction method and the proposed architecture (Requp) mentioned

above, a scalable quantum mapper, called scalable quantum mapper considering ancilla sharing
(Squash 2 ), is introduced. Squash 2 initially divides the given circuit into a number of quantum
modules. For each module, it builds a quantum module dependency graph (QMDG) based on
the data dependency among the operations and modules. QMDG is then partitioned into 𝑘

sub-graphs and bound to the quantum cores. These sub-graphs are subsequently scheduled
and mapped to the Requp with 𝑘 quantum cores. Finally, result of mapping for each quantum
module is combined in order to generate the entire mapping of the given circuit. The source
code of Squash 2 can be obtained from http://sportlab.usc.edu/downloads.

Squash 2 which is covered in this paper extends the earlier version of Squash [6] in the
following aspects:

∙ Considering Requp reconfiguration overhead to increase the accuracy for latency calcula-
tion.

∙ Adding another level of memory hierarchy in Requp to consider logical ancilla sharing.
The earlier version only considered physical ancilla sharing.

∙ Utilizing hierarchical fault-tolerant quantum assembly (HF-QASM) language which
permits to hierarchically map a quantum algorithm. The earlier version could only
support one level of hierarchy in the quantum algorithm specification.

Moreover, this paper introduces a quantum mapping flow and demonstrates how Squash 2 fits
into the flow. Besides, experimental results are extended by adding three new benchmarks with
various sizes. Last but not least, the effect of hierarchical design on the Squash 2 performance
is studied.

The remainder of this paper is organized as follows. Sections 2 explains the basics of
quantum computing and the related work. Section 3 introduces a novel quantum mapping flow.
Section 4 presents the new architecture (Requp), whereas Section 5 explains the proposed
mapper (i.e., Squash 2). Experimental results are presented in Section 6, and finally Section 7
concludes the paper.

2 Quantum Computing Basics

2.1 Basics

A quantum bit, qubit, is a physical object (e.g., an ion or a photon) that carries data in
quantum circuits. Qubits interact with each other through quantum gates. Depending on the
underlying quantum computing technology, a universal set of quantum gates is available at
the physical level. More precisely, each quantum fabric is natively capable of performing a
universal set of one and two-qubit instructions (also called physical instructions). However,
the importance of fault-tolerant quantum computation dictates the quantum circuits to be
generated from fault-tolerant (FT) quantum operations. A universal (but redundant) set of FT
operations includes 𝐻, 𝑆, 𝑆†, 𝑇 , 𝑇 †, 𝑋, 𝑌 , 𝑍, and 𝐶𝑁𝑂𝑇 operations [4], which may differ
from physical instructions supported at the physical level. Fortunately, each FT quantum
operation (or quantum operation for short) can be realized by using a composition of these
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physical instructions. Accordingly, a logical level circuit contains quantum operations where
QEC is also applied.

A quantum circuit fabric is arranged as a 2-D array of identical cells. Each cell contains
sites for creating qubits, reading them out, performing instructions on one or two physical
qubits, and resources for routing qubits (or equivalently swapping their information to the
neighboring qubit). In practice, however, an abstract quantum architecture (QA) is built which
hides the physical information and the QEC details. Operation sites in this QA are capable
of performing any quantum operation. The QA is also equipped with syndrome extraction
circuitries following the quantum operation in order to prevent error propagation that may
have been introduced by the quantum operation.

A quantum compilation/synthesis tool generates a reversible quantum circuit composed
of quantum operations. Every qubit in the output circuit is called a logical qubit, which is
subsequently encoded into several physical qubits in order to detect and correct potential errors
on qubits. Physical qubits are comprised of two types: 1) physical data qubits and 2) physical
ancilla qubits. Physical data qubits carry the encoded data of the logical qubits. Based on
the type and the concatenation level of the QEC, a logical qubit is encoded to seven or more
physical data qubits. On the other hand, physical ancilla qubits are used as scratchpads and
can be shared among different logical qubits for the error correction procedure. Similarly,
logical qubits have two kinds: 1) logical data qubits and 2) logical ancilla qubits. Logical data
qubits carry crucial information throughout the runtime of program, whereas logical ancilla
qubits can be reused.

A high-level mapping tool schedules, places, and routes the logical circuit on the QA. To
achieve this, the quantum algorithm is initially modeled as a quantum module dependency graph
(QMDG), in which nodes represent quantum operations or modules and edges capture data
dependencies [1]. More precisely, module (or operation) 𝜃𝑗 depends on module (or operation)
𝜃𝑖 if 𝜃𝑖 and 𝜃𝑗 share at least one qubit and 𝜃𝑗 is the first module (or operation) after 𝜃𝑖 in
the circuit that uses this (these) shared qubit(s). This dependency is shown as 𝜃𝑖 → 𝜃𝑗 . For
instance, Fig. 2 depicts an FT implementation of a three-input Toffoli operation [7] along with
its QMDG.
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Fig. 2. (a) A fault-tolerant implementation of a three-input Toffoli gate [7]. (b) The corresponding
QMDG where each node represents a circuit operation.
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Next, the QMDG is mapped to the desired QA. The latency of the quantum algorithm
mapped to the QA can be calculated as the length of the longest path (critical path) in
the mapped QMDG, where the length of a path in the QMDG is in turn the summation of
latencies of operations located on that path plus routing latencies of their qubit operands [1].
Critical path of the mapped QMDG may not be the same as the original QMDG, since the
latter does not contain routing latencies. This can change the scheduling slacks, and hence
may increase the critical path of the entire graph.

2.2 Prior Work

Quantum Architectures: Metodi et al. propose the first QA called quantum logic array
(QLA) which is a 2-D array of super-cells called tiles [8]. Each tile comprises of an 𝑛 × 𝑛

array of cells so as a logical operation can fit in. Thaker et al. observe that the parallelism
in quantum circuits is very limited [9]. Hence, they suggest compressed QLA (CQLA) which
separates the array into two regions: memory and compute. In the memory region, the qubits
which do not participate in any operation at the current time are stored. These qubits absorb
less noise and hence require a lighter error correction scheme. In other words, the error
correction needs fewer physical ancilla qubits for every physical data qubit (a ratio of 1 to
8). On the other hand, the qubits in the compute region actively participate in the quantum
operations. Hence they require a much larger number of ancilla qubits. Since the compute
region occupies much smaller area than the memory region, this new architecture helps save
a lot of unnecessary physical ancilla qubits which are used in QLA. Memory region is also
further broken down into the cache and the global memory to address the qubit locality issue
required by the compute region.

Quantum Mapping Techniques: The quantum mapping problem, similar to the cor-
responding problem in the traditional VLSI area, is known as a hard problem. Whitney et
al. suggest a CAD flow for mapping a quantum circuit fault-tolerantly to an ion-trap fabric
[2]. To address the scalability issue, they adopt the two-level (physical and logical) mapping.
Other levels of hierarchy are handled manually without any automation. Jones et al. propose
a five-layer stack for implementing a quantum computer [10]. This work does not show how
to overcome the complexity of the ”logical layer” and tries to address other complexities in
the design by adding more layers. In [1], we have suggested to use a quick estimation method
called LEQA to calculate the circuit latency instead of a full-fledged mapping. Even though
this approach is quite fast, it does not provide the detailed mapping. Moreover, it requires a
flattened high-level netlist as the input which requires a huge amount of disk space to store
the netlist and a large memory in order to store its data structures. Additionally, LEQA does
not consider the ancilla sharing problem. Although several heuristics have been proposed in
the literature for solving the quantum mapping problem, none of them is able to deal with
large circuits [2, 8, 9, 11, 12].

3 Design Flow

The entire tool chain flow of a quantum mapper is depicted in Fig. 3. This flow is depicted
in the Enhanced Functional Flow Block Diagram (EFFBD) representation, which is detailed
in [13]. The purpose of the EFFBD is to indicate the sequential relationship of all functions
that must be accomplished by a system. EFFBDs show the same tasks identified through
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functional decomposition and display them in their logical and sequential relationship. We use
the following symbols and notation:

∙ Functions are represented as rectangular boxes (blocks) with an associated label number,
and data flow overlay for capturing data dependencies is represented by arrows.

∙ Each function receives a unique label number that can be used as identification, and is
shown in the top-left corner of the function.

∙ The primary inputs to the flow are depicted in green, the intermediate results are shown
in blue, and primary outputs are in orange.
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Fig. 3. Quantum mapping tool chain flow.

These tasks consider QEC to protect qubits against noise, and quantum control (QC) to
increase the fidelity. As a result, a combination of quantum algorithm, PMD, QEC code, and
QC protocol acts as the main inputs to a design flow. More accurately, the primary inputs to
the design flow are classified as follows:

∙ Scaffold code: A quantum algorithm written in the Scaffold language, which is a
quantum programming language described in [14].

∙ Tech. parameters: A description of the PMD, the QC protocol, and the QEC code.

∙ FT gate set: A universal set of quantum gates to be used in a fault-tolerant quantum
computation. This universal set is referred to as quantum gate set (QGS). For the
given QEC code, the exact implementation of each of the gates in the QGS is given. In
addition to the standard gates, new gates can also be added to this set as long as an
efficient, fault-tolerant implementation for the new gates exists in the given QEC code,
and correct costs are considered in the synthesis step.

∙ Architectural parameters: Specification of the quantum architecture.

∙ Resource constraints: Physical ancilla qubits are limited resources that should be
determined for the tool chain.

The description of functional blocks in Fig. 3 are as follows.
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1. “1- Quantum Compilation” receives the Scaffold code and the QGS, compiles the code,
and synthesizes it to a circuit consisting of gates from the QGS. It is assumed that either
the given Scaffold code is modular or the compiler decomposes it to various modules
(which is outside the scope of this paper). The output of this block is called HF-QASM,
which will be formally defined later in this section.

2. The generated HF-QASM is fed to “3- Quantum Physical Design” in order to be mapped
to the quantum circuit fabric. In addition, this block calculates the circuit latency (i.e.,
the number of physical time steps to execute the quantum algorithm) which is the main
quality measure for the design flow.

3. Prior to the physical design, a machine control language (MCL) code for each gate in the
QGS is generated in the “2- Quantum Tile Factory Design”, which uses (i) the realization
of each gate in QGS using native instructions of the given PMD by considering the
QC protocol, and (ii) encoding/decoding circuits for the given QEC code in order to
calculate the latency of each FT gate. In addition, the latency of performing each FT
gate is derived.

Based on the above discussion, it can be seen that the proposed flow uses a meet-in-the-
middle approach to generate the MCL code. On one hand, the top-down development in the
front-end tool suite breaks the Scaffold code into gates that are chosen from the QGS. On the
other hand, the bottom-up development in the tile factory designer tool generates optimized
MCL codes (in terms of gate or qubit counts) for each gate of the QGS. These two paths meet
each other in the back-end, where high-level gates are scheduled, placed and routed on the
2D tiled architecture, and then each high-level gate as well as move operation are replaced
by appropriate MCL codes in order to build the circuit MCL. Note that the path that goes
through the quantum tile factory design tool is an offline process that executes independently
of the quantum algorithm.

A key benefit of the meet-in-the-middle approach is that the efficiency of the top-down
(forward) synthesis approach and the accuracy of the bottom-up physical design approach
are simultaneously realized. Additionally, the design tool scalability is ensured by hiding the
physical implementation details of logic operations (and moves) in a given PMD for given QC
and QEC protocols from the algorithm and code developers. Ease of verification of the design
by separating front-end transformations from gate library verification is another benefit.

In order to address the scalability issue, quantum compiler should generate its output in
hierarchical form. In other words, the final output should be modular such that repetitive
code appears once. This not only manages the output size, but also helps the physical design
block to map each part of the code once. Thus, we developed the hierarchical fault-tolerant
quantum assembly (HF-QASM) language.

Fig. 4 shows the HF-QASM grammar. Every program written in HF-QASM is required to
have a main module. This module calls other modules in the program. Other modules in turn
can call the others. The only limitation is that no circular module call is allowed. The qubits
defined at the top of the main module are logical data qubits. These qubits are passed to
other modules through parameters. On the other hand, qubits that are defined at the top of
non-main modules are logical ancilla qubits. Their life-time is limited to the execution of their
parent module as opposed to logical data qubits which exist for the duration of the whole
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program execution. This grammatical distinction enables the quantum mapper to effectively
share logical ancilla qubits among the modules. Fig. 5 demonstrates the implementation
of a Fredkin gate in FT-QASM using three Toffoli gates. As can be seen, Toffoli gates are
implemented based on the FT gate decomposition presented in Fig. 2(a).

[width=0.9left=10pt,right=2pt,top=0pt,bottom=0pt,boxrule=1pt] name → [a-z,A-Z]+[a-z,A-Z,0-9]* num → [1-9][1-9]* whitespace → \n | \r | \t | comment → # .* (\n | <EOF>)
(a)

[width=0.9left=10pt,right=2pt,top=0pt,bottom=0pt,boxrule=1pt] start → (module)* main main → module main { body } module → module name ( param_list ) { body } param_list → param (,param)* param → qubit (*)? name body → (def ;)+ (gate;)+ def → qubit ([num])? name gate → (one_qubit_gate | two_qubit_gate | call) one_qubit_gate → (H|X|Y|Z|S|S†|T|T†|Prep0|MeasX|MeasY|MeasZ) (arg) two_qubit_gate → CNOT (arg, arg) call → name (call_list) call_list → arg (, arg)* arg → name | name[num]
(b)

Fig. 4. (a) Definitions of HF-QASM tokens. (b) HF-QASM grammar. Regular expression is used
to simplify the grammar specification. Note that the star character (*) used for the param variable
is a terminal. It determines whether a parameter is an array or not (similar to the C language).

[width=0.9left=10pt,right=2pt,top=0pt,bottom=0pt,boxrule=1pt]
module Toffoli (qbit c1 , qbit c2 , qbit t){

H (t);
CNOT (c2 , t);
Tdag (t);
CNOT (c1 , t);
T (t);
CNOT (c2 , t);
Tdag (t);
CNOT (c1 , t);
T (c2 );
T (t);
CNOT (c1 , c2 );
H (t);
T (c1 );
Tdag (c2 );
CNOT (c1 , c2 );

}
module main (){

qbit a[3];
#a[0] is control and a[1] and a[2] are target qubits
Toffoli (a[0] , a[2] , a [1]);
Toffoli (a[0] , a[1] , a [2]);
Toffoli (a[0] , a[2] , a [1]);

}

Fig. 5. Description of a Fredkin gate in HF-QASM.

The focus of this paper is on the “3- Quantum Physical Design” block of Fig. 3. In order
to prepare intermediate inputs to our tool, we use Scaffold Compiler [15] as the quantum
compilation tool to generate HF-QASM and our prior work QUFD [3] to provide the latency
and MCL of FT gates for the ion-trap technology. Note that Squash is not limited to a
particular quantum technology; however, the ion-trap technology is selected since it is among
the most promising methods for realizing quantum circuits to date [16].

4 Proposed Architecture
The CQLA architecture reviewed earlier assumes that the number of required physical ancilla
qubits for all of the logical operations followed by the QEC is the same. Hence, CQLA accounts
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for a certain amount of physical ancilla qubits for every logical operation in the compute
region. However, an important subset of logical operations, called non-transversal operations,
requires more ancilla than transversal operations. It has been proven that every universal
logical operation set contains at least one non-transversal gate which varies based on the
employed QEC [17]. Table 1 summarizes the physical ancilla requirements for two typical QEC
codes and various logical operations. As can be seen, a non-transversal operation requires half
an order of magnitude (in the Steane code) up to more than one order of magnitude (in the
Bacon-Shor code) more ancilla qubits compared to that of transversal operations. Moreover, a
two-qubit transversal operation (like CNOT) requires twice ancilla qubits compared to that of
a one-qubit transversal operation.

Table 1. Ancilla requirements for various QEC codes and operations.

QEC Operation Type Operation # of Ancilla Qubits

J7,1,3K Steane Code Transversal X, Y, Z, H, S, S† 28
CNOT 56

Non-Transversal T, T† 100

J9,1,3K Bacon-Shor Code
Transversal X, Y, Z, H 18

CNOT 36

Non-Transversal S, S† 58
T, T† 309

With this observation, the compute region cannot be a pre-allocated area with a fixed
number of physical ancilla qubits for all of operations; otherwise, it leads to an overestimation
of the required ancilla. Hence, we propose the quantum reconfigurable compute region (QRCR)
which distributes the ancilla qubits in the compute region based on dispatched operations. In
other words, physical ancilla qubits are shared among the operations which are being executed
based on their ancilla qubit requirements. To further speed up the computation and eliminate
the overhead of qubit routing, a hierarchical memory design is adopted. The first level of
the hierarchy is the quantum L1 cache which stores qubits that are immediately needed after
the execution of current operations in the QRCR. The second level is the quantum L2 cache
which keeps qubits required in the rest of the current quantum module computation. Using
this hierarchy, the routing delay overhead can be mostly hidden. More precisely, the routing
delay is substantially smaller than the delay of logical operations, because the routing involves
qubit movement (or information swap) which can be done directly by using fast primitive
operation(s), whereas logical operations require time consuming QECs. Considerable routing
delays are the time required to load the qubits from the quantum cache to the QRCR and the
time to transform Requp architecture so as to execute a new quantum module (more on this
later).

Quantum memory is the last level of memory hierarchy which holds qubits that are not
necessary in the current quantum module but required by other quantum modules. This
includes both logical data and ancilla qubits. Ancilla qubits can be stored in memory
temporarily and used when they are needed. This enables Requp to provide logical ancilla
sharing.

Fig. 6(a) depicts a quantum core which is comprised of a QRCR and a two-level quantum
cache. As can be seen, QRCR is located at the center and surrounded by the quantum L1
cache followed by the quantum L2 cache. The highly shaded areas inside the QRCR have
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higher number of ancilla, whereas lightly shaded areas contain fewer ancilla. The arrangement
of ancilla changes during the runtime of a quantum algorithm based on the operations being
executed.

Quantum 
Core 1

Quantum 
Core 3

Quantum 
Core 4

Quantum 
Core 2

Quantum Core

αiQRCR

αicache,L2

αicache,L1

αint

αicore

Quantum 
L1 Cache

αimem

αimem

(a)

(b)

Fig. 6. (a) Structure of a quantum core. (b) Structure of a quad-core Requp surrounded with
quantum memory. 𝛼𝑖𝑛𝑡, 𝛼𝑖

𝑄𝑅𝐶𝑅, 𝛼𝑖
𝑐𝑜𝑟𝑒, 𝛼𝑖

𝑐𝑎𝑐ℎ𝑒,𝐿1, 𝛼𝑖
𝑐𝑎𝑐ℎ𝑒,𝐿2, 𝛼𝑖

𝑚𝑒𝑚, and 𝛼𝑖
𝑅𝑒𝑞𝑢𝑝 are the width

of their respective components. Their detailed definitions are listed in Table 2.

In large-scale algorithms, the size of the cache and the memory may grow. This increases
the qubit routing delay which was already hidden by the long delay of logical operations.
To avoid this effect, we further extend the quantum core architecture to the reconfigurable
quantum processor architecture (Requp). A Requp contains multiple reconfigurable quantum
cores which are connected to each other by quantum interconnects. Quantum interconnects
are physically implemented similar to the rest of the quantum physical fabric. Here, this
distinction is made for clarity. A quad-core Requp is shown in Fig. 6(b).

5 Squash 2

This section introduces a hierarchical scalable quantum mapper, which considers ancilla sharing,
called Squash 2. Squash 2 adopts Requp as its underlying fabric abstraction. According to the
design flow explained in Section 3, Squash 2 inputs can be classified as follows:

∙ HF-QASM: A quantum algorithm description specified in the HF-QASM language

∙ Latency of FT-Gates & gate MCLs: MCL and latency of each operation in the
QGS
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∙ Tech. parameters: A QEC code description similar to Table 1 and a PMD-specific
timing parameter which defines the delay of a qubit traveling the distance of a grid cell
(called qubit one-step delay and denoted by 𝛽𝑃 𝑀𝐷)

∙ Architectural parameters: The number of quantum cores (𝑘), the interconnect width
(𝛼𝑖𝑛𝑡), and a coefficient which models the effect of the L2 cache size on the routing speed
(𝛾𝑐𝑎𝑐ℎ𝑒,𝐿2)

∙ Resource constraints: The total physical ancilla budget assigned to all of QRCRs
(𝐵𝑄𝑅𝐶𝑅)

The output of Squash 2 is a circuit mapped to the designated fabric. The total circuit
latency can be found from the final mapping solution.

As it is explained previously, early work found that quantum algorithms offer limited
parallelism [9]. By investigating various quantum algorithms, including the phase estimation
algorithm which is at the basis of several well-known and useful quantum algorithms (such as
Shor’s factorization algorithm [4] and quantum random walk [5]), we realized that quantum
algorithms can be divided into major modules which cannot be run in parallel, i.e., they should
be executed serially. The main reason is due to the no-cloning theorem, which does not allow
a qubit to be replicated. This limitation forbids any fan-out in a quantum circuit. As a
result, scheduling of modules becomes a trivial task— they should be run serially. Moreover,
these modules in turn may also hierarchically contain a number of repetitively-used quantum
modules. Mapping only one instance of these modules significantly reduces the mapping
runtime overhead. On the other hand, because of the sequential execution of modules, logical
ancilla may be shared among them.

Algorithm 1. presents the key steps involved in Squash 2. The first line of Algorithm 1.
makes a QMDG for the given HF-QASM. Next, the QMDG is traversed in post-order (i.e.,
first children, and then their parent), and nodes are stored in an ordered list called 𝒮. After
that, in the for-loop block (lines 4 to 9), the algorithm maps each of the modules separately.
The final solution (ℳ𝑚) is the mapping of the root node in the QMDG (i.e., the main module)
which is the 𝑚𝑡ℎ element in the post-order traversal. This contains information about the
mapping of logical operations to quantum cores as well as logical qubit movement. However,
an MCL code deals with physical-level instructions and qubits. Hence, logical operations
(including move or swap operations) in ℳ𝑚 are replaced by corresponding MCLs in order to
produce the final physical-level mapping solution, denoted by ℳ𝑓𝑖𝑛𝑎𝑙

𝑚 (line 11).
The for-loop body works as follows. Line 4 generates a QMDG called QMDG𝑖 as explained

in Section 2. Next, QMDG𝑖 is broken into 𝑘 parts such that 𝑘 quantum cores can execute
these parts simultaneously while having the minimum amount of inter-core communication
(line 5). The routing delay matrix is then calculated, which comprises of the qubit routing
delays between every pair of quantum cores (line 6). Each part is then bound (line 7) and
mapped (line 8) to a quantum core, and finally combined (line 9). In the remainder of this
section, the details of these steps (i.e., the for-loop body) are explained.

5.1 QMDG 𝐾-Way Partitioning

A standard 𝑘-way partitioning algorithm takes a graph, and divides its node set into 𝑘 disjoint
parts such that the parts are balanced in terms of their size and a minimum number of edges
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Algorithm 1. Squash 2
Input: An HF-QASM, QGS MCLs and their latencies, a QEC code, architectural parameters
(i.e., number of quantum cores (𝑘), qubit one-step delay (𝛽𝑃 𝑀𝐷), interconnect width (𝛼𝑖𝑛𝑡),
and L2 cache size effect on the routing coefficient (𝛾𝑐𝑎𝑐ℎ𝑒,𝐿2)), and resource constraint (i.e.,
total physical ancilla budget assigned to all of QRCRs (𝐵𝑄𝑅𝐶𝑅))
Output: Mapped circuit of the given HF-QASM

1: Make a QMDG for the given HF-QASM
2: Traverse QMDG in the post-order way and store the nodes in an ordered list called

𝒮 =< 𝒮1, . . . , 𝒮𝑚 >
3: for i=1 to m do
4: Generate a QMDG for the operations & modules in 𝒮𝑖 (called QMDG𝑖)
5: 𝐾-way partition QMDG𝑖 to get 𝒫𝑖 = {𝒫𝑖,1, . . . , 𝒫𝑖,𝑘}
6: Calculate the routing delay matrix d
7: Bind each 𝒫𝑖,𝑗 to one of the quantum cores
8: Map each 𝒫𝑖,𝑗 to the designated quantum core
9: Combine the mappings for all of the cores to derive ℳ𝑖

10: end for
11: Use FT-gate MCLs and ℳ𝑚 to generate final mapping called ℳ𝑓𝑖𝑛𝑎𝑙

𝑚

12: return ℳ𝑓𝑖𝑛𝑎𝑙
𝑚

are cut. Using this method, the same workload is assigned to each quantum core, while
inter-core communication is minimized. However, there is no guarantee that parts can be
executed in parallel which is in fact a desired metric in order to reduce the runtime. As
an example, consider the QMDG shown in Fig. 2(b), and assume a two-way partitioning is
needed. A standard graph partitioning algorithm may suggest the dashed cut in Fig. 7(a)
which partitions the graph into two parts with almost equal number of nodes. Unfortunately,
this solution does not allow any parallelism. On the other hand, consider the dotted cut in
Fig. 7(b). Even though one part has twice as many nodes as the other one in this partitioning,
it is a better solution as parts can be executed simultaneously.

In order to guide the partitioning algorithm to produce parts that can be run in parallel,
we employ the technique proposed in [18] which adopts the multi-constraint graph partitioning
(MCGP) method explained in [19]. The MCGP method assigns an (𝑛𝑐𝑜𝑛)-dimensional weight
vector to each node, and then balances the total sum of the weight values among the parts in
each dimension while minimizing the edge cut.

The weight vector for each QMDG node is calculated as follows. Initially, the QMDG is
levelized. Let 𝑛𝑖 be the number of nodes at level 𝑖 (denoted by 𝐿𝑖), 𝑈 = {𝐿𝑖 | 𝑛𝑖 ≥ 𝑘}, and
𝑛𝑐𝑜𝑛 = |𝑈 | (i.e., the number of levels that contain greater than or equal to 𝑘 nodes.) Then,
weight vectors of size 𝑛𝑐𝑜𝑛 are assigned to each node. For nodes that are at level 𝐿𝑖 /∈ 𝑈 , the
weight vector is set to the zero vector. For other nodes, we first assign a label to each level
𝐿𝑖 ∈ 𝑈 using the one-hot coding scheme. This label will be used as the weight vector for all
of the nodes within the same level. Hence, by using one-hot coding, a unique dimension of
the weight vector is assigned to all nodes at level 𝐿𝑖 ∈ 𝑈 . Therefore, the MCGP method is
forced to partition these nodes into distinct parts so that the total weight in the corresponding
dimension for each part is balanced.
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Fig. 7. (a) The standard two-way partitioning on the QMDG of a three-input Toffoli gate. (b) The
MCGP partitioning with detailed steps for the same QMDG.

Example: In order to perform the two-way MCGP on the QMDG shown in Fig. 2(b),
the QMDG should be first levelized. The result of levelization determines 𝑈 = {𝐿7, 𝐿9, 𝐿10}.
Consequently, 𝑛𝑐𝑜𝑛 = 3. All of the nodes except the ones associated with levels 𝐿7, 𝐿9, 𝐿10 are
assigned a zero vector (i.e., (0, 0, 0)). Using the one-hot coding, nodes 7 and 9 are assigned
vector (1, 0, 0), nodes 10 and 11 are labeled with vector (0, 1, 0), and finally nodes 12, 13,
and 14 are marked with vector (0, 0, 1). This process is depicted in Fig. 7(b). An MCGP
solver tries to separate nodes in the levels listed in 𝑈 to achieve a weight-balanced result. The
dashed line shown in Fig. 7(b) is a desired partitioning solution with total weight of (1, 1, 1)
and (1, 1, 2) for the top and bottom partitions, respectively. On the other hand, the solution
given in Fig. 7(a) results in (1, 0, 0) and (1, 2, 3) weight vectors for two parts which is clearly
not-balanced.

5.2 Requp Characterization

In this phase, based on the information obtained from the partitioning step, the quantum core
is characterized in order to find accurate qubit routing delays between each pair of cores. Note
that it is not necessary to use the same quantum core configuration for all of the quantum
modules, because it is just an abstraction to simplify the mapping and to hide the technology
details.

For this purpose, as shown in Fig. 6, five parameters, namely 𝛼𝑖
𝑄𝑅𝐶𝑅, 𝛼𝑖

𝑐𝑜𝑟𝑒, 𝛼𝑖
𝑐𝑎𝑐ℎ𝑒,𝐿1,

𝛼𝑖
𝑐𝑎𝑐ℎ𝑒,𝐿2, and 𝛼𝑖

𝑚𝑒𝑚 for the 𝑖𝑡ℎ module are initially calculated. The approach is to derive the
number of physical qubits that each area should be able to accommodate and then the desired
parameters are calculated accordingly. In other words, we assume that Fig. 6 is a grid of cells,
where each cell can accommodate only a qubit. We summarized the notations used in this
subsection in Table 2.



M. J. Dousti, A. Shafaei, and M. Pedram 345

Table 2. Requp nomenclature.
Symbol Definition
𝛼𝑖𝑛𝑡 Interconnect width which is an input parameter (see Fig. 6)
𝛼𝑖

𝑄𝑅𝐶𝑅 QRCR width for module 𝑖 (see Fig. 6)
𝛼𝑖

𝑐𝑜𝑟𝑒 Quantum core width for module 𝑖 (see Fig. 6)
𝛼𝑖

𝑐𝑎𝑐ℎ𝑒,𝐿1 Quantum L1 cache width for module 𝑖 (see Fig. 6)
𝛼𝑖

𝑐𝑎𝑐ℎ𝑒,𝐿2 Quantum L2 cache width for module 𝑖 (see Fig. 6)
𝛼𝑖

𝑚𝑒𝑚 Quantum memory width for module 𝑖 (see Fig. 6)
𝛼𝑖

𝑅𝑒𝑞𝑢𝑝 Half perimeter length of the quantum processor for module 𝑖

𝐵𝑃 Total physical ancilla budget
𝐵𝑄𝑅𝐶𝑅 Total physical ancilla budget assigned to all of QRCRs
𝐷𝑡𝑜𝑡𝑎𝑙

𝐿 Total logical data required throughout the quantum program
𝐷𝑖

𝐿 Total logical data required by module 𝑖

𝐿𝑖
𝑚𝑎𝑥

Maximum number of logical qubits (data+ancilla) required by any
core in module 𝑖

𝐴𝑖
𝐿 Number of logical ancilla that module 𝑖 requires

𝐴𝑖
𝑚𝑖𝑛 Minimum physical ancilla requirement among quantum operations

𝐴𝑖
𝑚𝑎𝑥 Maximum physical ancilla requirement among quantum operations

𝑄𝑖
𝑚𝑒𝑚 Number of physical qubits reside in the memory of module 𝑖

𝑑𝑥,𝑦 Routing delay between core 𝑥 and core 𝑦

𝑛𝑥,𝑦 Manhattan distance between the center of core 𝑥 and 𝑦

𝛽𝑃 𝑀𝐷 Qubit one-step delay (technology dependent)
𝛾𝑐𝑎𝑐ℎ𝑒,𝐿2 L2 cache size effect on the routing coefficient
𝑙𝑐𝑜𝑑𝑒 QEC code length

𝛼𝑖
𝑄𝑅𝐶𝑅 can be obtained by

𝛼𝑖
𝑄𝑅𝐶𝑅 =

⌈︃√︃
𝐵𝑄𝑅𝐶𝑅/𝑘

𝐴𝑖
𝑚𝑖𝑛

.𝑙𝑐𝑜𝑑𝑒 + 𝐵𝑄𝑅𝐶𝑅/𝑘

⌉︃
. (1)

The first summation term in this equation accounts for the maximum number of physical data
qubits that QRCR may host, whereas the second term accounts for the physical ancilla qubits.
Multiplication by 𝑙𝑐𝑜𝑑𝑒 converts the number of logical qubits to the number of physical qubits.
Note that 𝐵𝑄𝑅𝐶𝑅/𝑘 is the physical ancilla budget per QRCR. 𝐵𝑄𝑅𝐶𝑅 should be chosen such
that

𝑘.𝐴𝑖
𝑚𝑎𝑥 ≤ 𝐵𝑄𝑅𝐶𝑅. (2)

In other words, there should be enough physical qubits in each core such that any operation
which requires the maximum number of physical ancilla qubits (i.e., 𝐴𝑖

𝑚𝑎𝑥) can also be executed.
As an example, for the Steane code listed in Table 1, 𝐴𝑖

𝑚𝑎𝑥, 𝐴𝑖
𝑚𝑖𝑛, and 𝑙𝑐𝑜𝑑𝑒 are equal to 100,

28, and 7, respectively.
𝛼𝑖

𝑐𝑜𝑟𝑒 is determined by

𝛼𝑖
𝑐𝑜𝑟𝑒 =

⌈︂√︁
⌈ 9

8 𝐿𝑖
𝑚𝑎𝑥⌉ · 𝑙𝑐𝑜𝑑𝑒 + 𝐵𝑄𝑅𝐶𝑅/𝑘

⌉︂
. (3)
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Note that a core should be able to host logical qubits (first term) as well as physical ancilla
qubits (second term). 𝐿𝑖

𝑚𝑎𝑥 can be calculated by referring to the partitioned set of operations
for each core. Furthermore, 𝐿𝑖

𝑚𝑎𝑥/8 logical ancilla qubits are reserved for the error correction
of logical qubits in two levels of cache. As mentioned earlier, for the QEC of every eight logical
data qubits in the cache or the memory, only one logical ancilla qubit is enough (see [9] for
details.)

As suggested in [9], 𝛼𝑖
𝑐𝑎𝑐ℎ𝑒,𝐿1 can be set such that the L1 cache area becomes twice as

large as the QRCR area. Hence, 𝛼𝑖
𝑐𝑎𝑐ℎ𝑒,𝐿1 can be calculated as

𝛼𝑖
𝑐𝑎𝑐ℎ𝑒,𝐿1 = 𝑚𝑖𝑛

{︃⌈︂√
3 − 1
2 𝛼𝑖

𝑄𝑅𝐶𝑅

⌉︂
,

𝛼𝑖
𝑐𝑜𝑟𝑒 − 𝛼𝑖

𝑄𝑅𝐶𝑅

2

}︃
. (4)

A minimum value is calculated in order to avoid over provisioning of resources for the L1
cache, i.e., the L1 cache plus QRCR area should not be larger than the area of the core.

Next, 𝛼𝑖
𝑐𝑎𝑐ℎ𝑒,𝐿2 can be derived based on the values of 𝛼𝑖

𝑄𝑅𝐶𝑅, 𝛼𝑖
𝑐𝑎𝑐ℎ𝑒,𝐿1, and 𝛼𝑖

𝑐𝑜𝑟𝑒:

𝛼𝑖
𝑐𝑎𝑐ℎ𝑒,𝐿2 =

⌈︃
𝛼𝑖

𝑐𝑜𝑟𝑒 − 𝛼𝑖
𝑄𝑅𝐶𝑅

2 − 𝛼𝑖
𝑐𝑎𝑐ℎ𝑒,𝐿1

⌉︃
. (5)

Using these four parameters, the communication delay for routing a qubit from the QRCR
of core 𝑥 to the QRCR of core 𝑦 can be calculated as

𝑑𝑥,𝑦 =
{︃

𝑛𝑥,𝑦

(︀
𝛼𝑖

𝑐𝑜𝑟𝑒 + 𝛼𝑖𝑛𝑡

)︀
𝛽𝑃 𝑀𝐷, 𝑥 ̸= 𝑦

(𝛼𝑖
𝑄𝑅𝐶𝑅+𝛼𝑖

𝑐𝑎𝑐ℎ𝑒,𝐿1+𝛾𝑐𝑎𝑐ℎ𝑒,𝐿2·𝛼𝑖
𝑐𝑎𝑐ℎ𝑒,𝐿2)

2 𝛽𝑃 𝑀𝐷, 𝑥 = 𝑦
. (6)

The first case (𝑥 ̸= 𝑦) considers the inter-core routing delay, whereas the second case (𝑥 = 𝑦)
accounts for the delay of transferring a qubit from the cache (L1 or L2) into the QRCR.
Coefficient 𝛾𝑐𝑎𝑐ℎ𝑒,𝐿2 ensures the proper contribution of the L2 cache size to the routing delay
of a qubit. In other words, if the L2 cache size becomes large enough, then the routing delay
cannot be overshadowed by the long operation delay, and hence should be considered in the
routing delay calculation. We capture this effect with the 𝛾𝑐𝑎𝑐ℎ𝑒,𝐿2 coefficient.

In order to determine 𝛼𝑖
𝑚𝑒𝑚, we need to find the aspect ratio of Requp (i.e., 𝛼𝑖

𝑅𝑒𝑞𝑢𝑝,𝑥 and
𝛼𝑖

𝑅𝑒𝑞𝑢𝑝,𝑦.) They can be

𝛼𝑖
𝑅𝑒𝑞𝑢𝑝,𝑥 = 𝑛𝑥𝛼𝑖

𝑐𝑜𝑟𝑒 + (𝑛𝑥 − 1)𝛼𝑖𝑛𝑡 (7)

and
𝛼𝑖

𝑅𝑒𝑞𝑢𝑝,𝑦 = 𝑛𝑦𝛼𝑖
𝑐𝑜𝑟𝑒 + (𝑛𝑦 − 1)𝛼𝑖𝑛𝑡, (8)

where 𝑛𝑥 × 𝑛𝑦 is how quantum cores are arranged horizontally and vertically. The quantum
memory includes logical and physical ancilla qubits which are not necessary for the mapping
of module 𝑖 and are reserved for other modules. Their count can be calculated as

𝑄𝑖
𝑚𝑒𝑚 =

(︁
(max

𝑖
{𝐴𝑖

𝐿} − 𝐴𝑖
𝐿) + ⌈ 9

8 (𝐷𝑡𝑜𝑡𝑎𝑙
𝐿 − 𝐷𝑖

𝐿)⌉
)︁

· 𝑙𝑐𝑜𝑑𝑒. (9)

The term max𝑖{𝐴𝑖
𝐿} is the maximum number of logical ancilla any module may use in the

current quantum program. Thus, the first term considers logical ancilla qubits that are not
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currently being used, stored in the memory, and will be shared with other modules. Note that
unlike logical data quibts, logical ancilla qubits do not require error corrections (because they
are used as scratch pads). The second term captures logical data qubits along with their error
correction qubits. Accordingly, 𝛼𝑖

𝑚𝑒𝑚 is determined as

𝛼𝑖
𝑚𝑒𝑚 =

⌈︁√︁
(𝛼𝑖

𝑅𝑒𝑞𝑢𝑝)2 + 2𝑄𝑚𝑒𝑚 − 𝛼𝑖
𝑅𝑒𝑞𝑢𝑝

⌉︁
, (10)

where 𝛼𝑖
𝑅𝑒𝑞𝑢𝑝 is the half perimeter length of the quantum processor and can be defined as

𝛼𝑖
𝑅𝑒𝑞𝑢𝑝 = (𝑛1,𝑘 + 1) · 𝛼𝑖

𝑐𝑜𝑟𝑒 + 𝑛1,𝑘 · 𝛼𝑖𝑛𝑡. (11)

Total physical ancilla qubits that are used to run a qunatum program can be calculated as
follows.

𝐵𝑃 = 𝐵𝑄𝑅𝐶𝑅 + max
𝑖

{︀
(⌈ 1

8 (𝐴𝑖
𝐿 + 𝐷𝑖

𝐿)⌉ + ⌈ 1
8 (𝐷𝑡𝑜𝑡𝑎𝑙

𝐿 − 𝐷𝑖
𝐿)⌉) · 𝑙𝑐𝑜𝑑𝑒

}︀
(12)

Note that the first term captures the budget assigned to QRCRs for performing quantum
operations, whereas the max term accounts for the maximum ancilla required for error
correction of logical data qubits in memory or caches among all modules. The first term inside
the max operator considers QEC qubits used inside two-level caches and the second term
represents QEC qubits required for logical data qubits which reside in the memory. As can be
seen, the value of 𝐵𝑃 depends on the quantum program and hence we consider 𝐵𝑄𝑅𝐶𝑅 as the
input to Squash 2.

5.3 Resource Binding

After partitioning the QMDG, the resultant parts should be bound to the quantum cores such
that the total routing delay of qubits between cores is minimized. Since the scheduling of the
QMDG is not known at this step, we cannot focus on minimizing the total routing delay of the
operations on the critical path. Furthermore, the scheduling requires this binding information
in order to properly schedule two dependent operations assigned to two different quantum
cores.

The binding problem can be formulated as follows.

𝑀𝑖𝑛
𝑘∑︁

𝑚=1

𝑘∑︁
𝑛=1

𝑘∑︁
𝑥=1

𝑘∑︁
𝑦=1

𝑎𝑚,𝑛 · 𝑎𝑥,𝑦 · 𝑑𝑛,𝑦 · 𝑤𝑚,𝑥 (13)

subject to
𝑘∑︁

𝑛=1
𝑎𝑚,𝑛 = 1, for 1 ≤ 𝑚 ≤ 𝑘, (14)

𝑘∑︁
𝑚=1

𝑎𝑚,𝑛 = 1, for 1 ≤ 𝑛 ≤ 𝑘, (15)

where 𝑎𝑚,𝑛 is a binary variable, which is 1 if 𝒫𝑖,𝑚 is bound to quantum core 𝑛 and 0 otherwise,
and 𝑤𝑚,𝑥 denotes the number of qubits that traverse from part 𝒫𝑖,𝑚 to 𝒫𝑖,𝑥. The objective
function (13) is the sum of inter-core communication delays while constraints (14) and (15)
ensure a one-to-one assignment between parts and quantum cores. Since 𝑘 is small, the
computation time to solve the resulting 0-1 quadratic program (0-1 QP) is of little concern.
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5.4 Requp reconfiguration overhead

During the execution of a quantum module, another module may be called. By traversing the
QMDG derived from an HF-QASM in post-order way, we ensure that Squash 2 knows how
to map callee modules. However, the architecture requires to be reconfigured to be prepared
for a callee module. This imposes some delays and has to be taken into account. Similarly,
this reconfiguration is required when mapping of a module is finished, and another module is
about to be mapped.

The reconfiguration delay is of the qubit routing delay type and it depends on the distance
qubits are required to travel. The reconfiguration delay has two components:

1. Architecture transformation delay: This delay is due to the variation of Requp
parameters for different cores explained in previous subsections. The qubits are required
to be routed in correct locations to form the new Requp configuration.

2. Logical ancilla qubits routing delay: Similar to the previous case, the new module
may require additional logical ancilla which has to be routed from memory to desired
locations.

These two delay components occur in parallel, thus the total reconfiguration delay between
operations/modules 𝑥 and 𝑦 is the maximum of them and is shown by 𝑇 𝑟𝑒𝑐

𝑥,𝑦 in this paper.

5.5 Mapping

The objective of scheduling the QMDG on 𝑘 quantum cores is to minimize the overall latency
while ensuring that the number of physical ancilla qubits used in each quantum core is no
more than the given budget (𝐵𝑄𝑅𝐶𝑅). The aforesaid scheduling problem is similar to the
well-known minimum-latency resource-constraint multi-cycle (MLRC-MC) scheduling problem
[20] in high-level synthesis with the following difference. The MLRC-MC problem does not
deal with the cost of moving data among resources whereas in our formulation the resources
(i.e., quantum cores) lie on a given grid, and therefore, their average communication costs
can be pre-calculated (see Eq. (6) and the previous subsection). More precisely, our problem
formulation is as follows.

𝑀𝑖𝑛 ℒ (16)

subject to

∑︁
𝜃𝑥∈𝒫𝑖,𝑗

𝑇𝑥−1∑︁
y=0

𝑢𝑥,z−𝑦𝐴𝜃𝑥
≤ 𝐵𝑄𝑅𝐶𝑅/𝑘, 1 ≤ 𝑧 ≤ ℒ𝑖𝑛𝑖𝑡, 1 ≤ 𝑗 ≤ 𝑘, 𝜃𝑥 is an operation (17)

∑︁
𝜃𝑥∈𝒫𝑖

𝑇𝑥−1∑︁
y=0

𝑢𝑥,z−𝑦 ≤ 1, 1 ≤ 𝑧 ≤ ℒ𝑖𝑛𝑖𝑡, 𝜃𝑥 is a module (18)

ℒ𝑖𝑛𝑖𝑡∑︁
𝑦=1

𝑢𝑥,𝑦 = 1, ∀𝜃𝑥, (19)

𝑆𝑥 + 𝑇𝑥 + 𝑇 ′
𝑥,𝑦 ≤ 𝑆𝑦, 𝜃𝑥 → 𝜃𝑦, (20)

𝑆𝑥+𝑇𝑥−1 ≤ ℒ, ∀𝜃𝑥 without any successors, (21)
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where ℒ is the total number of scheduling levels, 𝜃𝑥 represents an operation or a module in
the QMDG, 𝑢𝑥,𝑦 is a binary variable which is 1 if 𝜃𝑥 is scheduled to start at scheduling level 𝑦

and 0 otherwise, 𝐴𝜃𝑥
denotes the physical ancilla requirement of 𝜃𝑥, ℒ𝑖𝑛𝑖𝑡 is an upper bound

for the total number of scheduling levels (ℒ), 𝑆𝑦 is equal to the scheduling level where 𝜃𝑦 is
scheduled, i.e., 𝑢𝑦,𝑆𝑦 = 1, 𝑇𝑥 is the delay of 𝜃𝑥, and 𝑇 ′

𝑥,𝑦 is defined as

𝑇 ′
𝑥,𝑦 =

{︃
𝑑𝑚,𝑛, 𝜃𝑥 ∈ 𝐶𝑚 and 𝜃𝑦 ∈ 𝐶𝑛

𝑇 𝑟𝑒𝑐
𝑥,𝑦 , otherwise

, (22)

which means that 𝑇 ′
𝑥,𝑦 is equal to the routing delay between core 𝑚 and core 𝑛 if 𝜃𝑥 and 𝜃𝑦 are

operations (not modules) and are bound to quantum cores 𝑚 and 𝑛, respectively. If either of
𝜃𝑥 or 𝜃𝑦 is a module, then an architecture reconfiguration is required; thus, the reconfiguration
delay (𝑇 𝑟𝑒𝑐

𝑥,𝑦 ) should be considered.
Eq. (17) sets a constraint on the total number of physical ancilla that each core can use at

each scheduling level. On the other hand, Eq. (18) ensures that at most only one module is
scheduled at each scheduling level. This constraint is required to enable hierarchical mapping
and isolation among hierarchies. Eq. (19) ensures that all of the operations and modules are
scheduled. Eq. (20) makes sure that dependent operations/modules are properly scheduled,
i.e., an operation/module starts after its predecessor in the QMDG is finished. Eq. (21) assures
that the operations/modules in the last scheduling level are scheduled to finish their execution
before or at the scheduling level ℒ. We modified the list scheduling method presented in [21]
as described above to solve the scheduling problem.

Using the Requp architecture, the logical and physical ancilla sharing problems are solved
during the scheduling. Moreover, the placement problem has already been solved in the prior
step (i.e., resource binding step). Additionally, as it is explained earlier, the routing delay is
hidden by the operation delay. Hence, a simple routing algorithm like the xy-routing fits well
for the purpose of transferring qubits (or equivalently swapping their information) through
the interconnection network of Requp.

6 Experimental Results

Squash 2 is developed in Java. It uses METIS 5.1 [19] as the partitioning engine and Gurobi 6
[22] for solving the 0-1 QP. We set a 60 sec timeout for solving each 0-1 QP. If the optimum
solution could not be found within this time period, Gurobi would pick the best solution that
has been found by the end of the timeout period. This is especially useful for the cases where
𝑘 > 8. A desktop computer with an Intel Core i7-3770 CPU running at 3.40 GHz and 8 GB of
memory is employed for the experiments.

The J7,1,3K Steane code with the information presented in Table 1 is adopted as the QEC
code. Moreover, Requp parameters are set as 𝛼𝑖𝑛𝑡 = 3 and 𝛾𝑐𝑎𝑐ℎ𝑒,𝐿2 = 0.2. Besides, 𝛽𝑃 𝑀𝐷 is
set to 10𝜇𝑠.

Table 3 summarizes the benchmarks that we used to evaluate Squash 2. It also compares
the size of the compiled codes in QASM and HF-QASM formats. As can be seen, for complex
algorithms such as Triangle Finding Problem, QASM format is completely inefficient because
it requires more than 60 GB of disk space. On the other hand, HF-QASM can be successfully
adopted.
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Table 3. Summary of benchmarks used in this paper.

Benchmark Ref. Module Count Problem Size File Size Size Ratio
QASM HF-QASM

Grover’s Algorithm [23]
6 n=100† 548 KB 52 KB 11
6 n=300† 3.2 MB 160 KB 20
6 n=500† 7.0 MB 268 KB 27

Binary Welded Tree (3M-BWT) [24] 3
𝑛 = 43, 3 ≤ 𝑠 ≤ 19‡ 5.52 MB – 34.9 MB 373 KB – 377 KB 15 – 95

Binary Welded Tree (HM-BWT) 35 84 KB – 88 KB 67 – 406
Ground State Estimation [25] 170 M=6§ 481 MB 200 KB 2,462

Triangle Finding Problem [26] 332 n=5* 63 GB 504 KB 129,418
10,202 n=10* Failed¶ 28 MB N/A¶

† A database of 2𝑛 elements is being searched.
‡ 𝑛 is the height of the tree and 𝑠 is a time parameter within which the solution is found.
§ 𝑀 is the molecular weight of a molecule.
* 𝑛 is the number of nodes in the graph.
¶ The QASM file size exceeded 75GB and Scaffold compiler was crashed while generating the output file.

In the rest of this section, first the latency-ancilla count trade-off in quantum circuits is
studied using Squash 2. Then, the optimum number of quantum cores for above-mentioned
benchmarks is found. After that, the resource requirement of Requp, CQLA, and QLA are
analytically compared. Finally, Squash 2 is compared with the state-of-the-art mapper.

6.1 Investigating the latency-ancilla count trade-off

As it is explained earlier, physical ancilla qubits are precious resources in quantum computers.
Increasing the total ancilla budget lowers the circuit latency and vice versa. In order to study
this effect using Squash 2, we start with two implementations of the Binary Welded Tree
(BWT) algorithm as the benchmark. The first implementation has only three modules (shown
by 3M-BWT ), whereas the other one (which is highly modular) has 35 modules (denoted by
HM-BWT.) For every given QRCR physical ancilla budget (𝐵𝑄𝑅𝐶𝑅), the number of quantum
cores (𝑘) is set to the value which gives the lowest latency.

The trade-off between latency and the ancilla budget (𝐵𝑄𝑅𝐶𝑅) is shown in Fig. 8. As can
be seen, Squash 2 produces better results for 3M-BWT compared to HM-BWT. The reason is
that 3M-BWT has only three modules compared to HM-BWT which has 35 modules. This
allows Squash 2 to utilize parallelism inside large modules of 3M-BWT and perform better
partitioning. As it will be demonstrated later, high modularity of input files results in faster
mapping runtime.
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Fig. 8. Latency-ancilla count trade-off for the Binary Welded Tree (BWT) algorithm. RT represents
the runtime of Squash 2.
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Fig. 8 also shows that the latency of HM-BWT is saturated for 𝐵𝑄𝑅𝐶𝑅 ≥ 200, whereas
for 3M-BWM, the latency is lowered when 200 ≤ 𝐵𝑄𝑅𝐶𝑅 ≤ 800 and then it increases when
800 < 𝐵𝑄𝑅𝐶𝑅. The low latency of 3M-BWT is due to the high parallelism of large modules.
When the ancilla budget is increased, the size of cores grows which results in greater inter-core
communication. Thus, the circuit latency increases.

Moreover, Fig. 8 depicts the optimum 𝐵𝑄𝑅𝐶𝑅 value in yellow dots for two benchmarks.
Gray arrows show how the runtime of Squash 2 can be improved with small sacrifice in the
circuit latency (i.e., 1 second for HM-BWT, and 17 seconds for 3M-BWT). As can be seen
for HM-BWT, the runtime reduction results in 400 fewer physical ancilla qubits, whereas for
3M-BWT, it comes at the cost of 200 more ancilla qubits. Generally, Squash 2 performs the
fastest when 5 ≤ 𝑘 ≤ 8. For smaller values of 𝑘, the partitioning step takes longer, because
the length of the weight vector for partitioning is larger. On the other hand, for larger values
of 𝑘, the resource binding step is the runtime bottleneck.

6.2 Finding the optimum number of quantum cores

The optimum value for quantum core count (𝑘) varies based on the parallelism inside a given
circuit. Fig. 9 shows the latency of 3M-BWT and HM-BWT as a function of quantum core
count. For every 𝑘, we tried various QRCR physical ancilla budget values and picked the
one which results in the best (lowest) latency. As can be seen, for HM-BWT, for 𝑘 ≥ 2 the
latency saturates and becomes minimum when 𝑘 = 10. On the other hand, 3M-BWT has low
latency when 1 ≤ 𝑘 ≤ 4 and it becomes minimum when 𝑘 = 3. Note than in the case when
𝑘 = 1, Squash 2 allows parallelism when 𝐵𝑄𝑅𝐶𝑅 is sufficiently large. In other words, several
operations can be executed in parallel inside a core. In contrast, in Fig. 8 when 𝐵𝑄𝑅𝐶𝑅 = 100,
the architecture can only accomodate one core (i.e., 𝑘 = 1) due to the constraint (2) which
results in the highest latency. Again, gray arrows show the runtime reduction. Similar to
Fig. 8, HM-BWT enjoys not only from runtime reduction but also lower ancilla usage. On the
other hand, runtime reduction results in higher ancilla usage for 3M-BWT.
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Fig. 9. Finding the optimum number of quantum cores for the Binary Welded Tree (BWT)
algorithm. RT represents the runtime of Squash 2.

Fig. 10 shows the optimum 𝑘 value for various benchmarks. Note that the vertical axis is
scaled differently for each chart and also the time unit varies. Grover’s Algorithm with various
sizes achieves its minimum latency when 𝑘 = 10. The latency of Ground State Estimation
algorithm reduces significantly when the number of cores goes beyond one. Last but not least,
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the algorithm for solving the Triangle Finding Problem is the largest of all benchmarks. It
takes about a year for the small-size problem (𝑛 = 5) and about 170 years for the larger one
(𝑛 = 10) to finish. Note that these algorithms might be of practical use when a dramatic
speed-up for the underlying quantum technology is achieved. For instance, the delay of
primitive operations for the ion-trap technology is about ten to hundreds of microseconds;
however, the quantum dot technology lowers this delay by three orders of magnitude [16].
Unfortunately, this technique still suffers from high-error rate and is not as mature as the
ion-trap technology.
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Fig. 10. Finding the optimum core count for various benchmarks given that the optimum physical
ancilla budget has already been found. The optimum point is shown in yellow. Note that the
vertical axis is scaled differently for each chart plus the time unit varies. RT represents the runtime
of Squash 2.

Gray arrows in Fig. 10 show how runtime of Squash 2 can be reduced with minimum
change in the latency. In all of benchmarks, the runtime reduction also reduces the physical
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ancilla requirement. Moreover, the latency increase is negligible in Grover’s Algorithm and
Ground State Estimation; however, for Triangle Finding Problem, the latency increases by 3
hours and 13 days when 𝑛 = 5 and 𝑛 = 10, respectively.

6.3 Resource usage comparison among Requp, CQLA, and QLA architectures

In the QLA architecture, every qubit requires to be placed in a quantum tile. Each tile needs
to support all types of quantum operations and their respective QEC codes. Hence, in the
case of one-level J7,1,3K Steane code, the required physical ancilla in this architecture is equal
to 100×(total qubit count). CQLA limits this value to the maximum number of parallel
operations the architecture should be able to execute. For instance, if 𝑧 parallel operations
are supported (which is significantly smaller than the total qubit count), 100×𝑧 ancilla qubits
are required. Requp improves this resource limitation by considering the fact that all of
the parallel operations may not require the maximum number of ancilla qubits (i.e., 100).
Therefore, Requp allows to run at most (100/28)×𝑧 operations at the same time while still
having the same worst case parallelism as CQLA. This discussion reveals that Requp performs
more efficiently in the average case compared to CQLA and behaves as bad as CQLA in the
worst case.
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Fig. 11. Comparison of BWT latency mapped by QSPR and Squash 2.

6.4 Comparison between Squash 2 and QSPR

In this section, the performance and the quality of results produced by Squash 2 is compared
with that of QSPR which is introduced in [12]. QSPR is a full-fledged quantum mapper which
is recently improved to support the QLA architecture [1]. Unfortunately, no quantum mapper
for the CQLA architecture is available to the public for comparison.

For comparing Squash 2 and QSPR, we compiled various sizes of the BWT algorithm based
on a parameter called 𝑠. This parameter is varied from 3 to 19, where 𝑠 = 19 is the problem
size of interest. (For the previous experiments, 𝑠 was set to 5.) Again, here we consider both
of HF-QASM implementations for BWT; HM-BWT and 3M-BWT.

Fig. 11 compares the circuit latency mapped by Squash 2 and QSPR. As can be seen,
Squash 2 could achieve the best results in all of problem sizes for 3M-BWT but it lags behind
QSPR for mapping HM-BWT. As it was explained earlier, Squash 2 hides most of the routing
delay by parallelizing it with the execution of logical operations. That is why Squash 2
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performs better than QSPR when mapping 3M-BWT. On the other hand, HM-BWT suffers
from its aggressive modularized structure and the overhead it causes. The overhead includes
the architecture reconfiguration delay as well as limited parallelism.

Fig. 12 compares the runtime of QSPR and Squash 2. As can be seen, Squash 2 is always
faster than QSPR when mapping HM-BWT. On the other hand, for small problem sizes
(𝑠 < 7), QSPR is slightly faster than Squash 2 in mapping 3M-BWT. However, as the problem
size grows, the runtime of QSPR radically increases, whereas the runtime of Squash 2 remains
mostly the same. This phenomenon is due to the fact that QSPR handles a large netlist of
quantum operations, whereas Squash 2 maps only the quantum modules which grow very
slowly compared to the actual circuit size. Moreover, Squash 2 is slower in mapping 3M-BWT
compared to HM-BWT because the former has larger modules compared to the latter. Larger
modules usually increases the partitioning step runtime. Also note that when 𝑠 > 15, QSPR
runtime grows significantly due to the inefficient handling of large netlists.
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Fig. 12. Comparison of QSPR and Squash 2 runtimes for mapping BWT.

Table 4 summarizes the latency and runtime of various benchmarks mapped by QSPR and
Squash 2. We selected the ancilla budget and core count values that are pointed by the gray
arrow in previous subsections for Squash 2. As you may see, in the smallest benchmark, i.e.,
Grover’s Algorithm (n=100), QSPR performs well in terms of the latency. This shows the
overhead of modular mapping for small inputs. As the size of Grover’s Algorithm increases,
the latency of mapped circuits by QSPR gets closer to that of Squash 2. Moreover, QSPR
runtime quickly grows, whereas Squash 2 runtime remains mostly the same. As explained
before for 3M-BWT, Squash 2 is faster and produces better results compared to QSPR as
long as the input is not highly modularized. For the last two algorithms (i.e., Ground State
Estimation and Triangle Finding Problem), QSPR cannot map the input netlist due to their
large size. So no fair comparison is possible. This shows the main strength of Squash 2 which
enables us to map complex quantum circuits.

7 Conclusion

We introduced a hierarchical scalable quantum mapper, called Squash 2. Squash aims to
map large quantum algorithms and properly handle the ancilla sharing problem which allows
reducing the resource demand. It uses a novel multi-core reconfigurable quantum processor
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Table 4. Latency, runtime, and speedup of Squash 2 compared to QSPR for various benchmarks.
m, h, and y are short for minutes, hours, and years, respectively.

QSPR Squash 2 Speedup (X)
Benchmark Problem Size Latency Runtime (sec) Latency Runtime (sec) Latency Runtime

Grover’s Algorithm
n=100 3.86m 8.11 4.51m 0.59 0.85 13.7
n=300 21.40m 249 24.5m 0.87 0.87 285
n=500 47.59m 1,756 53m 1.09 0.90 1,608

Binary Welded Tree (3M-BWT) n=43, s=19 187m 312 182m 25.4 1.03 12.27
Ground State Estimation m=6 N/A† N/A† 44.2h 1.62 N/A† N/A†

Triangle Finding Problem n=5 N/A† N/A† 0.92y 5.99 N/A† N/A†

n=10 N/A† N/A† 169y 353 N/A† N/A†

† The QASM file size is very large and QSPR cannot handle it.

architecture, called Requp, which supports a hierarchical approach to mapping a quantum
algorithm and enables ancilla sharing. Experimental results demonstrated that Squash can
handle large-scale quantum algorithms while providing an effective mechanism for sharing
ancilla qubits.
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