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Quitrit (or ternary) structures arise naturally in many quansystems, notably in certain non-abelian
anyon systems. We presetfieient circuits for ternary reversible and quantum arithogetOur main
result is the derivation of circuits for two families of tergguantum adders. The main distinction from
the binary adders is a richer ternary carry which leads piatinto higher resource counts in universal
ternary bases. Our ternary ripple adder circuit has a tidepth ofO(n) and uses only 1 ancilla,
making it more €icient in both, circuit depth and width, when compared withvjines constructions.
Our ternary carry lookahead circuit has a circuit depth df dd(log n), while usingO(n) ancillas.

Our approach works on two levels of abstraction: at the fingtll descriptions of arithmetic circuits
are given in terms of gates sequences that use various typestlifford reflections. At the second
level, we break down these reflections further by derivirgptteither from the two-quitrit Gliord gates
and the non-Cfford gateC(X) : [i, j) = li, j + 62 mod 3 or from the two-qutrit Cliford gates and
the non-Cliford gatePy = diage2"'/%, 1, €//9). The two choices of elementary gate sets correspond
to two possible mappings onto twofidirent prospective quantum computing architectures which we
call the metaplectic and the supermetaplectic basis, regglgct Finally, we develop a method to
factor diagonal unitaries using multi-variate polynomialeiothe ternary finite field which allows to
characterize classes of gates that can be implemented esgetlthe supermetaplectic basis.
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1 Introduction

Quantum computation has seen vast progress over the yednsthieoretically and experimentally.
Computations on a programmable and scalable fault-tdieyaentum computer will consist of fully
controlled sequences of primitive operations such as myngates, measurements and state prepara-
tions. Such sequences are calip@dntum circuitsIn the most commonly used circuit model, quantum
information is stored in a collection @fubits where each qubit has a two-dimensional Hilbert state
space with the computational bag¢i®), |1)}. A standard universal gate set consists offGid gates
and one non-Cfiord gate such as thizgate [1] orV-gate [2]. By design, circuits over a universal set
can be used to approximate arbitrary quantum gates. Thuguamntum algorithm can be processed
given a quantum computer with a universal gate set.

It has been noted by several researchers that architedtgestain quantum registers and gates
is more naturally described by multi-valued logic as opplasebinary logic. History of experiments
with ternary superconducting registers, in particulargback to 1989 [3],[4]. More recently, in
guantum computation domain, multi-valued logic has beap@sed for linear ion traps [5], cold
atoms [6], entangled photons [7]. It remains to be seen, at strle it would be possible to balance
out guantum universality and fault-tolerance in these ahdrosimilar architectures.

The research presented here is motivated in part by recegtgss in circuit synthesis over uni-
versal quantum bases arising in topological quantum coimguivhere multi-qubit encoding is not
necessarily the most natural choice. Several physicaésystapable of performing topologically-
protected quantum computations have a natural structusegafrit instead of a qubit, where a quitrit
has a three-dimensional Hilbert space with the computatibasis{|0), |1),|2)}. For instance, in the
SU(2) anyon system, anyons with quantum dimensigd are well-suited for encoding quantum
states in qutrits. What is more, it was shown in [8] that the 3, Jgnyon system can be made univer-
sal through braiding and projective measurement of any®his anyonic structure is quite far from
physical realization at the moment, yet, iters a promise of comparatively simple quantum uni-
versality combined with native topological protection,ial) in our opinion, makes it a worthwhile
subject of forward-looking research.

In [9], an algorithm is given for approximation of any mudfistrit gate with an asymptotically
optimal circuit over the gate set @brd + diag(1 1, —1). This work also demonstrated the importance
of Householder reflectionfor synthesis of fficient circuits. Even though the gate set turned out to
be powerful enough for such synthesis, it had certain caoegéand practical limitations. Thus, it
is quite unlikely that all the reversible classical perntiota gates can be implemented exactly over
Clifford + diag(1 1, —1). This has a dampinglect on implementation of arithmetic-heavy algorithms
such as Shor’s Factorization Algorithm, since the integedutar arithmetic is naturally described by
reversible classical circuits. As a matter of principle tswircuits may be represented exactly in
commonly used multi-qubit circuit modelS.

When compared to [9], the present paper aims at a more abktvatt Here we assume that
the entire group of multi-qutrit classical permutationsdpresentable at some cost, explor@edent
scenarios of its representation and focus on synthesiffraiest circuits for ternary base arithmetic
in these scenarios. Our thinking at this level remains réfleecentric. Previous research on non-
binary reversible circuits [11] mostly focused on provihg tiniversality of the local classical &brd
gates in combination with theontrolled-incremengate|j, k) — |j,k + §;4-1 mod d), whered is the
dimension of the qudit andlis the Kronecker delta. Reversible circuits available teriture tend to

€To the extent the three-qubit foli gate may be assumed exactly representable.
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use ancillary qudits fairly liberally.

This paper dierentiates itself from previous work in two ways. First, welere several alternate
methods for synthesizing classical reversible circuitscddid, we strive to minimize both the depth
and the width of arithmetic circuits specifically. For exdepve show in Section 3.1 that implement-
ing of a faithful CARRY gate is not necessary in a correctaeyradder. By using a modified carry
we eliminate the use of ancillary qutrits and reduce the ob#te gate when compared to a faithful
CARRY as used in previous approaches to implement ternary gaple adders [12, 13, 14].

Our focus is mainly on two types of ternary quantum addersodified ripple-carry adder and a
carry look-ahead adder. Both adders are generalized fremlary counterparts, but the general-
izations are somewhat non-trivial. To add twajutrit numbers, the modified ripple-carry adder uses
1 ancilla and has a circuit depth ©{n), while the carry look-ahead adder requif2®) ancillas and
has a circuit depth ob(log n). Each of the two adders has an overall circuit siz&@f) elementary
gates. We also study various extensions of quantum addgsling adder modulo"™3 comparison,
and subtraction.

We show these arithmetic circuits can be realized exacilyguslassical Cliford gates and one
additional gateC(X), the controlled-incremengate, whose matrix is given in Equation C(X) is
a two-qutrit non-Clfford gate and it is universal for reversible classical comfiom. This sets the
ternary reversible circuits apart from their binary analoghere at least one three-qubit gate, e.g., the
Toffoli gate, is required for universality.

C(X) = (1)

[cNeoNeoNoNoNoNoNal
[cNeoNoNoNoNoNol el
[eNeoNoNoNoNoN NelNe]
[cNeoNeoNoNeol NeolNelNe]
[eNeoNoNol NeoleoNeNe]
OO ORFrRPROOO0OO0OO
[en NeolNoNolNoNoNeNe]
POOOOOOO0OOo
-2

We also introduce a qutrit universal gate setffohd + diag(e‘%, 1, e%), called the supermeta-
plectic basis, which resembles the single-qgpgate. Some techniques are developed to construct
new quantum gates from old ones. As an application, it wilshewn that all ternary arithmetic
studied in this paper can be implemented exactly over thersugtaplectic basis.

We note that the reflection-centric synthesis of our adaeuits is a ternary counterpart of ifoli-
centric binary adder circuits as developed, for examplgl, 7hand [18]. This analogy is explained in
more detail in corresponding sections throughout the pdper exact representation of t8¢X) gate
in supermetaplectic basis parallels the exact represemtaf the three-qubit Tidoli in the Clifford
+ g basis. Quantitative comparison of the ternary and binadeexiwould be beyond the scope of
this work. A major step towards comprehensive comparisahisfkind was made in the upcoming
paper [10] that demonstrates the advantages of emulatiogsS¥eriod funding function on ternary
guantum computer and especially on the metaplectic topbguantum framework.

The paper is organized as follows. In Section 2, some preéings and notations used throughout
the paper are given. In Section 3, we separately discuss tikfied ripple-carry adder and carry
look-ahead adder. Section 4 gives some extensions of quaadders, including addition modul8,3
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comparison, and subtraction. Lastly in Section 5, we intoethe supermetaplectic basis and develop
techniques for the construction of new gates.

2 Preliminaries and Notations

We denote the standard computational basis in a qutrig®y|1),|2)}. The terminology “qutrit”
and “ternary” are sometimes used interchangeably. We agllaamtum gate reversible or a classical
permutation gatdf it acts as some permutation of the standard basis elemesess otherwise
noted, the arithmetic, e.g., addition, multiplication;.ewithin a ket is assumed to be taken modulo
3. Also by default circuits are read from left to right, whidlempositions of gates when written as
expressions follow the rule of matrix multiplications,.j.they are read from right to left. Throughout
the paper, the following ternary quantum gates are fredypeased:

0 0171
1. X=(1 0 0}, namelyX|i) =i + 1).
0 1 0

0 10
2. So1 = [1 0 0], namely,Sg1 swaps|0) with |1) and fixes|2). Similarly, one can define
0 0 1
So2,S12. This notation is also generalized to multi-qutrit gate®r Rstance Spg2; is a 2-

qutrit gate, which swap0) with |22), and fixes all other basis elements.

3. Given anmn-qutrit gateU, there are two versions of “controlldd”. The first version is called
“soft-controlledVy,” denoted byA (U), and is defined as the ¢ 1)-qutrit gate:li, j1,--- jn) —
(1 ® UNi, j1,- -+ jn), Where the first qutrit is called the control qutrit. The segwersion is
the “hard-controlled-U” denoted bg.(U), wherec € {0,1,2}. The gateC.(U) is also an
(n + 1)-qutrit gate. However, in contrast to the soft-contrdile, it mapsli, j1,--- jn) to (I ®
Uoli, jo,--- jn). It is direct to see that th€.(U)’s for differentc’s are equivalent to each
other up to some 1-qutrit reversible gates. Thus we alsdC(sg to denote a generé&l.(U).
Moreover, the equality\ (U) = C1(U)(C2(U))? holds.

4. The following is a list of some important controlled gates

SUM = A(X) : i, j) = li,i + ),
CX) = Ce(X) - 1i, ) = i, ] + bie),

Horner= A(A(X)) : 1i, i,k & i, j.ij + k),
C(SUM) = C(SUM) : [i, [, k) > [i, J. jdic + K.

The Horner gate is a qutrit generalization of the qubiffdibgate. See also [15] for additional
background on the Horner gate.

5. SWAP : i, j) - [j, i).

For graphical representations of the gates defined abovésigare 1.
The quitrit Cliford groupC [16] is generated bgUM, X, H, andQ, whereH andQ are defined as

follows:
l11 1 1 0 O
H=—|[1 & &|. Q=[0 1 0,

Bl 2 & 0 0 &
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o B D D

AU)  Ce(U) X SUM C(X) C(Sum)

Fig. 1. Graphical representations of some ternary gates

where we use the notatiah = e forn> 1.

It can be shown that, along with ti&UM, all the reversible 1-qutrit gates ai®WAP are also
contained inC. Moreover,SUM and all the 1-qutrit reversible gates generate the subgobuil
reversible gates i¢. Some other Ciford gates ar& and A\(Z), whereZ = diag(1 ¢s, §§), and
A2) = (1 @ H)ISUM(I @ H™Y) i, j) — l'31|i,j). However,C(X), Hornet C(SUM) and Sgo22 are
non-Clifford gates.

Consider two pairs of standard basis vectgrs, |ky) and|j,), |ko). It would be useful to note
that the two-way classical reflecti@®);,) ,, that swaps th¢j1), |ki) and fixes everything else can be
reduced to the corresponding reflecti®n, «,, by applications ofo(n) SUM andSWAP gates (that
are Clitord gates: see [9], Lemma 16). In particular, the two-wayms$a 22 is Clifford-equivalent
to any other two-qutrit two-way swap.

We think of Clifford gates as beingheapin the quantum sense. General rationale for this assump-
tion is that such gates can be simulated classically. (Aatdit motivation coming from topological
computing: in the context of non-abelian anyons such as R¢®/on system [8], Cfford gates can
be obtained by anyon braiding alone.) Thus we define the aaiitpl(resp. depth) of a circuit as the
number (resp. depth) of non-@&brd gates.

The following two identities will be used, whe&gn) is the number of 1s in the binary expansion
of n, and| x| means the maximal integer less than or equat to

s

i
I

|5 |=n- o, (2)

[log n|+1 n o1
Z {E—éJzn—[lognj—l. ®3)

i=1

See also [17] for similar identities.

3 Quantum Ternary Adders

Given two n-trit numbersa = a,1---a18, b = by_1---bibg, an adder computes their sus=
S$iS-1-- S = a+ b. The elementary method of adding twerit numbers is illustrated in Figure 1.
Let cyp = 0 be the initial carry trit and for X i < n, let¢ be the carry trit arising froma;_1, bj_1, ¢i_1,
namely,ci = 0if a_1 + bi_1 + ¢i_1 < 2 andc; = 1 otherwise. For&i<n-1,5 =g +bj+¢mod 3
ands, = c,.

In Section 3.1 and Section 3.2, we present two methods teeimght reversible ternary quantum
adder: a ripple-carry adder and a carry look-ahead adder.twh adders are generalized from their
binary counterparts [17, 18], but the generalizations areesvhat nontrivial, as seen later. On one
hand, the modified ripple-carry adder uses only 1 ancilléhferhole process and has the circuit depth
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a1 - @ Q@
bhor -+ b by
Ch Chr1 - C C=0
S S-1 0 S S

Table 1. Addition of twan-trit numbers

in O(n). On the other hand, the carry look-ahead adder req@(epsancillas with the advantage of
having circuit depth irD(log n). We will also compare the two adders to other ternary adkleos/n
in literature and show that our adders are mdheient both space-wise and depth-wise.

To implement the adders, we utiliggX), C(SUM), C(Sp 1) andSpq22 as the basic building units.
As shown in Section 5.1C(SUM), C(Sp1) and Spo22 can all be constructed exactly froB(X) and
Clifford operations. Therefore, the circuit of adders can begdesli from Cliford operations and
C(X) alone. The reason that we still tra@SUM), C(Sp1) andSpo22 as basic units is that it might
be more ficient to synthesize them directly in some basis rather theaking them up int&€(X)’s.
An example is the metaplectic basis [9], wh& 2, has an ficient approximation by a metaplectic
circuit.

3.1 Modified Ripple-Carry Adder

The binary quantum ripple-carry adder was considered iy jBere O(n) ancillas are required to
add twon-qubit numbers. In [17], the method was improved so that drdwcilla is necessary. Here
we give a ternary generalization of the improved ripplencadder.

Note that in contrast to the binary case, the ternary carmpdee complicated: if the inputs to a
binary full adder are denoted layb, ¢ € F,, then the outgoing carry is given loy,; = ab + ac + bc,
where all operations are computed modulo 2. In case of ariefathadder with inputsa, b, ¢ € Fs,
the outgoing carry is given bg,,: = 2(1+ a+ b + ¢)(ab+ ac + bc) + abc where all operations are
computed modulo 3. Though directly implementing this polyial using the presented universal
gates is possible, it leads to a relatively large number emehtary gates. A simple observation
allows to reduce this cost significantly as it turns out thagtdoes not have to be implemented for all
27 input triples but rather only 18 of them. Indeed, it can lbaven inductively that—provided there
is no initial incoming carry—for ternary adders, every carit/c; can only be either 0 or 1, but can
never be 2. This is indicated also in Figure 2 where the ctbesécase indicates that this can never
occur in an actual addition: the cage, = 2 is possible only it; = 2, which inductively we assume
cannot happen. With this definitioq,; becomes a balanced function, i.e., there are the same number
of inputs corresponding to each outcomg.

We sketch the idea of constructing the circuit to comprite from a;, bj and¢; based on this
observation. As illustrated in Figure 2,1 equalsc; for all but six inputs, the last three inputs in
the columnci,; = 0 and the last three in the colunen; = 1. For each of these six inputs,;
equals 1- ¢. If the gateSpg22 is applied to qutritsy, b, then the six inputs are turned into six new
triples. See Figure 3 for the transition. Moreover, the newtgples are exactly equal to the set
{(a,b,c) €{0,1,2)° : a+b = c,c # 2}. In light of these observations, a reversible circuit,eaiCarry,
is constructed, which takes a;, bj as input, and outputs,; in the last qutrit. See Figure 2, whefe
andg are some functions &, bj, ¢;. The exact shape df andg is not important since they will be
reversed at the appropriate step of the adder.

As illustrated in Figure 2, the circuit Carry is ancilla fréecontrast to the carry circuit considered
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| Ci1=0 Gia=1 | Ca="2
/00011200101 1222122000111222
b|0O1201001Q0212012212012012012
¢|/000O00O0O1111211111000Q022222222?2

Table 2. Ternary carry table

‘ C.1=0 ‘ Cs=1 ‘ C,1=0 ‘ G=1

a|0 0 1[1 2 2 g, a&|2 0 1|1 2 0

b|0O 1 0|2 1 2 = bh|{2 1 02 1 O

¢|1 1 1{0 0 O ¢|1l1 1 1,0 0 O

Table 3. Transition of inputs due g 22

in [13] where 1 ancilla is required for each round of carrye E&ure 3 for the comparison. The circuit
utilizes oneSgg 22, 0neC(Sp1), two SUM, and twoSWAP gates. TheSUM and SWAP are both
Clifford gates, so only 2 non-@ord gates are needed. The depth of Carry in terms of ndiie@i
gates is also 2. Moreover, unlike the binary ripple-carrguit MAJ [17] where the two qubits other
thanc;,; end up witha + bj, ¢ + by, in our circuit the two quitrits other thas, ; have the final values
f(a, b, ¢) andg(a;, bj, ¢;). This is the reason we call our carry circoibdified However, as will be
seen below, the modified carry circuit works in the same wahasegular one.

LetC : |c, &, b)) — |f(&,hbi, ), 0(a,bi, c), 1) be the Carry gate represented by the circuit in
Figure 2. Similar to the adder circuit in [17], the modifiegpie-carry adder circuit is designed in
Figure 4, which, as an illustration, shows the addition af 8qutrit numbers.

In Figure 4, the qutrity, initialized with 0, is the only ancilla required. The qaitoh the bottom
holds the overflow trit, i.e., the highest trit in the sum. Tiéfere, to add twa-qutrit numbers, exactly
1 ancilla,n Carry gatesn inverse Carry gates andi2SUM gates are required, and the depth of the
circuit is 4n. In contrast, the adder in [13] usesincillas and has the complexity @(n).

3.2 Carry Look-ahead Adder

In the ripple-carry adder, the cargy,; is computed only after the value ofhas been obtained, and
thus the overall depth of the circuit is@(n). One protocol to reduce the depth is the carry look-ahead
adder studied in [18] for the binary addition. Here we gelisgat to give a ternary carry look-ahead
adder, which computes all the carry trits in defifhog n) by introducing extrad(n) ancillas.

The main idea is that there are relations betwgemdc;.1, and more generally betweenandc;
fori # j. Forinstance, i + bj = 2, thenc;,; = ¢. If g + b = 1, thenc;,; = 0 regardless of the value
of ¢;. See Figure 4 for a summary of the relation betweepandc;. Note thatcy = 0, thus when
i = 0, the columr,1 = ¢ in Figure 4 becomes; = ¢y = 0. Motivated by their relations, we define,
for 0 <i < j < n, the carry status indicat@i, j] :

S o So.1 b— f(aj.bj. )
SWAP
a ] o _— ] — = 9(a.bj, )
So022 + SWAP
bj — ° — Ci+1

Fig. 2. the circuit Carry
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G —

8 — Carry

b —

F—  f(@.bi.c)
Carry
——  9(@.bi.q)

—— G+l

Fig. 3. (Left) ripple carry in the present paper; (Rightpl@carry studied in [13]

c1

c1

Fig. 4. Circuit for ripple-carry adder

G1=0 | Guu=1 | Gu=¢

a;
bi

1 2 20 1 2
0O 1 02 1 2{2 1 O
Table 4. Relation between, 1 andc;
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g — o

So0,22
- eg Cli+)

Fig. 5. CircuitAdjC computingC[i,i + 1],0< i <n

0 M
\V SWAP

g - J— — -
S00,22 j: SWAP
bj 0 L co

N
Fig. 6. CircuitAdjCy computingC[O0, 1]

0 cj =0regardless of;
Cli,jl =41 c;j = 1regardless of;
2 Ci=¢G

Since we already know = 0, the case€; = ¢y is then the same as the first cage= 0. Thus we
can treat these two cases as one, and d&3ignj] so that it will never take the value 2, namely, we
will have C[0, j] = c;.

Explicitly, for 0 < i < n, the circuit,AdjC, shown in Figure 5 comput&yi, i+ 1] from g andb;. It
requires 1 non-Cfford gateSgg22, and no ancilla. However, to compui40, 1], we need to make use
of 1 ancilla, and 2 non-Giiord gatesSgg 22, C(X). See Figure 6 for the circuit, which we callijC,,.

Having computed the carry status indicators for any twoesdjtindices, we furthermore compute
Cli, j] for arbitraryi # j. For0<i < k < j < n, C][i, j] can be obtained fror€[i, K] andC[k, j] by the
mergingformula in Figure 5.

Note that when = 0, the row corresponding 6[0, k] = 2 in Figure 5 will never be used. Also
whenC[0, k] takes values iH0, 1}, so will C[O, j]. A circuit, M, realizing themergingformula is
illustrated in Figure 7, wheré takesC[i, k], C[k, j], and an ancilla initialized to 0 as inputs, and
outputsCli, j] to the ancilla. The circuit requires 1 non-&tird gateC(SUM).

The circuitsAdjC andAd jCy both only depend og andb;, thus we can compute all tigfi, i+1]’s
in one time slice. The nature of tieergingformula enables us to obtain all t&#0, j]’s in O(log n)
time slices. We elaborate this below.

Fori=0,1,--- ,n—1, letB; be the working register configured to 8§, i + 1] at the beginning,
and letZ;,1 be the working registers initialized 16), which will end up withC[0,i + 1]. We also
needn — w(n) — |log n| ancillasX; initialized to|0). The circuit consists of three processes, hamely,
P-processC-process, an@~*-process. Each process roughly contadlog n| rounds.

In P-process, we compute all the carry status indicators ofdha €[2!m, 2!(m + 1)] and write
all the results into the ancillas, except the oG8, 2¢] which are written taz[2¥]. There arglog n|

Clk, ]

© 01 2
00 1 0

Clik 1|0 1 1
20 1 2

Table 5. ThemergingformulaC[i, j] = C[i, K] () C[k, j]
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5
C[i,K m m Cli,K
Clk. j] %ﬂ’i Clk, j]
AN S, o

Fig. 7. CircuitM realizing themergingformula

Cl|log 51

- | Clllogn|-3] C[0]
P~![llog n] - 1] PH2] | PH1]

Table 6. Parallelism betwed® andP~1-process

rounds, each = 1,---,|log n| corresponding to one round. In theh round, which we call the
P[t]-round, the status indicato@{2'm, 2!(m+ 1)], m=0,-- -, L%J — 1 are computed. By theerging
formula,C[2'm, 2{(m+ 1)] can be obtained fro6[2'-1(2m), 2"-1(2m+ 1)] and [2-1(2m+ 1), 2" (2m+
2)], both of which have been computed Rfit — 1]-round by induction. Moreover, the circuivt
producingC[2'm, 2!(m + 1)] for differentm’s in theP[t]-round takes dferent carry status indicators
in P[t — 1]-round as input. Note that tH®]1]-round requires the carry status indicat@{s,i + 1]’s in
the registers3;. Therefore, in theP[t]-round, all the circuitsM computingC[2'm, 2!(m + 1)] can be
made parallel, and their inputs only depend on the carrystatlicators from th€[t—1]-round. Thus,
the depth of the circuit ifP-process iglog n|, the number of ancillas neededris- w(n) — |log n|,
and the complexity i — w(n).

In C-process, we compufe{0, j] into the registeZ;, j = 1,--- , n. This is performed iHEIog gJ+1
rounds. Note that the[0, 2¢] ’s have already been obtainediprocess, and are located in the desired
positions. Fort = Uog gJ ,++,0, theCJ[t]-round consists of computing the carry status indicators
Cl0.2'2m+ 1)}, m= 1,---,| 5% - 3. Again, by themergingformula, we can ge€[0, 2'(2m + 1)]
from C[0, 2**m] and C[2!(2m), 2!(2m + 1)]. By induction,C[0, 2**m] has been obtained in earli€r
rounds ifmis not a power of 2, and in th@{t+ 1+log m]-round otherwise. Als€[2!(2m), 2!(2m+1)]
has been computed in tht]-round. Therefore, we can run all the circuits in theC[t]-round in a
parallel way. These circuits depend on the carry statugabais in theP[t]-round andC[k]-rounds,
k> t+1. If mis a power of 2, then the correspondingcircuit also depends a@[0, 2+*m] from the
P[t + 1 + log m]-round. Thus the circuit ilC-process has a depth pbg ’—3‘J + 1, and the complexity
isn—|[logn| - 1.

In P~1-process, we set the ancillas back@p thus we need to reverse all ttM circuits in P-
process, except for those computi@f), 2¢] ’s which are not stored in the ancillas. TRe*-process
consists oflog n| - 1 rounds. Fot = [log n| -1, , 1, theP~1[t]-round uncompute€[2'm, 2'(m+
1], m=1,---.,| %] -1 by using the inverse of. Note that in this process, all tr@[0, 2]'s will not
be touched. The process has a depfliagf n|—1, and the complexity of the circuitis-w(n)—|log n|.

We note that most parts @-process an®*-process can actually be parallelized. The argument
is as follows. All the inputs to th€[t]-round which are not of the fornt[0, 2™ only depend on
C[k]-rounds,k > t + 1, and theP[t]-round. The inputs that are of the for@j0, 2™] were computed in
P[m]-round, but they will not be touched iR1-process. Th@ [t + 2]-round only depends on the
outputs inP[t + 1]-round andP[t + 2]-round. Thus theC[t]-round and theP~1[t + 2]-round can be
performed simultaneously. The precise parallelism betv@erocess and~1-process is illustrated
in Figure 6.
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To summarize, the whole circuit usas- w(n) — |log n| ancillas, and has a depth dég n| +
llog gJ + 2. The total complexity of the circuit isB- 2w(n) — 2|log n| — 1.

3.3 Complete Circuit for Carry Look-Ahead Adder

We give two implementations of carry look-ahead adder, mgnttee out-of-place adder and the in-
place adder. Recall that the circuits in Figure 5, 6, and 7damoted byAd|C, AdjC,, and M,
respectively. The complexity of botAdjC and M is 1, and the complexity oAd|C, is 2. The
depth of these circuits is equal to their complexity.

3.3.1 Out-of-place Adder

Let A, B be the registers with initial valua, b;, respectivelyj = 0,--- ,n- 1. Letz,i =0,---,n
be the registers initialized to be 0, which will hold the sam b at the end of the computation. We
needn — w(n) — |[log n] ancillasX; to store intermediate carry status indicators. The folhmpnis a
description of the circuit of our out-of-place adder.

Out-of-place Procedure:

1. For 0<i £ n-1, run the circuitAdjC on A;, B;, which output<C[i,i + 1] to B;. RunAdjC, on
Ag, By, andZy with Zy as the ancilla, which outpu3[0, 1] to By. CopyCJ0, 1] to Z; with the
SUM gate. The circuit has a depth of 2, and it consist efl AdjC, 1 AdjC,, and 1SUM gates.

2. As discussed in Section 3.2, compute all €{@,i]’s with the ancillasX;’s and the circuit
M=*1, At the end of this process, the ancillas are returned to @ Zas= C[0,i],i = 1,--- ,n.
This requires B — 2w(n) — 2|log n| — 1 calls to the circuitM*!, and has a circuit depth of

llog n] + |log §] + 2.

3. Undo all theAdjC’s andAdjC,. At the end of this step, we ha® = b, Z = C[0,i] = ¢.. The
circuit has a depth of 2, and it consistrof- 1 AdjC™, 1 AdjC,*, and 1SUM™2.

4. Setzi =Z @ Ao B;,0<i<n-1. This requires @SUM gates.

In summary, the out-of-place adder uses w(n) — |log n| ancillas, and has a circuit depth of
|log n| + [Iog gJ + 6, with the complexity of B — 2w(n) — 2|log n| — 1.

We represenAdjC,, AdjC and M as shown in Figure 8. Their inverses are represented by the
same circuit with> replaced byd. Also a black rectangle means the content will be changeut aft
the application of the relevant gate, while a blank rectamgéans the content remains the same. An
an illustration, we give a complete out-of-place circuit &ading two 10-qutrit numbers in Figure 9,
where we use to stand for 10, and;; is the carry status indicat@li, j]. From Figure 9, it is clear
that theC[0]-round andP~[2]-round can be parallelized since the gates in these twads act on
different wires. One can also verify the cost: the number of lascién — w(n) — |log n] = 5, the
depth of the circuit iglog n]+|log §|+6 = 10, and the complexity isr6- 2w(n) - 2| log n| -1 = 39.

fZ1 = C[0, 1] was obtained in the previous step.
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AdiC,  AdiC M

Fig. 8. Circuit glyphs forAdjCy, AdjC and M. The inverse gatedeC{)l, Adjc™! and M~ are represented by
mirror images of these glyphs.

3.3.2 In-place Adder

The idea of in-place adder is also generalized from that &. [Let 2 be then-trit number with all
2’s, namelyz = 3" - 1. When no confusion arises, we make no distinction betweamsbar and
its trit representation. For twi-trit numbersa, b, denote bya @ b the number obtained by trit-wise
summation modulo 3, and denote &\ythe number obtained by replacing every &iby 2— a. Thus,
the following equations hold:

a®a =2anda+a =3"-1.

Letc = ¢y - - Ch1 be the sequence of tmelow carry trits fora andb, and lets be then low trits
of a+ b. Then we have
s=a+b(mod3)ands=asebec.

Alsonotethas +a=3"-1-s+a=3"-1-b=Db (mod 3J).
Letd = dp-- - dn1 be then low carry trits resulting from adding anda. Then,s @ a® d = b/,
and thus we have,

2e0aeobed = sesoasbed
= sobeb
= 2e@aebec

Thereforec = d, i.e., then low carry trits fora, b are the same as those ®ra. We will use this
property to implement the in-place adder.

For0<i < n-1, letA;, B be the working registers initialized with, b, respectively. We will
need 21— w(n) —|log n| ancillas,n of which are denoted b¥y, Z, - - - , Z,_1 and the rest ar¥; ’s. Let
Z, be the working register which will store the high trit@f b. All ancillas start with 0.

In-place Procedure:

1. Asdescribed in Out-of-place Procedure Step 1 througbr8pate all the carry trit€[0, j] into
Z;j,j = 0,---,n. The ancillasX;’s and working registers,, B; are all returned to their initial
configuration at the end of the process. This has a circuithdefd log n| + [Iog gJ + 6, with
the complexity of B — 2w(n) — 2|log n| + 1.

2. For0<i<n-1,letB = By® A @ Z, namely, the registeB; ’s will store then low trits of the
suma+ b. This can be done byr2SUM gates.
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3. Now we want to erase thecarry tritsC[0,i] = ¢, i = 0,---,n—1. ForO<i < n-2, let
B; = 2 - B;. This can be achieved by- 1 Sy, gates.

4. Apply the inverse of the Out-of-place Procedure Step tuin 3 on the registers;, B; for
0 <i < n-2to erase the carry tritg stored inZ;, j =0,--- ,n-1.

5. For0<i<n-2,letB; = 2- B;. Again this can be done hy- 1 Sy, gates.

Tracing the cost of the circuit above, we see that the ingpéattier has a depth|dbg njﬂlog §J+
llog (n— 1)]+|log %5 |+12, and its complexity is 18-2w(n)-2 [log n|-2w(n-1)-2|log (n - 1)|-3.
Moreover, the number of ancillas required is2w(n) — [log n].

Figure 10 gives a complete circuit of in-place adderfer 10. See Figure 8 and the last paragraph
in Section 3.3.1 for the explanations of notations usedeércitcuit.

4 Extensions

In this section, we give various extensions based on the fireddiipple-carry adder and the carry
look-ahead adder, including addition modul 8ubtraction, and comparison.

4.1 Addition Mod 3"

To add twon-qutrit numbers modulo™3 we simply do not compute the the high carry &t

In the ripple-carry adder (see Figure 4), iffites to remove the circu@t, SUM, C1 in the middle,
and the last qutrit on the bottom. Thus in total we need 1 End&in— 1) Carry gates, and2- 1 SUM
gates, and the depth of the circuit is14{ 1).

In the out-of-place carry look-ahead adder, we run the ttiesidescribed in Out-of-place Proce-
dure in Section 3.3.1. However, in the first three steps optloeedure, we restrict the inputs to the
n -1 low trits ofa andb, namely,ag, - - - , a2, bo, - - - , bp_2, Since there is no need to compute Of
course, in the last step we still need to compute the moduforsationa; @b e ¢ forall0 <i <n-1.
Thus the out-of-place modulo adder uses 1 — w(n — 1) — |log (n — 1)] ancillas, and has a circuit
depth ofllog (n - 1)] + |log 5t | + 6, with complexity 50— 1) - 2w(n - 1) - 2|log ("— 1)] + 1.

Similarly, for the in-place carry look-ahead moduldb&lder, we run exactly the same circuit as
the In-place Procedure in Section 3.3.2, except in Step lanlue again restrict the inputs only to the
n— 1 low trits ofa andb. It is direct to total the cost of the circuit. It has a deptt2@dlog(n — 1)] +
|log 232 | + 6), with the complexity of 2(5(- 1) — 2w(n - 1) - 2[log (n - 1)] + 1). The number of
ancillas required is 2(— 1) — w(n— 1) — [log (n — 1)].

4.2 Subtraction

To computea — b for two n-trit numbersa, b, first convertato &', then compute’ + b, and eventually
converta’ + bto (& + b)’. Note thata’ is then-trit number obtained by replacing eaghby 2 — a;,
namely,a = 3" - 1 - a. Thus we have,

@+by=(3"-1-a+by=3"-1-(3-1-a+b=a-b.

Changinga to & costsn Clifford gateSp,. Therefore, the circuit for subtraction has the same
depth and complexity as the regular the adder.
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4.3 Comparison

Given the circuit for subtraction, it is straightforwarddompare two numbesandb. Actually, there
is a circuit for the comparison & b with smaller complexity than that of subtraction since wéyon
need to know the high trit ai — b. Leta’ = 3" - 1 - a, thena - b > 0 if and only if the high trit of
a +bisO.

In the ripple-carry adder, we convexto & and use the Carry ga@to compute all the carry trits
c1, - ,Cnfora + b. After copyingc, to the register storing the result of the comparison, we wido
theC’s and converd’ back toa. The circuit thus requires 1 ancillanZarry gateC, 1 SUM gate, 2
So.2, and has a depth of¥

In the carry look-ahead adder, again we first coneetd a. To computea’ + b, the circuit
sequentially generates all the carry status indica@jrsj] ’s. However, since we only care about the
high trit c, = C[0, n], we can design a mordfeient circuit to implement the comparison.

Recall from Section 3.2 that iR process we have obtained all the carry status indicatorseof t
form C[2'm, 2/(m + 1)], and in particular, ang[0, 2] is of this form. Therefore, ih = 2X for some
k, thenc, is obtained at the end & process. At this moment, there is no need to go througiCthe
process. Instead, we copyinto the register storing the result, and undofhgrocess. In general, let
k = [log n], then we can just pad andb by adding zeros in the front to make theffatéit numbers,
and use the circuit described above to commaaadb. We still call the Z-trit numbersa andb. For
O0<i<n-1,letA = a,B; = bj be the working registers, and IRtthe register which will store the
result of the comparison. We also neéd-2(2¢ — n) ancillas, among which 2(2- n) are used to hold
the extra zeros in from af andb, one is denoted b¥, as the ancilla to thadjC, circuit, and the rest
are denoted by ’s.

Note that after padding andb with zeros, the carry status indicat@§, j]’s,n<i < j < 2% are
known before the compilation, thus we can store their valndke registers and there is no need to
recompute them later.

Carry Look-ahead Comparison:
1. Converiato &. This requires S, gates.

2. For O<i < n-1, run the circuitAdjC on A;, B;, which output<C[i,i + 1] to B;. RunAdjC, on
Ag, By, andZy with Zg as the ancilla, which outpu€[0, 1] to By. The circuit has a depth of 2,
and it consist oh — 1 AdjC and 1AdjC,.

3. Perform theP process in Section 3.2 to compute all BR!m, 2!(m + 1)] that are not known
before compilation into the ancillary registexs Note that here since we don't have the
registers, all th€[0, 2™]’s are also written to th¥; registers. The depth of the circuithksand
the complexity is 2— w(2) — (2= n-w(-n)) = n+ w(2*-n) - 1.

4. Copycx to the result registeR.
5. Undo Step 3.
6. Undo Step 2.
7

. Undo Step 1.

Therefore, the total depth of the circuit above ks+24 = 2[log n] + 4, and it has the complexity
of 4n + 2w (2% = n) = 4n + 20(2/'°9 " — n). The number of ancillas used is 3'°9 "1 — 2n,
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5 Techniques for Constructing Quantum Gate Decompositions

In previous sections, we developed a system of ternarynagitic with the focus on two types of
quantum ternary adders. The building blocks of these dgénclude the Carry circuit, the circuits
AdjC, AdjC, computing carry status indicators, and tmergingformula M. Moreover, the non-
Clifford gates used in these four circuits &g 22, C(Sq.1), C(X), andC(SUM).

In this section, we show that it fiices to haveC(X) along with Cliford gates to produce the other
three non-Cliford gates exactly. The key technique involved is to analiieeatgebraic expressions
of these gates. In Section 5.1, it is proven t88K) and Horner are equivalent up to fEtird gates,
and that all other non-Qtiord gates can be obtained froB(X). In Section 5.2, we introduce a
universal gate set called supermetaplectic basis, whiehgstrit analog of the qubit Gliord + 3-
gate. We then illustrate in Section 5.3 tl@tX) and Horner can both be implemented exactly over
supermetaplectic basis. Therefore, with the supermetéplgasis, the ternary circuits for arithmetic
can be realized exactly.

5.1 Construction of Reversible Gates from Polynomial Expressions

Let F3 be the field with three elemeni®, 1, 2}. Then anyn-qutrit reversible gate can be represented as
a mapFj — F3, or a sequence of functionsF} — Fs, if one identifies each) with i, i = 0,1,2. We
will see that reversible gates have polynomial represiemstand these polynomial representations
provide hints to construct one reversible gate from another

Note that = 0,12 = 22 = 1 (mod 3), and thugi o = 1—i2 (mod 3). By default, arithmetic within
a ket is taken modulo 3. The following is a list of polynomiapeessions of some non-@brd gates.

SUM = A(X) : i, j) e lii + j);

Co(X) 1 li, j) — li, j + Sio) = li, j — % + 1);

Horner= A(A(X)) @ i, j,K) & |i, j,ij + K);

Co(SUM) : i, j. k) - i, j. k+ (1= i3)j).

The above list shows that if a qutrit works as a soft conttantit contributes a linear factor in the
expression of the target qutrit, while a hard control qutibtributes a quadratic factor.

DefineC’(X) : |i, j) + i, j +i%). Thus,C’(X) = (I ® X)Co(X)! is equivalent taC(X). We will use
C’(X) below for the construction of other gates.

The relation between the expressions of Horner@{) resembles that of a bilinear form and a
quadratic form, which are equivalent. This suggests thabelcandC’(X) are also equivalent. Indeed,
the following diagrams give a construction of one from aeoth

. . . . SUMyp . C00%5 o sump}
e implementation of Horner gate in terms@f(X) : |i, j,k) — |i,i+ j,k) — li,i+ |, k—=(i+j)>) —
L. I N S S I o 023 ..
i, k=ic=j*+ij) — i, ,k=j2+ij) —" i, jk+ij).
. . . .. SUM1z . . Homengzp . . | .
e implementation of’(X),, gate in terms of Horner i, j,ky — i, j,i +k) — " i, j +i2 +ik,i + k)
sumpy Horneg %,
— i, j+i2+ik,ky —7 i, j+i%K).

Note that in the construction of 2-qutfi¥ (X), we made use of a third qutrit, but that qutrit does
not have to be clean, namely it could have arbitrary state.
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Similarly, C’(X) is enough to constru€(SUM):
C'(X c'(X C' (X715 C' (X3
Co(SUMY: i, 1.k "% 112 4 ko % 12 4 ok (24 )2~ iy okt 124 2= i2]) —

C'(X)Elg 23
gkt 2= i2]) —5 L Gk = 120 i, ok + (L - 19)]).

To implementC(So1) andSq22, Notice that the circuit in Figure 11 realiz8g; 10, and moreover
we have:

e Spo22 = SUMH(X 1 ® 1)Sp110(X ® 1)SUM.

° Co(So’]_) = SUME’]i(Xfl ® Xfl)SOQZQ(X ® X)SUMZ,l.

5.2 Supermetaplectic Basis

Recall from Section 2 that is the qutrit Cltford group generated by, Q, X, andSUM. Some other
gates inC areZ and A\(Z), whereZ = diag(1 £3,£3), and A\(2) = (I ® H)SUM(I ® H™). It can be
directly verified that/ (Z) has the following expression:

A@ i iy - G .

In [8], it has been established that the multi-quini¢taplecticgate seC + diag(1 1,-1) or equiv-
alently C + diag(3, Z, gg) was universal for quantum computation in the sense thataunsi-qutrit
unitary operator can be approximated to any given preclsjoencircuit over that gate set. We conjec-
ture that the metaplectic gate set is not universagkarctreversible computation, i.e. it seems that the
subgroup of reversible classical gates that can be regesberactly by metaplectic circuits is rather
thin. In order to ensure exact representation of the rdviergates over a relatively simple multi-qutrit
basis, we expand the basis by adding essentially the “cobit of the Z gate to it. To this end we
increase the order of the root of unity used in defining the-@bfford diagonal gate, and defiify

as the 1-qutrit diagonal gate diaggf, 1,49).9

Definition 1 The gate saf + Py is called supermetaplectic basis.

Since thePg gate is non-Cliord, this basis is universal for quantum computation. Thpesueta-
plectic basis resembles the qubitf@id + T basis in several aspects. Firstly, we show in Section 5.3
that all the reversible gates can be constructed exactlytbeesupermetaplectic basis. Secondly, the
Py gate is a fundamental diagonal gate in the third level of th&dEd hierarchy [20]. Lastly, it was
shown in [21] thatPy can be obtained by magic state distillation.

5.3 Construction of Diagonal Gates from Polynomial Expressions
We continue exploring the use of polynomial expression®imstructing new quantum gates.

The group of reversible gatesghis generated bgUM, X, S1 2. More precisely, it is described by
the following proposition.

9This is the the distillable gate denoth; in [21].
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Proposition 2 {S1,, X, SUM} generate a maximal subgroup, which is isomorphietGL(n, F3) < F3,
of the group of reversible gates for any number n of qutrits.

Proof: See Appendix 1]

The statement in Proposition 2 for the case 2 was also proved in [9].

By the proof of Proposition 2, the correspondence betweem@k) = F3 and the group generated
by {S12, X, SUM} is as follows:

Given a pair A, V) € GL(n, F3)=F3, whereA = (&)1 j<n, V = (Vi)1<i<n, then the reversible-qutrit
gate corresponding to it maps, for any computational basis eleméxit = |Xy1, - - - , Xo), tO|A.X + V).
Moreover, any reversible gate of this form is generate¢ay, X, SUM}.

A function f : F} — Fz is called dfine linear if f(xg,--- , X)) = arXq + --- + @, + b, where
a;,- - ,an, b € F3. A reversiblen-qutrit gate can be viewed as amtuple of functions:|x) —
[f1(X),-- -, fa(X)), where we callf; the coordinates of the gate. Then the above argument shaivs th
a reversiblen-qutrit gate is generated Hp1o, X, SUM} if and only if all of its coordinates areffine
linear functions. Lef, be the set of all éine linear functions fron¥} to Fs.

Let D be the group generated by the reversible gat€s together with the diagonal gatggZ)
andPy. We give a technigue to characterize all the diagonal gatés i

By Proposition 2 and the argument above, the reversiblesgat® can change the basis element
|x) to any element of the forrfy(x),-- -, fo(x)), wheref; is an dfine linear functiori¥] to F3. The
action of A (2Z) and Py will contribute a scalar to the basis element. Thus the mesemaln-qutrit
diagonal gate irD has the form:

2 Aflnonin) 3 Bigfl il i)
lis iz, iy &y " & liz, iz, ,in), (4)

whereAs, Bt g are integer parameters. Notice that tiién@ linear functionst andg take values in
F3, while A¢, Br 4 take values irZ. We have to evaluaté, g first in {0, 1, 2}, then multiply byAs, B4
insideZ. This is critical for the terndg.

As an application, we show that(/ (Z)) andC,(Z) are both contained if>. The expressions of
relevant gates are given below.

o A@Ii. ) = ZJli. ). Poli) = Z3li,

Xliy = li + 1), Sy0liy = [2i), SUMI, j) = i, 1 + j).
AA@) 1 li, .k = 2 1.k

Ca(2) : li. ) o &7 ).

Forn = 3, the coficient in Formula 4 can be written as:

2
2 Aapcd(@i+bjrcked) o
L(i, j, k) — {Sb,c.dzo {?I’B|I+CJk+D|k, i, j, ke Fg, (5)

whereAapcd, B, C, D are integer parame't.eﬁ*sz\gain ai+bj+ck+dis assumed to be taken modulo 3.
To constructA (A (2)), setL(i, j,K) = ggk. Sinces = 3, we get the equation:

h Actually there are also terni$, j2, k2 on the exponent afs, but it is direct to see tha;gz = (I med3-EHmedd) yp to a global
phase, so the square terms can be absorbed intg teems.
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Fig. 13. A circuit forC,(2)

Equ(, j, k) : Z Aapcd(@i+bj+ck+d)+3(Bij+Cjk+ Dik) =3ijk (mod 9) i, jkeFs (6)
ab,cd
The set{Equq, j,K) : i, j,k € F3} is a system of 27 linear equations in the varialdggq, B, C,
andD. Thus there is anficient way to find the solutions, if any.
By direct calculations, one solution to the above systengoféons is:

;‘jk — S()1+2i+j+k)+2(1+2i+j+2k)+6(2+2i+j+2k)+2(1+2i+2j+k)+6(2+2i+2]+k)+4(1+2i+2j+2k)+6(2+2i+2]+2k), (7)
where the terms on the exponent within each parenthesikda taodulo 3.

In light of the solution in Equation 7, it is not hard to createircuit realizing/\ (A (2)). Explicitly,
this is given in Figure 12.

Similarly, with the same method, we construct a circuit@g(Z). See Figure 13.

Note that A (A (2)), Co(2) are related with Horne€,(X), respectively, by the Gfiord gateH,
namely, we have,

o (1@ H)Cx(X)(I ® HT) = Cx(2)
e (I®1®H)Horner{ ® 1 ® H') = A(A(2)).

Therefore, both Horner ar@,(X) can be implemented exactly over supermetaplectic basis.
Remark 3 1. The papers [22, 23] developed a similar framework for thmaty case.

2. If one uses the similar technique for the qubiyfold + T gates, namely replacin@o, £3) with
(¢s, —1), one obtains a circuit for the Foli gate with T-deptl8, which is optimal in the ancilla
free scenario.

6 Conclusion

We developed improved ternary circuits for reversibleaeyradders of two types: the modified ripple-
carry and the carry look-ahead adder. We have also deritatiat for a modulo 3adder, subtrac-
tion and comparison in ternary encoding. We haffered two levels of abstraction for describing the
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corresponding ternary circuits: one in terms of reversiéflections of certain types and one in a more
uniform language that allows only one non{&ird gate: either th€(X) : i, j) + |i, j + §i> mod 3

or thePy = diage?"'/%, 1, ¥'/°) gate.

Future circuit synthesis work should entail the design dffonodular adders, circuits for singly-

and doubly-controlled adders, as well as optimized cisdiait singly- and doubly-controlled additive
shifts that would be essential parts of Shor’s integer féwation algorithm.

for the arithmetic circuits and evaluating th@ency of designs presented here versus these bounds.

An important theoretical direction of future work would bgtablishing lower complexity bound
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Appendix A Reversible gates generated byS;,, X, SUM}

Proposition A.1 {S12, X, SUM} generate a maximal subgroup, which is isomorphietGL(n, F3) =
], of the group of reversible gatéthe permutation groupfor any number n of qutrits.

Proof: Let F] be then-dimensional vector space over the finite figigl Then there is a one-to-
one correspondence between the elementjaind the computational basis of thequtrit space
(C)®". Thatis, any elemenk(, - - - , x,) € F3 corresponds to the basis elempat- - - , X,). Thus any
automorphism of induces a permutation on timequtrit basis, which is a reversibtequitrit gate.

Let G = GL(n,F3) = F3, the semidirect product of Gh(F3) andFj, and letSz be the symmetric
group on 3 elements, or equivalently the group of reversible gates qotrits. We first prove the
group generated b§S1,, X, SUM} is isomorphic toG. As a corollary of applying the O’'Nan-Scott
Theorem to the classification of maximal subgroups of thersgtric group [24] [25], it follows that
G is a maximal subgroup &3n.

The groupG is the dfine linear group of degraeoverFz, namely, it consists of all the paird.(v),
whereA is ann x ninvertible group with entries ii3, andv is a vector inf3. The groupG acts onfy
as follows:

(Av).x=Ax+Vv, (AV)eG,xeF;]

Therefore, we get a map : G — U(3"), such thatp(A,v)|x) = |AX+ V), where|x) is any
computational basis vector. This mags apparently a group homomorphism and injective.

For1<i# j <n, defineA;, M; € GL(n,Fa), V; € F; as follows.
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Alj = In+EJI = .‘, s MI = II']-i_EII = dlag(l' 31323 13"' 31)’ VI =

1
(0,---,0,1,0,---,0).

It is straightforward to check that(Ai;,0) = SUM;j, ¢(M;,0) = (S12)i, ¢(0,vi) = X;, where
the subscript of the gate on the right hand side of each esipreslenotes the quitrits it acts on. For
instance X; is the X gate acting on theth qutrit. Therefore, the group generated®yM, X, S1 5 is
isomorphic to the group generated By, M;,v;, for 1 <i # j <n.

Clearly all thev; ’s generat&? as an additive group. We next prove t#gt M; generate the group
GL(n, F3).

LetBjj = MiAi,-AﬁlAij = I, - Ej — Ejj + Ej; + Ej;, thusB;; swaps the two basis elemegtsainde;.
Now given any matriA € GL(n, F3), multiplying A on the left byA;;, B;;, andM; constitutes the three
types of row operations ofy, and sinceéA is invertible, it can always be reduced to the identity nxatri
by row operations. This proves that any matrix in GlKz) can be written as a product 8f;, B;;, and
M;. Therefore, GLi, F3) is generated by;, M;, and hencé& is generated byj, M;, andv;.

Combining the above argument, we showed that the group gaHrySUM, S1,, X is isomorphic
toG = GL(n,F3) »F3. O



