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Abstract 

The polymeric compositions filled with Nano particles is the 

most important and faster research axes for development of 

engineering materials. The objective of having two or more 

constituents is to take advantage of the superior properties of 

both materials without compromising on the weakness of 

either. A soft plastic can become harder and stronger by the 

addition of a light weight high stiffness material.  The 

mathematical model of such behavior is very difficult to be 

determined.  An alternative solution to predict the polymer 

behavior filed by Nano particles is using soft computation 

technique such as Artificial neural networks (ANN), which is 

based on the information processing system of the human 

brain.   In general, it is composed of three layers of neurons; 

(a) input layer neurons that may receive external data, (b) 

output layer neurons that send data out of the ANN, and (c) 

hidden layer neurons whose signals remain within the ANN 

and connect the input layer neurons to output layer neutrons.  

The hidden neurons may form one or more hidden layers.  

In the present work, the main objective is to study the polymer 

behavior filed by nano particles using the ANN considering 

description of the different ANN structures, selection of the 

suitable ANN model based upon minimizing the least square 

error between the predicted and target outputs and finally 

validate of the proposed ANN model 

Keywords: Polymer Composites, Artificial neural networks (ANN), 

Mechanical Properties, Modeling and simulation. 

 

INTRODUCTION 

With the booming of nano-phased materials in the re-cent 

years, attempts are being made to develop nano- particle 

filled-polymer composites with improved tribologi- cal 

performance of the materials. It is expected that good 

tribological properties can be obtained for the polymers filled 

with nano-scale fillers compared to those filled with 

micro-scale particles [20,21]. Due to their lower strength and 

stiffness compared with synthetic fibers, natural fibers use in 

polymer composites has been limited to non-tribological 

applications. Very little information concerning the tribological 

performance of natural fiber reinforced composite materials 

has been reported [22].  

Polytetrafluoroethylene (PTFE) exhibits many desir- able 

tribological characteristics, including high melting 

temperature, low friction, and chemical inertness. PTFE is an 

excellent solid lubricant and used commonly in bearing and 

seals applications [23] Unfortunately, PTFE exhibits high wear 

rate under normal friction conditions, which limits its 

application fields. Therefore, many kinds of PTFE-based 

composites have been produced to improve the wear resistance 

of PTFE [24,25]. It was found that some micro-scale inorganic 

fillers showed distinct effect on the friction and wear behaviors 

of PTFE composites [26]. 

There are several different methods for dispersing carbon nano 

particles, and the determination of the ideal method proves 

challenging. These methods utilize polymers, surfactants, 

acids, or a combination of several different materials to 

disperse carbon nano-tubes [1-15]. Several of these methods 

tend to utilize hazardous materials and lengthy procedures to 

produce the desired result, while others require less dangerous 

materials with shorter durations to produce a similar result 

[5-6,13-25]. Therefore, these less dangerous methods used to 

disperse carbon nano-tube may not be thought of as “ideal 

methods.” Typically, all of the methods utilize some degree of 

sonification, from a few minutes to several hours, to initially 

mechanically disperse the carbon nano-tubes. This method of 

mechanical dispersion in conjunction with these surface-active 

agents reduces the van der Waals forces, provided that, the 

dispersing agent can separate the carbon nano-tubes to prevent 

re-aggregation [22- 23].  

Due to the interactions of the polymer chains with the 

supporting surface and the air interface, the thinner films 

required for such applications have distinctly different 

properties than those of the well-defined bulk systems. 

From experimental point of view and due to some inconsisteny 

on this subject in the literature, the objective of this study is to 

develop an Artificial Neural Network (ANN) model to predict 

the behaviour filed by nano based on experimentally measured 

values gathered from different published articles.  The 

advantages of ANN compared to classical methods are its high 

speed, simplicity, and large capacity which reduce engineering 

efforts.  The ANN has been applied successfully in various 

fields of modeling and prediction in many thermal engineering 

applications [27-29]. In the present study, the performance of 

the proposed ANN model is assessed by comparing the 

predicted results with the experimental data. 

The present paper aims to model the effect of adding different 

percentages of carbon nano-particulates (CNPS) to polystyrene 
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(PS) on the mechanical properties of nano-composites 

produced using ANN technique.  

 

EXPERIMENTAL PROCEDURES 

Coating into the four stages of deposition, spin-up, spin-off, 

and evaporation (Fig.1). By taking both the force of spinning 

and the concentration-controlled evaporation into account, 

these researchers were able to predict film thickness. This 

model was extremely useful because it included the surface 

chemistry and the type of polymer used.  Solutions in toluene 

were prepared at 0.2%, 0.5%, 0.7%, and 1.0% by weight of 

CNPS. 

The silicon wafers were positioned on the spin coater and 

several drops of solution were placed on the wafer. 

Immediately, each sample began rotating at a constant speed to 

acquire the desired film thickness (2500 rpm). The samples 

were spun for one minute. 

 

Figure 1: Spin coating. 

 

Test rig 

For measuring the friction and wear resistance a test rig was 

built. The test specimen assembly was carried on the 

compound cross slide of the lathe, which automatically 

operated for positioning purposes in the direction of adhesion, 

driven by controlled speeds. The test specimen was mounted 

on a platen supported on the tool post and restrained by a load 

cell, which senses tangential force on the test surface in the 

direction of sliding. The details of the test rig are shown in Fig. 

2. The indenter, used in experiments, was a spherical and 

hardened steel ball having diameter of 1.588 mm, (see Fig.2). 

The friction force was measured by the deflection of the load 

cell. The ratio of the friction force to the normal load was 

considered as friction coefficient. The load was applied by 

weights. The test speed was nearly controlled by automatically 

turning the power screw feeding the indenter in the adhesion 

direction. The adhesion velocity was 0.05 mm/s. All 

measurements were performed at 28 ± 2 º C and 50 ± 10 % 

humidity. 

 

 

Figure 2. Measurements test rig  

(1: screen, 2: indenter holder, 3: load cell, 4: ball indenter, 5: 

specimen holder). 

 

The effect of the CNPS content on the friction coefficient of 

composites is shown in Fig. 3 at different applied loads (4, 5 

and 6 N). Generally, the figure shows scattering values for the 

frictional behavior of PS nano-composites containing different 

CNPS contents.  
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Figure 3: Friction coefficient of the carbon         

nano-particulates-PS composites. 

 

It is clear that there are two different behaviors in the figure; 

one of them belongs to the unfilled specimens and the other 

concerning with filled specimens. The unfilled specimen 

exhibits a continuous decrease in the coefficient of friction 

with increasing normal load as a result of the frictional heating 

that reduced the shear strength of the PE specimens. Moreover, 

the topography of the surface becomes smoother with 

increasing the load causing a   decrease in the values of 

friction. Whereas the second trend which concerning with the 

carbon nano-particulates filled PS based composites shows a 

variation of friction coefficient with increasing normal load. 

Friction coefficient of PS samples filled by carbon 

nano-particulates with different weight contents is shown in 

the previous Figure too. PS composites containing carbon        

nano-particulates of 0.5 wt. % showed the smallest coefficient 
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of friction at applied load of 6 N while the maximum values 

always displayed at applied load of 5 N. The increase in the 

coefficient of friction during adhesion is attributed to 

increasing plowing of the coating by the indenter with 

increasing normal load but the abrupt decrease of friction at 

applied load of 6 N may be attributed to the direct contact with 

the carbon nano-particulates which its nature as a solid 

lubricant. 

 

THE ARTIFICIAL NEURAL NETWORK MODEL 

A computing system, made up of a number of simple, highly 

interconnected processing elements, which processes 

information by its dynamic state response to external inputs.  

The ANN is supposed to consist of artificial neurons or 

processing elements [13, 14]. 

If we denote the ith input as xi and the output as y, then it can 

write the mapping from the inputs to the output performed by 

the processing elements   in this case as: 

  ( )∑ += bwxfy iji                         (1) 

Layers are connected together composing an ANN.  Inputs 

could be connected to many nodes with various weights, 

resulting in a series of outputs, one per node (Fig. 4).  The 

connections are multiplied by the weights associated with that 

particular node with which they interconnect. They convey 

analog values. Note that there are many more connections 

than nodes. The network is said to be fully connected if every 

output from one layer is passed along to every node in the 

next layer. 

 

Figure 4. A schematic of multilayer neural network 

 

Several studies have found that a three-layered neural network 

with one hidden layer can approximate any nonlinear function 

to any desired accuracy [15]. The network consists of input 

layer, hidden layer and output layer. 

The method is based on an analysis of how a change in any 

particular weight influences the output of the network. After 

such analysis is done, the designer understands how to change 

the weights to achieve the specified values for the outputs. 

 

Figure 5. ANN analysis algorithm



First of all, one must construct a chain similar to Fig. 5. This 

chain examines the influence of any weight factor on the 

output value and, hence, on the error value. Where, the error is 

the difference between the actual output and the desired one. 

The performance function is the sum square error (SSE) 

which is defined as the sum of square of the difference 

between target output (expected) and the actual output from 

the NN. 

∑
=

-=

m

1k

2
kk )yt(SSE               (2) 

Learning rule gradually adjusts the weights until the 

performance function (SSE) falls below a certain threshold or 

minimised. 

Back-propagation learning updates the network weights and 

biases in the direction in which the performance function 

decreases most rapidly, i.e., the negative of the gradient. 

kkk1k gαww -=+          (3) 

where wk+1 are updated weights, wk are current weights, gk is 

current gradient of performance function, and k is the 

learning rate.  In this paper the network has two input 

elements and one outputs. Ten element hidden layers are 

assigned.  For more details, Appendix –A illustrates the 

Back-Propagation Algorithm which was used for design the 

ANN model. 

 

RESULTS AND DISCUSSION.  

To validate the ANN model in predictive mode a set of 

experimental data (15 values) was used to test the model. 

Figure 4 shows the predicted results from the ANN model 

versus experimental measurements for friction coefficients 

with different CNPs. The figure show excellent agreement 

between the predicted values and the experimental data. The 

accuracy of the predicted results is the same as that of the 

trained data.  

The error analysis of the data is presented in Fig. 5 with 

different CNPs and different applied forces. With applied 

force of 4N, it is found that the maximum error is around 

2x10-8 as illustrated in Fig.5-a.  The error friction coefficients 

with 5N force is about 12x10-4 as shown in Fig.5-b while less 

than 2.5x10-4 as shown in Fig5.-c.  The most important value 

of applying the ANN model is that it makes it possible to 

evaluate the friction coefficients in terms of the other two 

properties (applied force and CNPs) at any value within the 

treated range of data. In Fig.6-a, with applied force of 4N and 

CNPs values more than 1% is predicted via ANN model and 

less than 1% is the reference values which the ANN was built 

by them.  The values of the applied force was changed to be 

5N in Fig.6-b and 6N in Fig.6-c.  It very useful to find 

extension of the results using the ANN Model. 
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Figure 5: Comparison of experimentally measured and 

ANN-trained values of friction coefficients 
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Figure.5-a Error between trained and measured friction 

coefficients with applied force of 4N. 
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Figure 5-b Error between trained and measured friction 

coefficients with applied force of 5N. 
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Figure.5-c Error between trained and measured friction 

coefficients with applied force of 6N. 
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Figure 6-a Friction coefficients with applied force of 4N. 
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Figure 6-b Friction coefficients with applied force of 5N. 
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Figure.6-c Friction coefficients with applied force of 6N. 

 

CONCLUSION 

The problem associated with the application of a neural 

network (ANN) model to evaluate the instantaneous values of 

the friction coefficients is treated. The neural network model 

is implemented, and its feasibility is established. Good 

agreement between the outputs from the ANN model and the 

corresponding data is found. It is seen that the use of the 

proposed methodology results in some desirable 

characteristics. More accurate values of the friction 

coefficients can be obtained over a wide range of the CNPs 

and the applied force values without any need to empirical 

correlations.  
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APPENDIX A: Back-Propagation Algorithm 

Back-propagation learning is one of the most popular types 

NN learning methods. It has two operational phases. In first 

phase, forwarding phase, we send input data from input layer 

to the output layer. In the second phase, back-propagation 

phase, we calculate the error (between target and output) and 

propagate the error backwardly to the input layer in order to 

change the weights of hidden layers by using the gradient 

descent method.  

Several studies have found that a three-layered neural network 

with one hidden layer can approximate any nonlinear function 

to any desired accuracy [14]. The network consists of input 

layer, hidden layer and output layer. To explain the 

Back-propagation rule in detail a 3 layer network shown in 

Fig.6 will be used.  The training phase is divided as follows: 

1. forward-propagation phase: X=[Qp; PP] is propagating 

from the input layer to the output layer Y=[θp]. 
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2. back-propagation phase: (14) shows the error between the 

output, y, and the target, d. 
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By using the gradient-descent method, the weights in 

hidden-to-output connections are updated as follows: 
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Following equations are the weight update on the 

input-to-hidden correction. Also chain rule and 

gradient-descent method are employed. 
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In Back-propagation learning rule, the two phases are iterated 

until the performance error decreased to certain small range.  
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