
Adding a New Conflict Based Branching Heuristic in two
Evolved DPLL SAT Solvers

Renato Bruni, Andrea Santori

Università di Roma “La Sapienza”, Dip. di Informatica e Sistemistica,
Via Michelangelo Buonarroti 12 - 00185 Roma, Italy,

E-mail: renato.bruni@dis.uniroma1.it, santori.andrea@libero.it

Abstract. The paper is concerned with the computational evaluation of a new branching
heuristic, called reverse assignment sequence (RAS), for evolved DPLL Satisfiability solvers.
Such heuristic, like several other recent ones, is based on the history of the conflicts obtained
during the solution of an instance. A score is associated to each literal. When a conflict
occurs, some scores are incremented with different values. The branching variable is then
selected by using the maximum score. This branching heuristic is introduced in two evolved
DPLL solvers: ZChaff and Simo. Experiments on several benchmark series, both satisfiable
and unsatisfiable, demonstrate advantages of the proposed heuristic.

1 Introduction

Given a propositional formula, determining whether there exists a truth assignment for its propo-
sitional variables such that the formula evaluates to true is called the propositional Satisfiability
problem, commonly abbreviated as SAT. Extensive references can be found in [4, 12, 20]. Many
problems arising from different fields, such as artificial intelligence, logic circuit design and test-
ing, cryptography, database systems, software verification, are usually encoded as SAT. Moreover,
SAT carries considerable theoretical interest as the original NP-complete problem [5, 8]. From the
practical point of view, this implies that investing on the cleverness of the solution algorithm can
result in very large savings in computational times. The above has motivated a wide stream of
research in practically efficient SAT solvers. As a consequence, many algorithms for solving the
SAT problem have been proposed, based on different techniques (see for instance [6, 7, 9, 12, 15]).
Computational improvements in this field are impressive, see e.g. [15]. A solution method is said
to be complete if it guarantees (given enough time) to find a solution if it exists, or prove lack of
solution otherwise. Incomplete, or stochastic, methods, on the contrary, cannot guarantee finding
the solution, although they may scale better than complete methods on some large satisfiable prob-
lems. Most of the best complete solvers are based on so-called Davis-Putnam-Logemann-Loveland
(DPLL) enumeration techniques. From the initial relatively simple DPLL backtracking algorithm
described in [6], SAT solvers have evolved experimenting several more sophisticated branching and
backtracking frameworks, and eventually incorporating the best ones. Noteworthily examples have
been non-chronological backtracking and conflict-driven learning [1, 17]. These techniques greatly
improve the efficiency of DPLL algorithms, expecially for structured SAT instances. Subsequently,
a further generation of solvers paying special attention to implementation aspects appeared: SATO
[22], Chaff [19], BerkMin [11] and several others, sometimes referred to as chaff-like solvers [15].
Such kind of solvers nowadays appear to probably be the most competitive in solving real-world
problems.

As a matter of fact, a relevant influence on computational behavior is given by the branching
rule, or branching heuristic, that is how to chose the next variable assignment. Different branching
heuristics for the same basic algorithm may result in completely different computational results
[18, 21]. Early branching heuristics (e.g. Böhm [3], MOM [12], Jeroslow-Wang [14]) have often
been viewed as greedy trials of simplifying as much as possible current subproblem, for instance by
satisfying the most clauses. Such heuristics are based on a priori statistics on the instance, and have
a certain effectiveness in the case of randomly generated problems. However, they usually cannot
capture hidden problem’s structure, and real world problems typically are quite well structured.
In order to tackle such problems, heuristics based on the history of the search, and in particular
on the history of conflict, have been studied . Examples are VSIDS heuristic of Chaff [19], the



270 Renato Bruni and Andrea Santori

adaptive branching rule of ACS [2], BerkMin decision making strategy [11], the dynamic selection
of branching rules [13].

We propose here a branching heuristic having two main aims. The first consists in trying to
assign at first the more constrained variables, which are also those on which we learned more. The
second consists in trying to reverse every sequence of assignments which have led to a conflict,
by satisfying at first clauses which have become empty. The proposed heuristic, called reverse
assignment sequence (RAS), is introduced in two modern DPLL SAT solvers, in order to verify
its empirical behavior. We specifically selected ZChaff [19] and Simo [10], since their structure
and features are quite different, and therefore the effect of their modification can be considered
enough representative for the family of DPLL solvers. Experiments on several benchmark series,
both satisfiable and unsatisfiable, show that the proposed branching heuristic improves in the two
solvers both speed and number of decisions.

2 The RAS Branching Rule

For DPLL-based algorithm, the search evolution is often represented as the exploration of a search
tree, where each node subproblem is obtained by assigning a variable. Being SAT an NP-complete
problem theoretically implies that, for satisfiable instances, choosing at every step the right branch
in the search tree would lead to the solution in a polynomial number of assignments [8]. Unfor-
tunately, unless P=NP, it seems unlikely that some practical algorithm doing this in polynomial
time may in general exist. Moreover, the problem of choosing such assignment for DPLL algorithms
has been proven to be NP-hard and coNP-hard [16]. Therefore, the (heuristic) policy governing
the choice of the variable assignments is generally called branching heuristic. Different branch-
ing heuristics may produce drastically different sized search trees for the same basic algorithm.
Conflict-based branching heuristics generally keep, for each variable xi, a counter, or score si, or
sometimes two counters, for the two possible truth assignments, or phases, of xi. Score si is incre-
mented when xi is somehow involved in a conflict, i.e. an empty clause is derived by current truth
assignments. Branching variables are selected according to the values of such scores. Counters are
often periodically proportionally reduced, both for avoiding overflow problems, and for giving to
earlier history of the search progressively less importance than recent history. For instance, ZChaff
[19] heuristic (called VSIDS, variable state independent decaying sum) uses for each variable two
scores initialized to the number of occurrences of each literal in the instance. Whenever a new clause
is learned, the counter of each of its literal is incremented. The variable assignment corresponds to
the literal having maximum score. Also, BerkMin [11] heuristic uses one score for each variable.
Whenever a conflict occurs, the scores of all variables contained in the clauses that are responsible
for the conflict are increased. The variable assignment corresponds to the literal whose variable
has maximum score among those contained in the last added clause that is unresolved. Conflict
based branching heuristics have the advantages of requiring low computational overhead and of
being often able to detect the hidden structure of a problem. They therefore generally produce
good results on large real-world instances.

The proposed branching heuristic, called reverse assignment sequence (RAS), proceeds as fol-
lows. For each variable xi, i = 1, . . . , n, we use two counters s0

i and s1
i for the two possible phases

of xi. Counters are therefore associated to the two possible literals l0(xi) = ¬xi and l1(xi) = xi.
When branching is needed, we assign, as usual, variable xi at value v ∈ {0, 1}, as follows.

xi = v, with sv
i = max(s0

1, s
1
1, . . . , s

0
n, s1

n)

The main issue clearly is how scores {s0
1, s

1
1, . . . , s

0
n, s1

n} are incremented. We do this by trying to
pursue two different aims. The first aim consists in assigning at first the more difficult variables, in
the sense of the more constrained ones. This because, when assigning them in the upper levels of
the search tree, either we should discover unsatisfiability earlier, or we should remain with only easy
variables to assign in the lower levels of the search tree, and therefore little backtrack should be
needed to reach a satisfying assignment. Whenever a new learned clause Cl = {lv(xl1), . . . , lv(xlh)}
is added to the clause set by effect of a conflict, what we have actually discovered is that variables
{xl1, . . . , xlh} contained in Cl are a bit more constrained than other variables. In fact, Cl represents



Adding a New Conflict Based Branching Heuristic in two Evolved DPLL SAT Solvers 271

just an explicitation of such constraint, that is already implied by the original clauses. Therefore,
we increment the scores as follows

sv
i ← sv

i + pl, ∀lv(xi) ∈ Cl

(where a ← a + b means that new value of a is obtained by adding b to its old value). The effect
can also be viewed as trying to satisfy Cl. Note that, so far, this is also ZChaff’s policy. Our second
aim, on the other hand, consists in trying to reverse every sequence of assignments which leads to
a conflict. Whenever a sequence of assignment produces an empty clause, this sequence risks to be
repeated again in the search tree, leading again to the same conflict. The use of learned clauses,
together with the increment of the scores of their literals, can only partially solve the problem. We
therefore try to satisfy the failed clause Cf = {lv(xf1), . . . , lv(xfk)} (the clause which has become
empty) by incrementing again the scores as follows.

sv
i ← sv

i + pf , ∀lv(xi) ∈ Cf

Similarly to other conflict based heuristics, scores are initialized to the number of occurrences of
each literal in the instance, and periodically divided.

However, since increasing scores has a cost, and moreover implies an even higher cost for
reordering the scores in order to choose the higher value, we apply some simplifications to the
above algorithm. In fact, adding pf to only one of the counters corresponding to the failed clause
Cf , and in particular to the last assigned one, decreases computational overhead while maintaining
most of the positive features. Several other alternatives were tested, but the above proposed one
appears more stable. The following example illustrates in detail counters updating performed after
a typical conflict.

Example: Consider an instance containing, among others, the following two clauses:

Ca = (¬x1 ∨ x3 ∨ x5) Cb = (x2 ∨ ¬x4 ∨ ¬x5)

Imagine that we have already assigned {x1 to 1, x2 to 0, x3 to 0 and x4 to 1}. We now have Ca

reduced to a unit clause, which force assigning {x5 to 1}. So far Cb becomes empty, and we learn
Cl = (¬x1 ∨ x2 ∨ x3 ∨ ¬x4), while Cf is in this case Cb. Counters are updated as follows:

s0
1 ← s0

1 + pl s1
2 ← s1

2 + pl s1
3 ← s1

3 + pl s0
4 ← s0

4 + pl + pf

3 Computational Analysis

RAS branching heuristic is introduced in two evolved DPLL solvers: ZChaff [19] and Simo [10], ob-
taining what we called BrChaff and BrSimo. Experiments are conducted on a Pentium III 733MHz
PC with 256Mb RAM and using MS VC++ compiler. Note that some libraries may be different
using other compilers, therefore results may vary (we experienced it) but maintaining about the
same average results on each series. Parameters pl and pf are respectively fixed at 1 and 2. We
report running times in seconds and number of decisions. Time limit was set at 7200 sec. (2 hours),
when exceeded we report “-”. When the two versions of a solver solve different problems, totals are
extended only to problems solved by both versions (unless this has no sense), and this is indicated
by “*”. Mostly of the considered benchmark series are real-world problems, therefore structured.
We also considered one randomly generated series from 2003 competition, where we omitted for
brevity the central part of the names (e.g. hardnm-L19-02-S125896754.shuffled-as.sat03-916 →
hrdnm-L19-02-sat03-916). The series are either all satisfiable, or all unsatiafiable, or mixed. The
use of the RAS branching rule demonstrate advantages in almost the totality of considered cases.
In particular, on the Beijing series (logic circuit problems) we obtain great running times improve-
ments for both solvers; on the Des-encryption series (cryptography problems) great running times
improvements for both solvers (Simo in particular becomes able to solve many instances); on the
FVP series (hardware verification problems) great running time improvements for ZChaff and some
running time improvement for Simo; on the Miters series (equivalence checking problems) moderate
running time improvements for ZChaff and sensible running time improvement for Simo; on the
Barrel series (bounded model checking problems) improvements only in the number of decisions for
ZChaff, but great running time improvements for Simo; on the Hardnm series (randomly generated
problems) we obtain great running times improvements for both solvers.



272 Renato Bruni and Andrea Santori

Beijing ZChaff BrChaff Simo BrSimo

Problem Sol Decisions Time Decisions Time Decisions Time Decisions Time

2bitadd 10 U 172675 360.42 59483 70.14 - - - -
2bitadd 11 S 9110 3.66 14655 9.42 290 0.04 1345 0.11
2bitadd 12 S 10228 3.83 9173 4.61 324 0.04 1837 0.17
2bitcomp 5 S 50 0.00 50 0.00 66 0.01 65 0.00
2bitmax 6 S 329 0.01 404 0.01 104 0.01 136 0.01
3bitadd 31 - - - - - - - - -
3bitadd 32 - - - - - - - - -
3blocks S 872 0.02 980 0.04 426 0.48 1338 0.45
4blocks S 6552 1.60 6462 2.32 80917 207.40 71438 206.93
4blocksb S 1994 0.42 1521 0.28 5625 11.96 4508 4.83
e0ddr2-10-by-5-1 S 25156 54.48 10105 17.35 - - - -
e0ddr2-10-by-5-4 S 2876 3.28 584 0.55 25617 154.85 744 1.78
enddr2-10-by-5-1 S 2656 3.68 2244 3.62 2647 9.35 732 1.72
enddr2-10-by-5-8 S 664 0.78 586 0.74 - - 765 1.72
ewddr2-10-by-5-1 S 1730 2.30 1814 2.61 3039 12.33 766 1.77
ewddr2-10-by-5-8 S 310 0.25 310 0.22 3030 12.40 817 1.77

Total 235202 434.71 108371 111.92 121301* 408.86* 83726* 219.54*

Table 1: Comparison on logic circuit problems.

Des-encryption ZChaff BrChaff Simo BrSimo

Problem Sol Decisions Time Decisions Time Decisions Time Decisions Time

cnf-r3-b1-k1.1-comp S 15799 16.21 13356 8.90 - - - -
cnf-r3-b1-k1.2-comp S 11173 6.62 10865 7.65 - - - -
cnf-r3-b2-k1.1-comp S 809 0.22 887 0.26 - - 52956 39.91
cnf-r3-b2-k1.2-comp S 666 0.16 612 0.14 - - 498996 657.58
cnf-r3-b3-k1.1-comp S 413 0.10 367 0.10 - - 71594 89.65
cnf-r2-b3-k1.2-comp S 420 0.11 422 0.11 - - 20950 20.70
cnf-r3-b4-k1.1-comp S 428 0.13 379 0.12 - - 31394 50.25
cnf-r3-b4-k1.2-comp S 428 0.13 379 0.12 - - 31394 50.26
cnf-r4-b1-k1.1-comp - - - - - - - - -
cnf-r4-b1-k1.2-comp - - - - - - - - -
cnf-r4-b2-k1.1-comp S 354831 2187.71 264884 1565.59 - - - -
cnf-r4-b2-k1.2-comp S 221764 1106.45 157293 751.58 - - - -
cnf-r4-b3-k1.1-comp S 132080 539.47 96646 351.12 - - - -
cnf-r4-b3-k1.2-comp S 118457 458.63 56830 167.84 - - - -
cnf-r4-b4-k1.1-comp S 64161 196.18 67229 228.94 - - - -
cnf-r4-b4-k1.2-comp S 64161 196.31 67229 228.84 - - - -

Total 985590 4708.43 737378 3311.32 - - - -

Table 2: Comparison on cryptography problems.

FVP ZChaff BrChaff Simo BrSimo

Problem Sol Decisions Time Decisions Time Decisions Time Decisions Time

1dlx c mc ex bp f U 3586 0.12 3730 0.14 - - 2778567 293.76
2dlx ca mc ex bp f U 45130 4.13 35761 3.62 - - - -
2dlx cc mc ex bp f U 60084 6.43 54278 7.34 - - - -
9vliw bp mc U 3619845 644.04 2144050 349.84 - - - -

Total 3728645 654.71 2237819 360.93 - - - -

Table 3: Comparison on hardware verification problems.



Adding a New Conflict Based Branching Heuristic in two Evolved DPLL SAT Solvers 273

Miters ZChaff BrChaff Simo BrSimo

Problem Sol Decisions Time Decisions Time Decisions Time Decisions Time

c1355-s U 9875 1.11 34707 17.42 - - - -
c1355 U 15783 2.56 28896 8.90 - - - -
c1908-s U 29833 7.56 17169 3.39 - - - -
c1908 U 28687 7.47 30461 8.94 - - - -
c1908 bug S 15841 3.09 23721 5.68 480 0.24 305 0.17
c2670-s U 20507 1.98 29180 3.85 - - - -
c2670 U 36645 3.97 26795 3.67 - - - -
c2670 bug S 3802 0.11 2461 0.07 - - - -
c3540-s U 130424 140.36 115457 106.47 - - - -
c3540 U 92076 71.22 91554 69.99 - - - -
c3540 bug S 50 0.01 50 0.01 - - 2240 2.47
c432-s U 1467 0.05 1354 0.05 890461 146.08 1309852 144.09
c432 U 1345 0.05 1319 0.04 684995 114.69 830546 86.28
c499-s U 41934 6.79 14037 1.21 - - - -
c499 U 30722 4.02 23977 3.20 - - - -
c5315-s U 187191 77.70 131179 42.22 - - - -
c5315 U 133662 42.38 125974 37.87 - - - -
c5315 bug S 32850 1.94 13109 0.66 - - - -
c6288-s - - - - - - - - -
c6288 - - - - - - - - -
c7552-s U 230642 102.53 217503 94.93 - - - -
c7552 U 250398 120.24 301945 174.39 - - - -
c7552 bug S 3225 0.18 12827 0.84 - - 822670 157.92
c880-s U 21166 5.18 10577 1.17 - - - -
c880 U 21166 5.18 10577 1.17 - - - -

Total 1339291 605.67 1264729 586.14 1575936* 261.01* 2140703* 230.54*

Table 4: Comparison on combinational equivalence checking problems.

Barrel ZChaff BrChaff Simo BrSimo

Problem Sol Decisions Time Decisions Time Decisions Time Decisions Time

barrel2 U 3 0.00 3 0.00 - - 3 0.00
barrel3 U 48 0.01 48 0.01 - - 31 0.02
barrel4 U 201 0.05 164 0.04 - - 52 0.10
barrel5 U 8856 1.22 6510 1.57 - - 7977 15.94
barrel6 U 28110 5.71 30522 12.85 - - 24463 102.18
barrel7 U 66959 21.20 50730 22.62 - - 53277 388.52
barrel8 U 116858 55.02 106328 79.50 - - 75655 999.11
barrel9 U 649532 374.02 342396 366.84 - - - -

Total 870567 457.32 536701 483.03 - - - -

Table 5: Comparison on bounded model checking problems.

Hardnm ZChaff BrChaff Simo BrSimo

Problem Sol Decis. Time Decis. Time Decis. Time Decis. Time

hrdnm-L19-01-sat03-915 S 123124 59.60 77950 47.43 128749 69.70 332827 191.34
hrdnm-L19-02-sat03-916 S 360213 182.44 54090 57.70 - - 963348 548.11
hrdnm-L19-03-sat03-917 S 235179 165.96 163985 105.13 - - 4078653 1568.44
hrdnm-L22-01-sat03-920 S - - 69329 25.29 - - - -
hrdnm-L22-02-sat03-921 S 1106442 830.05 397023 1040.09 - - - -
hrdnm-L22-03-sat03-922 S - - 697296 2945.82 - - - -
hrdnm-L23-01-sat03-925 S 470570 517.55 195864 159.58 - - - -
hrdnm-L23-02-sat03-926 S - - 320977 527.62 - - - -
hrdnm-L23-03-sat03-927 S 198048 95.70 154258 105.23 - - - -
hrdnm-L25-01-sat03-930 S - - 576653 1025.36 - - - -
hrdnm-L25-02-sat03-931 S - - - - - - - -
hrdnm-L25-03-sat03-932 S - - 830900 2653.42 - - - -

Total 2493576* 1851.30* 1043170* 1515.16* - - - -

Table 6: Comparison on randomly generated problems.



274 Renato Bruni and Andrea Santori

4 Conclusions

The branching heuristic has a relevant influence on computational behavior of DPLL SAT solvers.
Conflict based branching heuristics have the advantages of requiring low computational overhead
and of being often able to detect the hidden structure of a problem. The proposed conflict based
heuristic, called reverse assignment sequence (RAS), has two main aims: to assign at first the
more constrained variables, and to reverse every sequence of assignments which have led to a
conflict, by satisfying at first clauses which have become empty. RAS heuristic is introduced in two
modern DPLL SAT solvers, ZChaff and Simo, in order to verify its empirical behavior. Experiments
on several benchmark series, both satisfiable and unsatisfiable, demonstrate advantages of the
proposed heuristic.

References

1. R. Bayardo, R. Schrag. Using CSP look-back techniques to solve real-world SAT instances. In Pro-
ceedings of 14th National Conference on Artificial Intelligence (AAAI), 1997.

2. R. Bruni, A. Sassano. Restoring Satisfiability or Maintaining Unsatisfiability by finding small Unsat-
isfiable Subformulae. In Procedings of Theory and Applications of Satisfiability Testing (SAT2001),
2001.

3. M. Buro, H. Kleine Büning. Report on a SAT Competition. Bulletin of the European Association for
Theoretical Computer Science, 49, 143–151, 1993.

4. V. Chandru and J.N. Hooker. Optimization Methods for Logical Inference. Wiley, New York, 1999.
5. S.A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of Third Annual ACM

Symposium on Theory of Computing, 1971.
6. M. Davis, G. Logemann, D. Loveland. A machine program for theorem proving. Communications of

the ACM 5, 394-397, 1962.
7. M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the ACM 7,

201–215, 1960.
8. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman and co., San Francisco, 1979.
9. I.P. Gent, H. van Maaren, T. Walsh editors. SAT 2000, IOS Press, Amsterdam, 2000.

10. E. Giunchiglia, M. Maratea, A. Tacchella. Look-Ahead vs. Look-Back techniques in a modern SAT
solver. In Proceedings of the Sixth International Conference on Theory and Applications of Satisfiability
Testing (SAT2003), 2003.

11. E. Goldberg, Y. Novikov. BerkMin: a Fast and Robust SAT-Solver. In Proceedings of Design Automa-
tion & Test in Europe (DATE 2002), 2002.

12. J. Gu, P.W. Purdom, J. Franco, and B.W. Wah. Algorithms for the Satisfiability (SAT) Problem: A
Survey. DIMACS Series in Discrete Mathematics American Mathematical Society, 1999.

13. M. Herbstritt, B. Becker. Conflict-based Selection of Branching Rules in SAT-Algorithms. In E.
Giunchiglia, A. Tacchella eds., Sixth International Conference on Theory and Applications of Sat-
isfiability Testing -Selected Papers, LNAI 2919, Springer, 2003.

14. R.E. Jeroslow and J. Wang. Solving Propositional Satisfiability Problems. Annals of Mathematics and
AI 1, 167–187, 1990.

15. D. Le Berre, L. Simon. The Essentials of the SAT 2003 Competition. In E. Giunchiglia, A. Tacchella
eds., Sixth International Conference on Theory and Applications of Satisfiability Testing -Selected
Papers, LNAI 2919, Springer, 2003.

16. P. Liberatore. On the complexity of choosing the branching literal in DPLL. Artificial Intelligence,
116(1-2):315326, 2000.

17. J.P. Marques-Silva, K.A. Sakallah. Conflict Analysis in Search Algorithms for Propositional Satisfia-
bility. In Proceedings of IEEE International Conference on Tools with Artificial Intelligence, 1996.

18. J. P. Marques-Silva. The Impact of Branching Heuristics in Propositional Satisfiability Algorithms. In
Proceedings of the 9th Portuguese Conference on Artificial Intelligence (EPIA), 1999.

19. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff: Engineering an Efficient SAT Solver.
In Proceedings of the 39th Design Automation Conference, 2001.

20. K. Truemper. Effective Logic Computation. Wiley, New York, 1998.
21. L. Zhang, S. Malik. The Quest for Efficient Boolean Satisfiability Solvers. In Proceedings of CADE

2002 and CAV 2002, 2002.
22. H. Zhang and M.E. Stickel. Implementing the Davis-Putnam Method. In I.P. Gent, H. van Maaren,

and T. Walsh eds. SAT 2000, IOS Press, Amsterdam, 2000.


