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Abstract. We consider the satisfiability problem for CNF instances that contain a (hidden)
Horn and a 2-CNF part, called mixed formulas. We show that SAT remains NP-complete for
such instances and also that any SAT instance can be encoded in terms of a mixed formula
in polynomial time. Further, we provide an exact deterministic algorithm showing that SAT
for mixed formulas is solvable in time O(20.5284n). Motivating for these investigations are
level graph formulas which are mixed Horn formulas.
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1 Introduction and Motivation

There is a long standing history in developing fast exact algorithms for NP-complete problems and
their NP-hard optimization versions for which no polynomial time algorithms are expected to exist.
In recent time the interest in designing exact algorithms providing better (still super-polynomial)
upper bounds than the trivial ones has increased. Of particular interest in this context is an
investigation of exact algorithms for testing the satisfiability (SAT) of propositional formulas in
conjunctive normal form (CNF). This interest stems from the fact that SAT is well known to be
a fundamental NP-complete problem appearing naturally or via reduction as the abstract core of
many application-relevant problems.
Besides, one is often interested in detecting subclasses of conjunctive normal form formulas for
which SAT remains NP-complete or those subclasses for which polynomial time algorithms (of
low degree) can be found. For instance, restricted to formulas with upper bounded clause length
k ∈ N, SAT remains NP-complete when k ≥ 3. Whereas for k ≤ 2, SAT can be decided even in
linear time [1]. The same holds when SAT is restricted to Horn formulas [12]. These are formulas
with no restrictions to the clause length instead it is required that each clause contains at most
one unnegated variable. Clearly, it is necessary that such special classes are also recognizable in
polynomial time. For the above mentioned classes this is rather obvious, but it holds also for the
so-called hidden Horn formulas [11]. A hidden Horn formula is a formula which appears to be a
usual Horn formula after some of its variables are complemented.
Suppose we are given two classes C1, C2 of formulas for either of which SAT is solvable in polynomial
time. Then it is in general not true that formulas which consist of two parts, one belonging to C1 the
other one belonging to C2, are also solvable in polynomial time (cf. also [9]). Trivially, polynomial-
time solvability remains whenever (∗) : C1 ⊆ C2. As a simple example where relation (∗) does not
hold take the set of CNF formulas with clauses of length at most 2 (CNF(≤ 2)) and the class
of (positive-)monotone formulas (each clause containing only positive literals, i.e., variables) over
the same set of variables. As mentioned SAT is decidable in linear time for the first class and
is obviously trivial for the second class. But it will turn out that SAT remains NP-complete for
instances that are mixed by components of these two classes. Another example is provided by
mixing the classes of Horn formulas and formulas in CNF(≤ 2). Again instances of either class are
testable in linear time. But deciding SAT for mixed formulas will be proved to be NP-complete.
The introduction and investigation of such mixed formula classes is by no means artificial. For
instance a subset of the latter class appears quite naturally when levelgraphs are encoded into CNF
formulas [14]. Let us briefly recall how this connection arises. Levelgraphs are graphs G = (V,E)
with an additional assignment level : V → {0, . . . , k− 1}, and the meaning that all nodes assigned
to level i have to be arranged in the (x, y)-plane on the line y = i. Only nodes between neighbouring
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levels are allowed to be connected by edges drawn as straight lines. We ask for an embedding of
levelgraphs in the plane with a minimal number of crossing edges. This NP-hard problem has a nice
formulation as a mixed (CNF(≤ 2)-Horn-)formula as follows. For each pair (u, v) of different nodes
assigned to the same level, create a Boolean variable uv with the meaning uv = TRUE if and only
if u is arranged left of v. I.e., uv = TRUE iff vu = FALSE. Moreover for every triple (u, v, w) of
three different nodes of the same level, create the Horn clause (uv∧vw → uw) providing geometric
information. Finally for every two edges u − x and v − y between the same two levels, formulate
noncrossability by the equivalence uv ↔ xy. Such a formula C can be formulated in terms of
a mixed (CNF(≤ 2)-Horn-)formula. Then the following holds: C is satisfiable if and only if the
corresponding levelgraph has a crossing-free level-embedding in the plane. And a truth assignment
of C satisfying all Horn clauses and as many clauses of type uv ↔ xy as possible, corresponds
to a levelgraph embedding with minimal number of crossing edges, see [14]. By translating the
crossing number minimization problem for levelgraphs to a specific MAX-SAT problem for mixed
(CNF(≤ 2)-Horn-)formulas good approximation results are available for it (cf. e.g. [3, 5]).
Another source supplying the interest in Horn clauses contained in CNF formulas stems from recent
observations of hidden threshold phenomena [17] according to a fixed fraction of Horn clauses in
CNF formulas.
The purpose of this paper is to investigate the computational complexity of satisfiability testing
for mixed formulas. Particularly, we derive a non-trivial worst case upper bound for SAT testing
of mixed Horn formulas.

2 Basic Definitions and Notation

Let CNF denote the set of formulas (free of duplicate clauses) in conjunctive normal form over
a set V = {x1, . . . , xn} of propositional variables (n ∈ N). Each formula C ∈ CNF is considered
as a clause set C = {c1, . . . , c|C|}. Each clause c ∈ C is a disjunction of different literals, and is
also represented as a set c = {l1, . . . , l|c|}. Each variable x induces a positive literal (variable x)
or a negative literal (negated variable: x). We denote by V (C) the set of variables occuring in
formula C. The satisfiability problem (SAT) asks whether a given CNF instance C has a model,
i.e., whether there is a (partial) truth assignment τ : V (C) → {0, 1} setting at least one literal in
each clause of C to 1 (TRUE). For convenience we allow the empty set to be a formula: ∅ ∈ CNF
which is always satisfiable.
Let γ : c 7→ cγ denote the map that complements (or flips) all literals in a clause c. This induces
also a flipping map for formulas C 7→ Cγ , where Cγ = {cγ

1 , . . . , cγ
|C|} for C = {c1, . . . , c|C|}. For

C ∈ CNF and X ⊆ V (C) a subset of its variables, we define C[Xγ ] as the formula obtained from
C by flipping each variable in X, hence Cγ = C[V (C)γ ]. Given a formula C ∈ CNF and a partial
truth assignment τ : V (C) → {0, 1} we denote by C[τ ] the formula obtained from C by removing
all clauses satisfied by τ and removing all literals from the remaining clauses which are set to 0
(FALSE) by τ . Obviously, if τ is a model of C then C[τ ] = ∅. For two partial truth assignments
τ, τ1, we write τ1 ⊆ τ if D(τ1) ⊆ D(τ) and τ−1

1 (1) ⊆ τ−1(1), where D(τ) ⊆ V (C) denotes the
domain of τ . We state a simple observation:

Lemma 1. Let C ∈ CNF be satisfiable with model τ . For each partial truth assignment τ1 ⊆ τ
with D(τ1) = τ−1

1 (1), holds C[τ1] ∈ SAT.

Proof. If C ′ := C[τ1] = ∅ we are done since then τ1 is also a model of C. Otherwise, each clause
c ∈ C ′ can be satisfied by simply extending τ1 to τ . ut
For k ∈ N, let CNF(≤ k) (resp. CNF(= k)) denote the subset of formulas C such that each clause
has length at most (resp. exactly) k. Moreover Mε, ε ∈ {+,−}, denotes the set of ε-monotone
(CNF-)formulas, i.e., all variables occur in the polarity ε. Let H denote the set of all Horn formulas
over a given set of variables. Further, let Ĥ denote the set of hidden Horn formulas. For H ∈ Ĥ
there exists by definition a subset X ⊂ V (H) such that H[Xγ ] ∈ H.
Let C ∈ Mε, ε ∈ {+,−} be a monotone formula. We can construct its formula graph GC with
vertex set V (C) in linear time. Two vertices are joined by an edge if there is a clause in C containing
the corresponding variables. Clearly, for each c ∈ C the subgraph GC |c of GC is isomorphic to
the complete graph K|c|. In the particular case of C ∈ Mε(= 2), i.e., C is a monotone formula
containing only 2-clauses, GC contains exactly one edge for every clause in C. Moreover we have:
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Lemma 2. For C ∈ Mε(= 2), ε ∈ {+,−}, which is not the empty formula, GC consists only
of isolated edges if and only if every x ∈ V (C) occurs exactly once in C. In that case we have
|E(GC)| = 1

2 |V (C)|.

3 Mixed Horn Formulas

It is natural to ask how to create formulas which are testable for satisfiability in polynomial time.
One might suggest that such formulas could be obtained by mixing instances from certain classes
for which SAT is testable efficiently. First we precisely fix the terminology.

Definition 1. Let C1, C2 ⊂ CNF be two classes of formulas over the same variable set V . A
formula C ∈ CNF such that there are formulas Ci ∈ Ci, i = 1, 2, with C = C1 ∪C2, is called mixed
(over C1, C2). The collection of formulas mixed over C1, C2 is denoted as C1 ∧ C2.

A first result that does not support the suggestion above is stated in:

Lemma 3. SAT remains NP-complete for instances from
(i) Mε ∧ CNF(≤ 2), ε ∈ {+,−},
(ii) H ∧ CNF(≤ 2),
(iii) Ĥ ∧ CNF(≤ 2).

Proof. We prove the NP-completeness of SAT for members in (i) by providing an appropriate
polynomial time reduction from SAT for the unrestricted class CNF. To that end let C ∈ CNF be
an arbitrary instance for SAT, for which we have the decomposition C = C+∪C−∪C± where C+,
resp. C−, denotes the positive, resp. negative, monotone part of C and C± denotes the remaining
formula. Notice that C always has a model if C+ = ∅ or C− = ∅, hence we assume that both parts
are non-empty. Let V+(C) ⊆ V (C) be the set of all variables that occur positive in at least one
k-clause of C with k ≥ 3. For every variable x ∈ V+(C) introduce a new variable yx 6∈ V (C). The
further transformation consists of two steps. First, replace all the positive occurences of x ∈ V+(C)
in the k-clauses k ≥ 3 by yx, for every x ∈ V+(C). Second, repair this modification of C denoted
as C ′ by adding the constraints yx ↔ x to C ′, again for every x ∈ V+(C). This amounts to the
new CNF formula

Ĉ := C ′ ∪
⋃

x∈V+(C)

{yx, x} ∪ {yx, x}

where we have used the simple equivalences yx ↔ x ≡ yx → x ∧ yx → x and a → b ≡ a ∨ b.
Because all positive literals in every k-clause of C with k ≥ 3 are removed we surely have Ĉ ∈
M− ∧ CNF(≤ 2) and by construction C ∈ SAT if and only if Ĉ ∈ SAT. Since we only introduced
at most |V (C)| new variables and the same number of new clauses, we spent only linear time for
our transformation, hence testing SAT for M− ∧ CNF(≤ 2) is NP-complete. The transformation
establishing NP-completeness of SAT for instances from M+ ∧ CNF(≤ 2) proceeds analogously,
thus we have proven (i).
Observe that

M− ∧ CNF(≤ 2) ⊂ H ∧ CNF(≤ 2) ⊂ Ĥ ∧ CNF(≤ 2)

from which also the NP-completeness for SAT restricted to H ∧ CNF(≤ 2) resp. Ĥ ∧ CNF(≤ 2)
can be deduced completing the proof. ut

Regarding claim (ii) of the lemma it is often not necessary to create for every x ∈ V+(C) a new
variable as indicated in the proof. A subset of V+(C), as small as possible, suffices to yield the
Horn part by the transformation and thus produces a smaller monotone part, which is crucial w.r.t.
running time of the algorithm described in the proof of Theorem 1 (s. below).
In the next section, we aim at providing a non-trivial exact deterministic algorithm for the classes
just considered. Particularly, for that it would be nice to know whether corresponding instances
can be recognized fast.

Lemma 4. For C ∈ CNF with n = |V (C)|, it can be recognized in time O(|C|n2) whether C ∈
L ∧ CNF(≤ 2), for L ∈ {Mε,H, Ĥ}.
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Proof. Whether C ∈ L ∧ CNF(≤ 2) for L ∈ {Mε,H} can be tested obviously in linear time.
For proving the remaining case, assume that C 6∈ H ∧ CNF(≤ 2) and let T ∈ CNF(= 2) be the
collection of all 2-clauses in C. It is well known that hidden Horn formulas are recognizable in
time O(n2|C|) [11]. We claim that (∗)C ∈ Ĥ ∧ CNF(≤ 2) if and only if C \ T ∈ Ĥ. Thus, we can
recognize whether C belongs to Ĥ ∧ CNF(≤ 2) in time O(n2|C \ T |) which is O(n2|C|) if T = ∅.
To verify (∗), suppose that C ′ := C \ T ∈ Ĥ, then there exists X ⊂ V (C ′) such that C ′[Xγ ] ∈ H.
On the other hand, for each Y ⊆ V (T ) we have always T [Y γ ] ∈ CNF(≤ 2) (particularly this is
true for the choice Y := X ∩ V (T ) which is the part of variables in X that also occur in T ). It
follows that C[Xγ ] = C ′[Xγ ] ∪ T [(X ∩ V (T ))γ ] ∈ H ∧ CNF(≤ 2), hence, C ∈ Ĥ ∧ CNF(≤ 2). For
proving the only if-part in (∗), let C ∈ Ĥ ∧ CNF(≤ 2) implying immediately C ′ ∈ Ĥ ∧ CNF(≤ 2).
But by definition C ′ contains no 2-clauses, hence C ′ ∈ Ĥ. ut

4 A SAT-algorithm for Mixed Horn Formulas

For an instance C ∈ H∧CNF(≤ 2), let P (C) ∈M+(= 2) be the collection of all positive monotone
2-clauses, which may also be the empty formula. Observe that C \ P (C) ∈ H. Since P := P (C)
is monotone and each of its clauses is a 2-clause the formula graph GP of P has exactly one edge
for each clause in P , i.e. GP = (V (P ), P ). Clearly P ∈ SAT, as it is a monotone formula. Every
model τ of P corresponds to some vertex cover X in GP consisting of all variables in V (P ) which
are set to 1 by τ , all other variables are free, i.e., D(τ) = X. Indeed, each clause c ∈ P intersects
τ−1(1), thus the edge in GP corresponding to c is covered by the variables in the intersection.
Now consider an instance C ∈ H ∧ CNF(≤ 2) and assume that P := P (C) ∈ M+(= 2) is not
the empty formula, otherwise C is Horn. Let C ′ := C \ P then C ′ ∈ H. Now, every model τ of
P defined on V (P ) leads to a Horn formula C ′[τ ] ∈ H, which can be checked for satisfiability in
linear time. Let us emphasize a useful observation:

Lemma 5. C = C ′∪P ∈ SAT∩[H∧CNF(≤ 2)] if and only if there is a model τ of P corresponding
to a minimal vertex cover in GP such that C ′[τ ] ∈ SAT.

Proof. Due to the discussion above it remains to show that indeed only models of P corresponding
to minimal vertex covers in GP are necessary to be considered. Suppose that C ∈ SAT∩H∧CNF(≤
2) and that σ is a model of C. Then also C ′ ∈ SAT and σP := σ|V (P ) is a model of P corresponding
to a vertex cover in GP . Observe that by restricting the domain of σP to those variables x ∈ V (P )
with σP (x) = 1 yields also a model τ of P with D(τ) = τ−1(1) since P is positive monotone. If
τ already corresponds to a minimal vertex cover in GP we are done. Otherwise, this vertex cover
contains a minimal vertex cover in GP corresponding to a truth assignment τ ′ being also a model
of P . By construction D(τ ′) = τ ′

−1(1) ⊂ σ−1(1) holds. Hence all assumptions of Lemma 1 are
satisfied yielding C ′[τ ′] ∈ SAT. The other direction is obvious. ut

Theorem 1. An instance C ∈ Ĥ ∧ CNF(≤ 2) can be tested for SAT in time O(20.5284n) where
n = |V (C)|.

Proof. We prove the theorem by providing an exact deterministic algorithm of the claimed time
bound. According to Lemma 4 an instance Ĉ ∈ Ĥ∧CNF(≤ 2) over n variables can be transformed
in time O(n2|C|) into an equivalent formula C ∈ H∧CNF(≤ 2). Because all steps of the following
algorithm dominate the amount of this transformation it is assumed that C ∈ H ∧CNF(≤ 2). We
can compute P := P (C), C ′ := C \ P and the formula graph GP = (V (P ), P ) of P in linear time
O(‖C‖) just by inspecting C. If P = ∅ we are done in linear time by Horn SAT. So let P 6= ∅.
By Lemma 5 testing whether C ∈ SAT means to check whether a minimal vertex cover Y in GP

defining the truth assignment τY (with D(τY ) = Y ⊆ V (P ), τY (y) = 1,∀y ∈ Y ) exists such that
C ′[τY ] ∈ SAT. Hence, an algorithm that enumerates, i.e. computes, all minimal vertex covers in
GP and that for each cover separately checks in linear time whether the remaining Horn formula
is satisfiable definitely performs the task of checking SAT for C. Clearly, the complement vertex
set of a minimal vertex cover in GP is a maximal independent set in GP . Thus, it suffices also
to compute all maximal independent sets. Fortunately, the algorithmic problem of computing all
maximal independent sets of an arbitrary graph with only polynomial time delay with respect to
the number of maximal independent sets has been solved by Johnson et al. [7]. Given an arbitrary
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simple graph G, it is a long standing result by Moon and Moser [13] that the number of its maximal
independent sets is upper bounded by 3

1
3 |V (G)| / 20.5284·|V (G)| which in fact is a tight bound in the

sense that there exist (extremal) graphs achieving the mentioned number of maximal independent
sets. By the way, these extremal graphs consist of n/3 copies of the K3, i.e., copies of isolated
triangles. To see this, simply observe that every triangle independently contributes three different
minimal vertex covers (resp. maximal independent sets).
By the preceding argumentation we deduce that an arbitrary instance C ∈ Ĥ∧CNF(≤ 2) is testable
for SAT in time O(p(n)3

n
3 ) where p denotes an appropriate polynomial arising by the polynomial

delay in computing the minimal vertex covers in GP and also incorporating the Horn SAT test for
each. By a simple base transformation and rounding up the corresponding exponential factor we
arrive at the claimed bound O(20.5284n) absorbing asymptotically the polynomial pre-factor. ut

For some subclasses of H ∧ CNF(≤ 2) we have slightly better bounds:

Proposition 1. Let C ∈ H ∧ CNF(≤ 2) with n = |V (C)| and let P (C) ∈ M+(= 2) be the
collection of all positive monotone 2-clauses in C with formula graph G := GP (C).
1.) There is a polynomial p so that C is testable for SAT in time O(p(n)2n/2) in either of the
following cases which can be recognized in linear time O(‖C‖):
(i) if G consists only of isolated edges,
(ii) if G is triangle-free (implying (i),(iii)),
(iii) if G is a forest,
(iv) if G is connected and contains at most one cycle.
2.) If G is a graph containing at most r ≥ 1 cycles and having at least 3r vertices, then C is
testable for SAT in time O(p(n)3r2

n−3r
2 ) for an appropriate polynomial p.

5 Relation to the Unrestricted SAT Problem

Let us now come to an observation telling us from another point of view that solving our problem
is closely related to the unrestricted SAT problem.

Theorem 2. Every instance C ∈ CNF can be transformed in linear time into a corresponding
instance Ĉ ∈ H ∧ CNF(≤ 2) so that Ĉ can be tested for SAT in time O(p(n)2n/2) where n :=
|V (Ĉ)| ≤ 2|V (C)| and p is an appropriate polynomial.

Proof. As defined above let P := P (C) be the collection of all positive monotone 2-clauses in the
arbitrary instance C ∈ CNF. First, assume that P = ∅. We proceed as in the proof of Lemma 3
and transform C into an instance Ĉ ∈M− ∧ CNF(≤ 2) by introducing a new variable yx 6∈ V (C)
for every variable x that occurs positive in a clause of length at least three in C and by replacing
the positive occurences of x in these clauses by yx. For every new variable yx we add the two clauses
{yx, x} and {yx, x} to the current formula resulting in Ĉ ∈M−∧CNF(≤ 2). Let P̂ := P (Ĉ) be the
collection of all positive monotone 2-clauses in Ĉ. We claim that GP̂ consists only of isolated edges
in the currently considered case P = ∅. Indeed, the only positive monotone 2-clauses appearing
in Ĉ are those produced during the transformation process and are of the form {yx, x}. Clearly x
and yx appear exactly once in P̂ , namely in that clause which thus holds for all variables in V (P ).
The claim follows by Lemma 2. Hence, by Proposition 1 (i) we obtain the assertion in this case.
In the remaining case where P 6= ∅, we simply extend the transformation process stated above also
to the clauses in P ⊆ C which now becomes a negative monotone formula containing new variables
only. Then the resulting formula Ĉ is obviously a member of M− ∧ CNF(≤ 2) and P̂ := P (Ĉ) is
of the same form as in the previous case so that the above argumentation shows the assertion also
for this case.
Since in either of the cases discussed above for every variable at most one new variable has been
introduced we have |V (Ĉ)| ≤ 2|V (C)| completing the proof. ut

Remark 1. By the last result we conclude that it will be probably very hard to improve on this
bound significantly, since otherwise SAT for an arbitrary C ∈ CNF (n := |V (C)|) could be solved
significantly faster than in 2n steps. Although, there has been made some progress recently in finding
non-trivial bounds for SAT in the unrestricted case [2] it seems to be hopeless to obtain upper bounds
of the form O(2(1−ε)n) for some constant ε > 0.
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Conjecture 1. If P 6= NP there is no ε > 0 such that SAT can be decided for instances in
H ∧ CNF(≤ 2) containing n variables in time O(2(1−ε)n/2).

Clearly, the number of introduced new variables necessary in order to transform C ∈ CNF into a
mixed Horn formula Ĉ ∈ H ∧ CNF(≤ 2) is crucial w.r.t. the running time of our algorithm stated
in the previous section. To minimize the number of such new variables one can proceed as follows:
For each c ∈ CNF that is not Horn, let c′ be its monotone positive part. Collecting these parts
yields a positive monotone formula C ′ ∈ M+. Note that it remains to make C ′ a Horn formula
with least effort. We have:

Lemma 6. A smallest set of variables X ⊂ V (C ′) for which new variables have to be introduced
in order to make C ′ Horn corresponds to a minimum vertex cover X of the formula graph GC′ of
C ′.

Proof. We have to show that a minimum vertex cover hits every clause c′ of C ′ in at least all
but one variable. c′ represents a complete subgraph K|c′| in GC′ . Since X is a vertex cover of C ′

it is also one for K|c′|. On the other hand, every vertex cover of a complete graph Kn obviously
contains at least n− 1 vertices. ut
Note that a minimum vertex cover in a graph with n vertices can be computed in time O(2n/4)
by the Robson algorithm [15] that finds a maximum independent set (complement of a minimum
vertex cover). Hence if |X| is smaller than |V (C)|, then our algorithm described in the proof of
Theorem 1 runs faster.
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