
Algorithms for Satisfiability using

Independent Sets of Variables

Ravi Gummadi1, N.S. Narayanaswamy⋆1, and Venkatakrishnan R2

1 Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai-600036, India.
gravi@peacock.iitm.ernet.in, swamy@shiva.iitm.ernet.in

2 Department of Information Technology,
Crescent Engineering College, Vandalur, Chennai-600048, India.

coolvenk@sancharnet.in

Abstract. An independent set of variables is one in which no two variables occur in the
same clause in a given instance of k-SAT. Instances of k-SAT with an independent set
of size i can be solved in time, within a polynomial factor of O(2n−i). In this paper we
present an algorithm for k-SAT based on a modification of the Satisfiability Coding Lemma.

Our algorithm runs with in a polynomial factor of 2(n−i)(1− 1
2k−2

), where i is the size of an
independent set. We also present a variant of Schöning’s randomized local-search algorithm
for k-SAT that runs in time which is with in a polynomial factor of (2k−3

k−1
)n−i.

1 Introduction

The Propositional Satisfiability Problem (SAT) is one of significant theoretical and practical in-
terest. Historically, SAT was the first problem to be proven NP-complete. No polynomial-time
algorithm for a k-SAT problem (k ≥ 3) is known, and no proof of its non-existence has been pro-
posed, leaving open the question of whether P = NP?. The Satisfiability problem has important
practical applications. For instance, in circuit design problems, a circuit that always produces an
output of 0, can be eliminated from a larger circuit. This would reduce the number of gates needed
to implement the circuit, thereby reducing cost. This problem naturally motivates the of question
whether a given formula is satisfiable. Further, all the problems in the class NP can be reduced
in polynomial-time to the Satisfiability problem. There are many practically important problems
in this class. Therefore, a fast algorithm for SAT can also help solve these problems efficiently.
However, the existence of polynomial-time algorithms for NP-complete problems is believed to
be unlikely. Consequently, current research on SAT is focused on obtaining non-trivial exponential
upper-bounds for SAT algorithms. For example, an algorithm running in O(2n/r), for instance,
with large r could prove useful in solving many practical problems. Current research on SAT is
focused on obtaining non-trivial exponential upper-bounds for SAT algorithms.

SAT algorithms are classified into Splitting algorithms and Local Search algorithms [DHIV01].
Splitting algorithms reduce the input formula into polynomially many formulae. The two families
of Splitting algorithms are DPLL-like algorithms and PPSZ-like algorithms. DPLL-like algorithms

[DP60,DLL62] replace the input formula F by two formulas F [x] and F [¬x]. This is done recur-
sively. Using this technique, Monien and Speckenmeyer [MS85] gave the first non-trivial upper
bounds for k-SAT. PPSZ-like algorithms [PPZ97,PPSZ98] use a different approach: variables are
assigned values in a random order in the hope that the value of many variables can be obtained
from the values of variables chosen prior to it. Local Search algorithms work by starting with an
initial assignment and modifying it to come closer to a satisfying assignment. If, after a certain
number of steps no satisfying assignment is found, the algorithm starts over with a new initial
assignment. This is done a certain number of times; if the algorithm does not find a satisfying as-
signment, it halts reporting ”Unsatisfiable”. Greedy algorithms [KP92] may be used to modify the
current assignment in Local Search algorithms. These algorithms change the current assignment
such that some function of the assignment increases as much as possible. Random walk algorithms

⋆ Partly Supported by DFG Grant No. Jo 291/2-1. Part of Work done when the author was at the Institut
Für Informatik, Oettingenstrasse 67, 80538, Munich, Germany.

Algorithms for Satisfiability using Independent Sets of Variables 57

[Pap91], on the other hand, modify the current assignment by flipping the value of a variable at
random from an unsatisfied clause. 2-SAT can be solved in expected polynomial-time by a random
walk algorithm [Pap91]. [Sch99] shows that k-SAT can be solved in time (2 − 2/k)n up to a poly-
nomial factor. From the literature [Sch99,PPZ97,PPSZ98], it is clear that the current asymptotic
performance of the local search algorithms is better than PPSZ-like algorithms.
Our Work and Results Our main motivation is to explore further directions towards improving
the performance of PPSZ-like algorithms. While the algorithm in [PPZ97] computes the values
of variables in a random order, shrinking the search space based on the formula, we observe that
variable sets which have a special property with respect to the formula naturally shrink the search
space. For example, if I is a set of variables in which no two of them occur in a clause, then the
values to the variables of I can be computed very easily given an assignment to the variables outside
I. Consequently, we could spend our effort on trying to find an assignment to variables outside I
that can be extended to variables of I to obtain a satisfying assignment for the formula. This is
precisely the approach of this paper, we first consider the brute force algorithm. We then modify
the Satisfiability Coding Lemma, and Schöning’s randomized algorithm to obtain an assignment
to variables outside I. While we have not obtained an improved algorithm in general, we observe
that our algorithms guarantee to be faster in the case when I is large enough in a given formula.
On the other hand, it is also quite easy to construct formulae in which I is very small in which
case the performance is the same as the algorithm in [PPZ97]. So the motivation for our work is
our conjecture that random satisfiable formulae have large independent sets. This is reiterated by
the benchmarks for satsolvers which have independent sets of size n

4 .
Independent set like structures in the formula have been used to obtain better algorithms for

3-sat. In particular, the paper by [SSWH02] uses a set of disjoint clauses to identify the initial
starting point of Schöning’s randomized algorithm [Sch99]. Indeed the disjoint clauses form an
independent set in the set of clauses. On the other hand, we use independent sets of variables in
our attempt to improve the performance of algorithms for k-sat based on the Satisfiability Coding
Lemma [PPZ97,PPSZ98].
Roadmap: Section 2 presents the preliminaries, the brute force algorithm in section 2.1. The
modified Satisfiability Coding Lemma is presented in section 3, and the random walk algorithm in
section 5. A discussion in section 6, and a construction of formulae with small independent sets in
section 6.1 concludes the paper.

2 Preliminaries

We have used the usual notions of k-sat problem. The reader is referred to [DHIV01] for this.
An Independent Set I in an instance F of k-SAT is a set of variables such that each clause

contains at most one element of the set. In this paper we consider independent sets that are
maximal with respect to inclusion. I denotes a fixed maximal independent set of cardinality i in
F . Given an assignment a′ to the variables of V − I, we can check whether it can be extended to
a satisfying assignment in polynomial time: when we substitute a′ into the formula, then we get a
product of literals. Every variable in this product is an element of I. Further, testing if a product
of literals is satisfiable is a trivial issue. An truth assignment to the variables of V − I is said to
be extensible if there is a truth assignment to the elements of I such that the resulting assignment
to {x1, . . . , xn} is a satisfying assignment. An assignment that cannot be extended to a satisfying
assignment is called a non-extensible assignment. An extensible assignment is said to be isolated

along a direction j, xj 6∈ I, if flipping the value of xj results in a non-extensible assignment.
Isolated Extensible Assignments For a truth assignment a, ai is said to be critical for a clause
C if the corresponding literal is the only true literal in C under the assignment a. Without loss
of generality, let us consider the variables of V − I to have indices from [n − i] = {1, . . . n − i}.
Further, for an assignment a′ to the variables outside I, F (a′) is a conjunction of literals from I.
Let b = b1 . . . bn−i be an extensible assignment that is isolated along directions indexed by the
elements of J ⊆ [n− i]. Let b′ be the assignment obtained by flipping br, r 6∈ J . b′ is non-extensible
for one of the following two reasons:
1. The formula is falsified by b′ as there is a clause with all its variables from V −I, and br is critical
for this clause. An assignment is said to be easy isolated along xr if this property is satisfied.
2. There exists an xl ∈ I, two clauses C1, C2 such that xl ∈ C1, xr,¬xl ∈ C2, and only xl occurs

58 Ravi Gummadi, N.S. Narayanaswamy, and Venkatakrishnan R

in F (b), but both xl and ¬xl occurs in F (b′). An assignment that is not easy isolated along xr is
said to be hard isolated along xr if this condition is satisfied. We refer to the two clauses C1 and
C2 as falsifying clauses for b along direction r. We refer to them as falsifying clauses, leaving out
b and r, when there is no ambiguity. Clearly, if an extensible assignment is hard isolated along xr,
there exist two falsifying clauses.

2.1 The Brute Force Approach

The idea is to find the largest independent set I, and search through all possible assignment to
V − I. If an assignment is extensible, we report that F is satisfiable, otherwise report unsatisfiable
when all assignment to V − I have been tried. This algorithm runs in O(2n−ipoly(|F |)). While
finding a large enough independent set is a problem by itself, we propose to use the maximum
independent set by using the algorithm due to Beigel [Bei99] that runs quite efficiently. The other
approach is to permute the vertices at random and consider the independent set obtained by
considering vertices all of whose neighbours occur to their left in the random permutation. This
approach yields an independent set whose expected size is n

∆+1 .

3 A Variant of Satisfiability Coding Lemma

In the section 2.1 we have observed a simple brute force algorithm that finds extensible solutions
given an independent set I. We now improve this brute force algorithm by modifying the satisfia-
bility coding lemma suitably. The approach that we take is similar to the approach in [PPZ97]. We
first consider the issue of encoding isolated extensible solutions and bound the expected length of
an encoding. We then show that this encoding process is reversible and it does prune our search
space yielding a randomized algorithm that performs better than the brute force approach in sec-
tion 2.1. However, this does not better the performance of [PPZ97] unless I is a sufficiently large
set.
Encoding: We consider the set of j-isolated extensible solutions for a fixed independent set of
variables I. Let x1, . . . , xn−i be the variables of V − I in a k-sat formula. Let σ be a permutation
on the set {1, . . . , n − i}. Let A = a1 . . . an−i be a binary string visualized as an assignment of ar

to xr, 1 ≤ r ≤ n − i. Let Aσ denote the string aσ(n−i)aσ(n−i−1) . . . aσ(1). In other words, Aσ is a
permutation of A, according to σ. From A and σ, we construct an encoding E(A, σ) as follows:

E(A, σ) is the empty string.

for(r = n − i; r ≥ 1; r −−)
begin

if A is NOT isolated along σ(r)
then add aσ(r) to E(A, σ).

else if A is isolated along σ(r)
AND all other variables in a critical clause for xσ(r)

occur to the left of xσ(r) in Aσ

OR the variables 6∈ I in two falsifying clauses occur to

the left of xσ(r) in Aσ

then do not add aσ(r) to E(A, σ).
end

The operation of adding a bit to E(A, σ) is equivalent to concatenating to the right end. The bits
of this string are assumed to be indexed from left to right starting with 1 for the leftmost bit, and
using consecutive indices. The output of the loop is E(A, σ). Another point of view on E(A, σ) is
that it is obtained from Aσ by deleting some bits which can be computed from previous information
in Aσ. Obviously, its length cannot exceed n − i.

Reconstruction: Given a k-sat formula F , an independent set I, a bit string E, and a permutation
σ, we find a bit string A such that E(A, σ) = E, if such an A exists. To obtain A we find
Aσ = aσ(n−i)aσ(n−i−1) . . . aσ(1). The bit string E is considered from the leftmost bit. Each bit of
E is assigned to at most one corresponding bit of Aσ. At each step the value of a bit of Aσ is
inferred. It is inferred either by substituting the previously computed bits into the formula, or the
current bit of E is assigned, and the current bit is modified to be the next bit in E.

Algorithms for Satisfiability using Independent Sets of Variables 59

Consider the case when Aσ has been computed up to the r + 1-th bit, n − i − 1 ≥ r ≥ 1. We
substitute this partial assignment into F and consider the resulting formula. There are three cases:
xσ(r) can be inferred from the previous values: This can happen in two ways. The first, when xσ(r)

occurs as a single literal. This means that there is a corresponding critical clause in which all other
literals have been set to 0. xσ(r) is set appropriately to make the literal true. The second case is
when a variable x ∈ I occurs as (x)(¬x ∨ y), where y is a literal of xσ(r). In this case the value
assigned to xσ(r) is inferred from the value that makes y true.
xσ(r) takes its value from E: This happens when xσ(r) does not satisfy either of the two conditions
mentioned above. In this case xσ(r) is to be assigned the current bit of E. If all the bits of E have
been used up then halt reporting failure. Otherwise, xσ(r) is assigned the current bit of E, and the
current bit is advanced to the next bit of E.
At each step of the reconstruction, we keep track of whether a variable and its complement occur
as single clauses. If this happens, we halt reporting failure. If Aσ is computed successfully, then it
means that we have found an extensible assignment.

3.1 Quality of the Encoding

Here we discuss the expected length of E(A, σ) when σ is chosen from a class of distributions on
Sn, the set of permutations of {1, . . . , n}. These distributions are characterized by γ and satisfy
the following property

| Prπ∈F (min{π(X)} = π(x)) −
1

|X|
|≤

γ

|X|
(1)

Here π(X) is the image of the set X under a permutation π. Clearly, the required probability is
1

|X| when π is chosen uniformly from the set of all permutations. The goal of identifying a smaller

family of permutations that guarantee this property is well motivated and is studied by Charikar
et. al in [MBFM00].
σ chosen from Dγ: We now compute the average length of E(A, σ) averaged over all σ ∈ Dγ .
Clearly, the only directions that get eliminated are those along which A is either easy isolated or
hard isolated. Let us assume that A is an extensible solution, easy isolated along je directions, and
hard isolated along jh directions. For a direction r along which A is easy isolated, we lower bound
the probability that ar is eliminated in the encoding of A with a randomly chosen permutation.
Since A is easy isolated along r, there is a corresponding critical clause all of whose variables are
from V − I. ar will be eliminated if all the k − 1 literals in the critical clause occur to the left in a
randomly chosen permutation. This event happens with probability at least 1−γ

k . It follows from
the linearity of expectation that, for an A which is easy isolated along je directions, the expected

number of variables eliminated is at least je(1−γ)
k . Similarly a direction r, along which A is hard

isolated, will be eliminated if all the variables belonging to V − I from corresponding falsifying
clauses occur to the left of xr in a randomly chosen permutation. The number of such variables
from two falsifying clauses is at most 2k − 3. Consequently, this event happens with probability
at least 1−γ

2k−2 . By linearity of expectation, the expected number of hard isolated directions that

get eliminated is at least jh(1−γ)
2k−2 . Therefore, the expected value of E(A, σ) is at most n− i− (1−

γ)(je

k + jh

2k−2).
Existence of a Good Permutation: We now use the above argument to show that there is a
permutation σ ∈ Dγ for which the average length E(A, σ), over all extensible solutions A isolated
along j = je + jh directions, is upper bounded by n − i− (1− γ)(je

k + jh

2k−2). For this we consider
the following average,

∑

σ

Dγ(σ)
∑

A∈J

1

|J |
E(A, σ) =

∑

A∈J

1

|J |

∑

σ

Dγ(σ)E(A, σ) (2)

This is upper bounded by n− i− (1−γ)(je

k + jh

2k−2) since we know from the above calculation that
∑

σ Dγ(σ)E(A, σ) ≤ n − i − (1 − γ)(je

k + jh

2k−2). It now follows by the pigeon hole principle that

for some σ,
∑

A∈J
1
|J|E(A, σ) ≤ n− i− (1− γ)(je

k + jh

2k−2). We state these bounds in the following

theorem.

60 Ravi Gummadi, N.S. Narayanaswamy, and Venkatakrishnan R

Theorem 1. Let A be an extensible solution which is easy isolated along je directions, and hard

isolated along jh directions. The expected value of E(A, σ) is at most n − i − (1 − γ)(je

k + jh

2k−2).
Consequently, for J , the set of extensible solutions, easy isolated along j directions,there is a per-

mutation σ ∈ Dγ such that
∑

A∈J
1
|J|E(A, σ) ≤ n− i− (1− γ)(je

k + jh

2k−2). Here i is the size of an

independent set I.

4 Algorithm to find satisfying assignments

For a k-CNF |F | with an independent set I, we use the result in Theorem 1 to design a randomized
algorithm. Further, we set γ = 0, that is we use a family of permutations that guarantees exact
min-wise independence. From now on, γ = 0. The effectiveness of this algorithm over the one
presented in [PPZ97] depends on how large an independent set there is in the formula, and how
much time is needed to find a reasonably large independent set. The algorithm that we present
here, is quite similar to the randomized algorithm presented in [PPZ97]. In the description below,
the word forced is a property of a variable whose value is determined by the values the previous
variables. For example, a variable xr is forced if it occurs as a single literal in F (a1, . . . , ar−1).
Here a1, . . . , ar−1 are the assignments to the variables x1, . . . , xr−1, respectively. xr could also be
forced if two falsifying clauses occur in F (a1, . . . , ar−1).

Find an independent set I

Repeat n22(n−i)(1− 1
2k−2) times

While there is an unassigned variable in V − I
select an unassigned variable y from V − I at random

If y is forced, then set y as per the forcing

Else set y to true or false at random

end while

If the assignment can be extended

then output the satisfying assignment

End Repeat

We state the following lemma, a special case of the isoperimetric inequality, which is used to prove
our main theorem. We present a complete proof here.

Lemma 1. Let S ⊆ {0, 1}n, be a non-empty set. For x ∈ S, define In(x) be the number of distance-

1 neighbours of x that are not in S. Define value(x) = 2(In(x)−n). Let Then, Σx∈Svalue(x) ≥ 1.

Proof. The proof is by induction on n. The base case is when n = 1. If I1(x) = 0, then we observe
that Σx∈Svalue(x) = 1. If I1(x) = 1, Σx∈Svalue(x) = 1. For n > 1, and i ∈ {0, 1}, let Si be a
subset of {0, 1}n−1 such that for each x ∈ Si, xi ∈ S. Now we consider two cases:
Case I: If one of the two sets is empty, then we have a direction along which each element of
S is isolated. Let us consider S′ to be a subset of {0, 1}n−1 obtained by projecting along the
rightmost bit. By induction, Σx∈S′value(x) ≥ 1. That is, Σx∈S′2In−1(x)−(n−1) ≥ 1. Clearly, the
number of directions along which an x ∈ S is isolated in {0, 1}n is one more than the number of
directions along which it’s projection(along the rightmost bit) is isolated in {0, 1}n−1. Consequently,
Σx∈S′2In−1(x)+1−(n−1) is exactly Σx∈S2In(x)−n. Hence the induction hypothesis is proved in this
case.
Case II: If both Si are non-empty. Then, by induction, Σx∈Si

value(x) ≥ 1. Observe that, here
value(x) is defined with respect to Si, for each i. Due of the induction hypothesis,

2 ≤ Σx∈S0
2In−1(x)−(n−1) + Σx∈S1

2In−1(x)−(n−1)

≤ 2Σx∈S0
2In(x0)−n + 2Σx∈S1

2In(x1)−n (3)

= 2Σx∈S2In(x)−n

The equation 3 follows from the previous equation due to the fact that In−1(x) ≤ In(xi), i ∈ {0, 1}.
The induction hypothesis holds in this case too, and hence the lemma is proved. ⊓⊔

The following theorem is proved using the lemma 1 along the lines of a similar theorem in [PPZ97].

Algorithms for Satisfiability using Independent Sets of Variables 61

Theorem 2. Let I be an independent set of variables in F , a satisfiable instance of k-SAT. The

randomized algorithm in section 4 finds a satisfying assignment with very high probability is time

O(n2|F |2(n−i)(1− 1
2k−2)).

Proof. Let S denote the set of extensible assignments. Let us assume that x is a j-isolated extensible
solution of F . Among these let je(x) and jh(x) be easy and hard isolated directions, respectively.
The probability that x is output by the algorithm is the sum over all d ≥ 0, probability that for
a randomly chosen permutation, d directions are forced, and the remaining directions are chosen
correctly. This is at least the probability that for a randomly chosen permutation, at least je

k + jh

2k−2

directions are forced, and the remaining directions are guessed correctly. Recall that je

k + jh

2k−2 is a
lower bound expected number of directions that are eliminated by the process of encoding x. The
probability of finding x is dependent on two events, one is to find a permutation that eliminates
je

k + jh

2k−2 directions, and the second is to make the correct choices on the remaining values. We
now lower bound this probability by estimating the probability of finding a right permutation, and
then conditioned on this event, estimate the probability of making the correct choices.
Probability of finding a right permutation: Recall that a right permutation is one using which the
process of encoding x eliminates at least je

k + jh

2k−2 directions. We can now partition the permutation

into the following sets: for r < je

k + jh

2k−2 , Pr consists of those permutation that eliminate r variables,

and Pav consists of those permutations that eliminate at least je

k + jh

2k−2 variables. The number of
sets in this partition is at most n− i. Therefore, by the pigeon hole principle, one of these sets must
have at least 1

n−i of the permutations. Following the argument in [PPZ97], Pav has at least 1
n−i of

the permutations. Therefore, the probability of picking the right permutation is at least 1
n−i > 1

n .
Probability of making the right choices on the unforced bits: Conditioned on the fact that a right
permutation is chosen, we now estimate the probability that the right choices are made on the
unforced bits so that we get x. The number of unforced bits is at most n − i − je

k − jh

2k−2 . The

probability of making the correct choices is at least 2−(n−i− je
k
−

jh
2k−2).

Therefore, the probability of picking x is at least 1
n2−(n−i− je

k
−

jh
2k−2). The probability that the

algorithm outputs some solution of F is given by the following:

Σx∈S Pr(x is output) ≥ Σx∈S
1

n
2−(n−i−

je(x)
k

−
jh(x)

2k−2)

≥
1

n
2−(n−i)(1− 1

2k−2)Σx∈S2−(n−i)+I(x)

≥
1

n
2−(n−i)(1− 1

2k−2) (4)

The last inequality follows from Lemma 1. The repetition of the while loop n22(n−i)(1− 1
2k−2)

increases the probability of finding a satisfying assignment to a constant. Hence the theorem is
proved. ⊓⊔

Comparison with the randomized algorithm in [PPZ97]: The randomized algorithm pre-

sented in [PPZ97] has a running time of O(n2|F |2n−n/k), and ours runs in O(n2|F |2(n−i)(1− 1
2k−2)).

Our algorithm does better than the algorithm in [PPZ97] when (n− i)(1− 1
2k−2) ≤ n(1− 1

k). This

happens when i ≥ n(k−2)
k(2k−3) . For k = 3, our algorithm does better when i ≥ n/9.

5 Extensible Solutions via Local Search

In this section, we analyze a modification of Schöning’s local search algorithm to find an extensible
solution. As usual, let I denote an independent set of cardinality i. The algorithm is as follows:
Let I be a maximal independent set of variables. Let |I| = i
for numtries TIMES

select a random partial assignment a ∈ {0, 1}n−i

repeat 3n times

Consider F (a) by substituting partial assignment a.

62 Ravi Gummadi, N.S. Narayanaswamy, and Venkatakrishnan R

if (C(a) = 0 for some C ∈ F)

Randomly, flip the value of one of the literals from C
else if (C1(a) = x and C2(a) = ¬x for C1, C2 ∈ F, x ∈ I)

Randomly, flip one of the variables from C1 ∪ C2 − x
else

Extend a to a satisfying assignment s of F; return s;
endrepeat

endfor

return ’unsatisfiable’

Let a∗ be an extensible assignment. We lower bound the probability that the above algorithm
finds a∗, or some other extensible assignment. Let a ∈ {0, 1}n−i be the initial random assignment,
at a hamming distance of j. To analyze the algorithm, we consider a walk on a Markov Chain,
whose states are labelled {0, 1, 2, ..., n−i}. Each state represents the hamming distance between the
current assignment and a∗. Initially, the walk starts at state j. We now observe that at each step of
the algorithm, the probability of moving one step closer to the state 0 is at least 1

2k−2 . This is easy
to see, as we know that if a is not extensible, then either there is a clause C, var(C) ⊆ V − I, such
that C(a) = 0, or there is an x ∈ I, and two clauses C1, C2 such that C1(a) = x and C2(a) = ¬x.
In the former case, the algorithm moves to an assignment with a lesser hamming distance from
a∗ with probability at least 1

k , and in the latter, with probability at least 1
2k−2 . The reasoning is

that the values assigned to the variables in C by a and a∗ have to differ at atleast one variable.
Similarly, the values assigned to variables in C1 ∪ C2 − x by a and a∗ must differ at atleast one
variable. Consequently, the size of C and C1∪C2−x give the claimed probabilities. The probability

1/4 3/4
n−ij j+10 j−1

Fig. 1. Random Walk: Analysis of Local Search with Independent Set for 3-SAT

of finding a∗ from chosen a (hamming distance between a and a∗ is j) in one iteration of the outer
loop is at least the probability that the process moves from state j to state 0. This probability,
denoted by qj , is at least (1

2k−3)j . See [Sch99] for the derivation of this probability. Further, the

success probability for one iteration of the outer loop is p ≥ (1
2)n−i

∑n−i
j=0 C(n − i, j)(1

2k−3)j

= (1
2 (1 + 1

2k−3))n−i. For k = 3, if the size of the independent set is large (i ≥ 0.3n), then the
algorithm works better than Schöning’s randomized algorithm.

6 Discussion

In this paper, we have introduced the notion of an independent set of variables and use maximum
independent sets in algorithms to solve k-SAT. The problem of finding a maximum independent set
is a terribly hard problem, even to approximate, in polynomial time. However, when we permit ex-
ponential running time, finding a maximum independent set in an undirected graph has a provably
better running time than the best known algorithms for k-sat. The algorithm to find a maximum
independent set due to [Bei99] runs in time 2.290n which is approximately 1.2226n. On the other
hand, one of the best algorithms for 3-sat is randomized and runs in time 1.3302n [SSWH02].
Based on this observation, our approach spends some of the exponential time finding a maximum
independent set, and then uses it to find a satisfying assignment. This approach is faster than
[PPZ97,Sch99,SSWH02] only if the maximum independent set is sufficiently large. While there are
formulae with very small independent sets, as we show below, an important direction of research
is to explore the size of independent sets in random satisfiable formulae.

6.1 Formulae with small Independent Sets

Here we construct formulae which have a small maximum independent set, and the number of
clauses is also small, contradicting the intuition that small number of clauses mean large inde-

Algorithms for Satisfiability using Independent Sets of Variables 63

pendent sets. Consider the following construction for a formula with n variables, and a parameter
1 ≤ b ≤ n:

Step 1: Partition the variables into sets of b variables. There are n/b such sets.
Step 2: For each set of b variables, construct

(

b
3

)

clauses made up of variables of same parity.

This formula is trivially satisfiable. The formula has
(

b
3

)

n
b clauses, and the size of any independent

set is n
b . The following table shows the sample values for different values of b.

b no. of clauses ind. set size
9 9.3n n

9

8 7n n
8

6 3.3n n
6

Acknowledgements: The second author would like to thank Jan Johannsen for discussions on
SAT algorithms.

References

[Bei99] R. Beigel, Finding Maximum Independent Sets in Sparse and General Graphs, Proceedings of the
10th Annual ACM-SIAM Symposium on Discrete Algorithms, 1999.

[DHIV01] E. Dantsin, E.A. Hirsch, S. Ivanov, M. Vsemirnov. Algorithms for SAT and Upper Bounds on

their Complexity. Electronic Colloquium on Computational Complexity, Report No.12, 2001.
[DLL62] M.Davis, G. Logemann, D. Loveland, A machine program for theorem-proving, Communications

of the ACM 5(7) (1962), 394-397.
[DP60] M.Davis, H. Putnam, A computing procedure for quantification theory, Journal of the ACM 7(3)

(1960), 201-215.
[KP92] E. Koutsoupias, C.H. Papadimitriou, On the Greedy algorithm for Satisfiability,Information Pro-

cessing Letters 43(1) (1992), 53-55.
[MBFM00] A. Z. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent permuta-

tions, In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,
1998, pages 327–336, 1998.

[MS85] B. Monien, E. Speckenmeyer, Solving Satisfiability in less than 2n steps, Discrete Applied Math-
ematics 10 (1985), 287-295.

[Pap91] C.H. Papadimitriou, On selecting a satisfying truth assignment, Proceedings of FOCS’91, 1991,
163-169.

[PPSZ98] R. Paturi, P. Pudlák, M.E. Saks, F. Zane, An improved exponential-time algorithm for k-SAT,
Proceedings of FOCS’98, 1998, 628-637.

[PPZ97] R. Paturi, P. Pudlák, F. Zane, Satisfiability Coding Lemma, Proceedings of FOCS’97, 1997, 566-
574.

[Sch99] U. Schöning, A probabilistic algorithm for k-SAT and constraint satisfaction problems, Proceedings
of FOCS’99, 1999, 410-414.

[SSWH02] T. Hofmeister, U. Schöning, R. Schuler, O. Watanabe, A Probabilistic 3-SAT Algorithm Further

Improved, Proceedings of STACS’02, 2002, LNCS 2285:193-202.

