[1]
|
Integrated application of morphological, anatomical, biochemical and physico-chemical methods to identify superior, lignocellulosic grass feedstocks for bioenergy purposes
Renewable and Sustainable Energy Reviews,
2023
DOI:10.1016/j.rser.2023.113738
|
|
|
[2]
|
A Sampling Strategy to Develop a Primary Core Collection of Miscanthus spp. in China Based on Phenotypic Traits
Agronomy,
2022
DOI:10.3390/agronomy12030678
|
|
|
[3]
|
A Sampling Strategy to Develop a Primary Core Collection of Miscanthus spp. in China Based on Phenotypic Traits
Agronomy,
2022
DOI:10.3390/agronomy12030678
|
|
|
[4]
|
Studying polymorphism through ISSR markers of the genus Miscanthus and Salix bioenergy cultures representatives
Agrobìologìâ,
2021
DOI:10.33245/2310-9270-2021-167-2-7-14
|
|
|
[5]
|
Studying polymorphism through ISSR markers of the genus Miscanthus and Salix bioenergy cultures representatives
Agrobìologìâ,
2021
DOI:10.33245/2310-9270-2021-167-2-7-14
|
|
|
[6]
|
Studying polymorphism through ISSR markers of the genus Miscanthus and Salix bioenergy cultures representatives
Agrobìologìâ,
2021
DOI:10.33245/2310-9270-2021-167-2-7-14
|
|
|
[7]
|
On the issue of assessing the thermal resources of the growing season for the cultivation of ornamental cereals and sedges
Agrarian science,
2021
DOI:10.32634/0869-8155-2021-349-5-60-63
|
|
|
[8]
|
Pretreatments of Non-Woody Cellulosic Feedstocks for Bacterial Cellulose Synthesis
Polymers,
2019
DOI:10.3390/polym11101645
|
|
|
[9]
|
Pretreatments of Non-Woody Cellulosic Feedstocks for Bacterial Cellulose Synthesis
Polymers,
2019
DOI:10.3390/polym11101645
|
|
|
[10]
|
A quantitative method for determination of PPDK concentration in miscanthus leaves
GCB Bioenergy,
2017
DOI:10.1111/gcbb.12361
|
|
|
[11]
|
A quantitative method for determination of PPDK concentration in miscanthus leaves
GCB Bioenergy,
2017
DOI:10.1111/gcbb.12361
|
|
|
[12]
|
Enzyme kinetics of cellulose hydrolysis of Miscanthus and oat hulls
3 Biotech,
2017
DOI:10.1007/s13205-017-0964-6
|
|
|
[13]
|
Chemical composition of five Miscanthus sinensis harvests and nitric-acid cellulose therefrom
Industrial Crops and Products,
2017
DOI:10.1016/j.indcrop.2017.08.026
|
|
|
[14]
|
Perennial Biomass Crops for a Resource-Constrained World
2016
DOI:10.1007/978-3-319-44530-4_6
|
|
|
[15]
|
Enzymatic Hydrolysis of Hydrotropic Pulps at Different Substrate Loadings
Applied Biochemistry and Biotechnology,
2016
DOI:10.1007/s12010-015-1938-y
|
|
|
[16]
|
In vitro-propagated Miscanthus × giganteus plants can be a source of diversity in terms of their chemical composition
Biomass and Bioenergy,
2015
DOI:10.1016/j.biombioe.2015.02.009
|
|
|
[17]
|
Integrated Flowsheet for Conversion of Non-Woody Biomass into Polyfunctional Materials
Key Engineering Materials,
2015
DOI:10.4028/www.scientific.net/KEM.670.202
|
|
|
[18]
|
Tolerance of Miscanthus×giganteus to salinity depends on initial weight of rhizomes as well as high accumulation of potassium and proline in leaves
Industrial Crops and Products,
2014
DOI:10.1016/j.indcrop.2013.10.041
|
|
|
[19]
|
Enzymatic hydrolysis of the products of hydro-thermobaric processing of Miscanthus and oat hulls
Catalysis in Industry,
2013
DOI:10.1134/S207005041304003X
|
|
|