[1]
|
Agrobacterium Transformation of Tea Plants (Camellia sinensis (L.) KUNTZE): A Small Experiment with Great Prospects
Plants,
2024
DOI:10.3390/plants13050675
|
|
|
[2]
|
Response of autumn sown black gram as influenced by cobalt, potassium and boron nutrition under Indian subtropics
Journal of Plant Nutrition,
2023
DOI:10.1080/01904167.2023.2237518
|
|
|
[3]
|
Drought stress tolerance in rice: advances in physiology and genetics research
Plant Physiology Reports,
2023
DOI:10.1007/s40502-023-00743-7
|
|
|
[4]
|
Kuraklık stresi altında yetişen domatesin makro-mikro element ve antioksidan içeriğine yapraktan uygulanan potasyumlu gübrelerin etkisi
Harran Tarım ve Gıda Bilimleri Dergisi,
2023
DOI:10.29050/harranziraat.1214740
|
|
|
[5]
|
Kuraklık stresi altında yetişen domatesin makro-mikro element ve antioksidan içeriğine yapraktan uygulanan potasyumlu gübrelerin etkisi
Harran Tarım ve Gıda Bilimleri Dergisi,
2023
DOI:10.29050/harranziraat.1214740
|
|
|
[6]
|
Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding
Frontiers in Plant Science,
2023
DOI:10.3389/fpls.2023.1215371
|
|
|
[7]
|
Response of autumn sown black gram as influenced by cobalt, potassium and boron nutrition under Indian subtropics
Journal of Plant Nutrition,
2023
DOI:10.1080/01904167.2023.2237518
|
|
|
[8]
|
Effects of exogenous calcium on the drought response of the tea plant (Camellia sinensis (L.) Kuntze)
PeerJ,
2022
DOI:10.7717/peerj.13997
|
|
|
[9]
|
Dynamic changes in metabolic and lipidomic profiles of tea plants during drought stress and re-watering
Frontiers in Plant Science,
2022
DOI:10.3389/fpls.2022.978531
|
|
|
[10]
|
Calcium induced growth, physio-biochemical, antioxidant, osmolyte adjustments and phytoconstituent status in spinach under heat stress
South African Journal of Botany,
2022
DOI:10.1016/j.sajb.2022.06.065
|
|
|
[11]
|
Hyperspectral machine-learning model for screening tea germplasm resources with drought tolerance
Frontiers in Plant Science,
2022
DOI:10.3389/fpls.2022.1048442
|
|
|
[12]
|
Calcium induced growth, physio-biochemical, antioxidant, osmolyte adjustments and phytoconstituent status in spinach under heat stress
South African Journal of Botany,
2022
DOI:10.1016/j.sajb.2022.06.065
|
|
|
[13]
|
Calcium induced growth, physio-biochemical, antioxidant, osmolyte adjustments and phytoconstituent status in spinach under heat stress
South African Journal of Botany,
2022
DOI:10.1016/j.sajb.2022.06.065
|
|
|
[14]
|
A Leaf Disc Assay for Evaluating the Response of Tea (Camellia sinensis) to PEG-Induced Osmotic Stress and Protective Effects of Azoxystrobin against Drought
Plants,
2021
DOI:10.3390/plants10030546
|
|
|
[15]
|
Characterization of AhLea-3 and its enhancement of salt tolerance in transgenic peanut plants
Electronic Journal of Biotechnology,
2021
DOI:10.1016/j.ejbt.2020.10.006
|
|
|
[16]
|
A Leaf Disc Assay for Evaluating the Response of Tea (Camellia sinensis) to PEG-Induced Osmotic Stress and Protective Effects of Azoxystrobin against Drought
Plants,
2021
DOI:10.3390/plants10030546
|
|
|
[17]
|
Cotton Precision Breeding
2021
DOI:10.1007/978-3-030-64504-5_6
|
|
|
[18]
|
Higher ROS scavenging ability and plasma membrane H
+
‐ATPase activity are associated with potassium retention in drought tolerant tea plants
Journal of Plant Nutrition and Soil Science,
2020
DOI:10.1002/jpln.202000007
|
|
|
[19]
|
Agronomic Crops
2020
DOI:10.1007/978-981-15-0025-1_8
|
|
|
[20]
|
Tea: Genome and Genetics
2020
DOI:10.1007/978-981-15-8868-6_7
|
|
|
[21]
|
Higher ROS scavenging ability and plasma membrane H+‐ATPase activity are associated with potassium retention in drought tolerant tea plants
Journal of Plant Nutrition and Soil Science,
2020
DOI:10.1002/jpln.202000007
|
|
|
[22]
|
Physiological and growth responses of two dogwoods to short-term drought stress and re-watering
Acta Ecologica Sinica,
2019
DOI:10.1016/j.chnaes.2019.05.001
|
|
|
[23]
|
Advances in Rice Research for Abiotic Stress Tolerance
2019
DOI:10.1016/B978-0-12-814332-2.00009-5
|
|
|
[24]
|
Influence of water limitation on the competitive interaction between two Cerrado species and the invasive grass Brachiaria brizantha cv. Piatã
Plant Physiology and Biochemistry,
2019
DOI:10.1016/j.plaphy.2018.12.002
|
|
|
[25]
|
Stress Physiology of Tea in the Face of Climate Change
2018
DOI:10.1007/978-981-13-2140-5_13
|
|
|
[26]
|
Stress Physiology of Tea in the Face of Climate Change
2018
DOI:10.1007/978-981-13-2140-5_9
|
|
|
[27]
|
Maintenance of mesophyll potassium and regulation of plasma membrane H + -ATPase are associated with physiological responses of tea plants to drought and subsequent rehydration
The Crop Journal,
2018
DOI:10.1016/j.cj.2018.06.001
|
|
|
[28]
|
Nitrogen fertility and abiotic stresses management in cotton crop: a review
Environmental Science and Pollution Research,
2017
DOI:10.1007/s11356-017-8920-x
|
|
|
[29]
|
Essential Plant Nutrients
2017
DOI:10.1007/978-3-319-58841-4_10
|
|
|
[30]
|
Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review
Plant Cell Reports,
2016
DOI:10.1007/s00299-015-1884-8
|
|
|
[31]
|
Water Stress and Crop Plants
2016
DOI:10.1002/9781119054450.ch37
|
|
|
[32]
|
Proteomic analysis of soybean root including hypocotyl during recovery from drought stress
Journal of Proteomics,
2016
DOI:10.1016/j.jprot.2016.06.006
|
|
|
[33]
|
Water Stress and Crop Plants
2016
DOI:10.1002/9781119054450.ch37
|
|
|
[34]
|
Breeding and Biotechnology of Tea and its Wild Species
2014
DOI:10.1007/978-81-322-1704-6_7
|
|
|
[35]
|
Breeding and Biotechnology of Tea and its Wild Species
2014
DOI:10.1007/978-81-322-1704-6_7
|
|
|
[36]
|
ABIOTIC STRESS RESPONSES IN TEA [Camellia sinensis L (O) Kuntze]: AN OVERVIEW
Reviews in Agricultural Science,
2013
DOI:10.7831/ras.1.1
|
|
|