[1]
|
Determination of germination characteristics and salinity and drought tolerances of Mountain Swan (Atriplex nitens Schkuhr)
Mediterranean Agricultural Sciences,
2024
DOI:10.29136/mediterranean.1387536
|
|
|
[2]
|
Determination of germination characteristics and salinity and drought tolerances of Mountain Swan (Atriplex nitens Schkuhr)
Mediterranean Agricultural Sciences,
2024
DOI:10.29136/mediterranean.1387536
|
|
|
[3]
|
The Drought Tolerance Function and Tanscriptional Regulation of GhAPX7 in Gossypium hirsutum
Plants,
2024
DOI:10.3390/plants13152032
|
|
|
[4]
|
Molecular mechanisms regulating glucose metabolism in quinoa (Chenopodium quinoa Willd.) seeds under drought stress
BMC Plant Biology,
2024
DOI:10.1186/s12870-024-05510-w
|
|
|
[5]
|
Whole Transcriptome Sequencing Reveals Drought Resistance-Related Genes in Upland Cotton
Genes,
2022
DOI:10.3390/genes13071159
|
|
|
[6]
|
Morphological and Physiological Traits Associated with Yield under Reduced Irrigation in Chilean Coastal Lowland Quinoa
Plants,
2022
DOI:10.3390/plants11030323
|
|
|
[7]
|
Transcriptional Regulation of Quinoa Seed Quality: Identification of Novel Candidate Genetic Markers for Increased Protein Content
Frontiers in Plant Science,
2022
DOI:10.3389/fpls.2022.816425
|
|
|
[8]
|
Climate Change and Crop Stress
2022
DOI:10.1016/B978-0-12-816091-6.00009-2
|
|
|
[9]
|
Morphological and Physiological Traits Associated with Yield under Reduced Irrigation in Chilean Coastal Lowland Quinoa
Plants,
2022
DOI:10.3390/plants11030323
|
|
|
[10]
|
Abiotic stress-related genes governing signal transduction cascades in wild plants with emphasis to those in Hordeum spontaneum
Journal of Plant Biochemistry and Biotechnology,
2022
DOI:10.1007/s13562-021-00660-6
|
|
|
[11]
|
Whole Transcriptome Sequencing Reveals Drought Resistance-Related Genes in Upland Cotton
Genes,
2022
DOI:10.3390/genes13071159
|
|
|
[12]
|
Sustainable Remedies for Abiotic Stress in Cereals
2022
DOI:10.1007/978-981-19-5121-3_10
|
|
|
[13]
|
The Quinoa Genome
Compendium of Plant Genomes,
2021
DOI:10.1007/978-3-030-65237-1_9
|
|
|
[14]
|
The Quinoa Genome
Compendium of Plant Genomes,
2021
DOI:10.1007/978-3-030-65237-1_7
|
|
|
[15]
|
Agricultural Biotechnology: Latest Research and Trends
2021
DOI:10.1007/978-981-16-2339-4_26
|
|
|
[16]
|
Agricultural Biotechnology: Latest Research and Trends
2021
DOI:10.1007/978-981-16-2339-4_26
|
|
|
[17]
|
Farklı Sulama Seviyelerinin Bazı Kinoa (Chenopodium quinoa Willd.) Çeşitlerinde Kök ve Sürgün Gelişmesine Etkileri
Journal of the Institute of Science and Technology,
2021
DOI:10.21597/jist.937385
|
|
|
[18]
|
Millets and Pseudo Cereals
2021
DOI:10.1016/B978-0-12-820089-6.00006-9
|
|
|
[19]
|
The Quinoa Genome
Compendium of Plant Genomes,
2021
DOI:10.1007/978-3-030-65237-1_9
|
|
|
[20]
|
Response of bitter and sweet Chenopodium quinoa varieties to cucumber mosaic virus: Transcriptome and small RNASeq perspective
PLOS ONE,
2021
DOI:10.1371/journal.pone.0244364
|
|
|
[21]
|
The Quinoa Genome
Compendium of Plant Genomes,
2021
DOI:10.1007/978-3-030-65237-1_7
|
|
|
[22]
|
Identification of genome sequences of novel partitiviruses in the quinoa (Chenopodium quinoa) transcriptome datasets
Journal of General Plant Pathology,
2021
DOI:10.1007/s10327-021-01002-z
|
|
|
[23]
|
Transcriptome and proteome analyses of the molecular mechanisms underlying changes in oil storage under drought stress in
Brassica napus
L.
GCB Bioenergy,
2021
DOI:10.1111/gcbb.12833
|
|
|
[24]
|
Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants
Frontiers in Plant Science,
2021
DOI:10.3389/fpls.2021.670369
|
|
|
[25]
|
Farklı Sulama Seviyelerinin Bazı Kinoa (Chenopodium quinoa Willd.) Çeşitlerinde Kök ve Sürgün Gelişmesine Etkileri
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi,
2021
DOI:10.21597/jist.937385
|
|
|
[26]
|
Healthy and Resilient Cereals and Pseudo-Cereals for Marginal Agriculture: Molecular Advances for Improving Nutrient Bioavailability
Frontiers in Genetics,
2020
DOI:10.3389/fgene.2020.00049
|
|
|
[27]
|
Impact of heat and drought stress on peroxisome proliferation in quinoa
The Plant Journal,
2019
DOI:10.1111/tpj.14411
|
|
|
[28]
|
Quinoa: In Perspective of Global Challenges
Agronomy,
2019
DOI:10.3390/agronomy9040176
|
|
|
[29]
|
RNA-seq Analysis of Salt-Stressed Versus Non Salt-Stressed Transcriptomes of Chenopodium quinoa Landrace R49
Genes,
2019
DOI:10.3390/genes10121042
|
|
|
[30]
|
Recent Approaches in Omics for Plant Resilience to Climate Change
2019
DOI:10.1007/978-3-030-21687-0_1
|
|
|
[31]
|
Impact of heat and drought stress on peroxisome proliferation in quinoa
The Plant Journal,
2019
DOI:10.1111/tpj.14411
|
|
|
[32]
|
Advances in Plant Breeding Strategies: Cereals
2019
DOI:10.1007/978-3-030-23108-8_7
|
|
|
[33]
|
RNA-seq Analysis of Salt-Stressed Versus Non Salt-Stressed Transcriptomes of Chenopodium quinoa Landrace R49
Genes,
2019
DOI:10.3390/genes10121042
|
|
|
[34]
|
Quinoa: In Perspective of Global Challenges
Agronomy,
2019
DOI:10.3390/agronomy9040176
|
|
|
[35]
|
Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective
2018
DOI:10.1007/978-981-10-7479-0_1
|
|
|
[36]
|
Transcriptomic and proteomic analyses of drought responsive genes and proteins in Agropyron mongolicum Keng
Current Plant Biology,
2018
DOI:10.1016/j.cpb.2018.09.005
|
|
|
[37]
|
Quinoa Abiotic Stress Responses: A Review
Plants,
2018
DOI:10.3390/plants7040106
|
|
|
[38]
|
Plant Breeding Reviews
2018
DOI:10.1002/9781119521358.ch7
|
|
|
[39]
|
Quinoa Abiotic Stress Responses: A Review
Plants,
2018
DOI:10.3390/plants7040106
|
|
|
[40]
|
Plant Breeding Reviews
2018
DOI:10.1002/9781119521358.ch7
|
|
|
[41]
|
Comparing salt-induced responses at the transcript level in a salares and coastal-lowlands landrace of quinoa (Chenopodium quinoa Willd)
Environmental and Experimental Botany,
2017
DOI:10.1016/j.envexpbot.2017.05.003
|
|
|
[42]
|
Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing
BMC Genomics,
2017
DOI:10.1186/s12864-017-4093-8
|
|
|
[43]
|
Differentiated transcriptional signatures in the maize landraces of Chiapas, Mexico
BMC Genomics,
2017
DOI:10.1186/s12864-017-4005-y
|
|
|
[44]
|
Crop Improvement
2017
DOI:10.1007/978-3-319-65079-1_3
|
|
|
[45]
|
Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach
Functional & Integrative Genomics,
2017
DOI:10.1007/s10142-016-0523-y
|
|
|
[46]
|
Transcriptional Responses of Chilean Quinoa (Chenopodium quinoa Willd.) Under Water Deficit Conditions Uncovers ABA-Independent Expression Patterns
Frontiers in Plant Science,
2017
DOI:10.3389/fpls.2017.00216
|
|
|
[47]
|
Social Perspectives on Ancient Lives from Paleoethnobotanical Data
2017
DOI:10.1007/978-3-319-52849-6_3
|
|
|
[48]
|
Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize
Frontiers in Plant Science,
2016
DOI:10.3389/fpls.2016.01477
|
|
|
[49]
|
Water Stress and Crop Plants
2016
DOI:10.1002/9781119054450.ch14
|
|
|
[50]
|
Genetic diversity in tef [Eragrostis tef (Zucc.) Trotter]
Frontiers in Plant Science,
2015
DOI:10.3389/fpls.2015.00177
|
|
|
[51]
|
De novo assembly and characterisation of the field pea transcriptome using RNA-Seq
BMC Genomics,
2015
DOI:10.1186/s12864-015-1815-7
|
|
|
[52]
|
Mongolian Almond (Prunus mongolica Maxim): The Morpho-Physiological, Biochemical and Transcriptomic Response to Drought Stress
PLOS ONE,
2015
DOI:10.1371/journal.pone.0124442
|
|
|
[53]
|
Abiotic Stress Biology in Horticultural Plants
2015
DOI:10.1007/978-4-431-55251-2_14
|
|
|
[54]
|
Abiotic Stress Biology in Horticultural Plants
2015
DOI:10.1007/978-4-431-55251-2_14
|
|
|
[55]
|
Salt bladders: do they matter?
Trends in Plant Science,
2014
DOI:10.1016/j.tplants.2014.09.001
|
|
|