[1]
|
Elucidating the efficacy of functionalized multi-walled carbon nanotube in the biogenesis of L-Dopa and antioxidant metabolites in cell cultures of Hybanthus enneaspermus
Plant Physiology and Biochemistry,
2024
DOI:10.1016/j.plaphy.2023.108310
|
|
|
[2]
|
Carbon-Based Nanomaterials
Smart Nanomaterials Technology,
2024
DOI:10.1007/978-981-97-0240-4_5
|
|
|
[3]
|
Elucidating the efficacy of functionalized multi-walled carbon nanotube in the biogenesis of L-Dopa and antioxidant metabolites in cell cultures of Hybanthus enneaspermus
Plant Physiology and Biochemistry,
2024
DOI:10.1016/j.plaphy.2023.108310
|
|
|
[4]
|
Carbon-Based Nanomaterials
Smart Nanomaterials Technology,
2024
DOI:10.1007/978-981-97-0240-4_5
|
|
|
[5]
|
Elucidating the efficacy of functionalized multi-walled carbon nanotube in the biogenesis of L-Dopa and antioxidant metabolites in cell cultures of Hybanthus enneaspermus
Plant Physiology and Biochemistry,
2024
DOI:10.1016/j.plaphy.2023.108310
|
|
|
[6]
|
Nanoparticles in Plant Biotic Stress Management
2024
DOI:10.1007/978-981-97-0851-2_12
|
|
|
[7]
|
Effect of Multi-Walled Carbon Nanotubes on the Growth and Expression of Stress Resistance Genes in Birch
Forests,
2023
DOI:10.3390/f14010163
|
|
|
[8]
|
The Impact of Nanoparticles on Agriculture and Soil
2023
DOI:10.1016/B978-0-323-91703-2.00001-4
|
|
|
[9]
|
Medicinal Plants: Microbial Interactions, Molecular Techniques and Therapeutic Trends
2023
DOI:10.2174/9789815136838123010018
|
|
|
[10]
|
Effect of Multi-Walled Carbon Nanotubes on the Growth and Expression of Stress Resistance Genes in Birch
Forests,
2023
DOI:10.3390/f14010163
|
|
|
[11]
|
Enhancement of paclitaxel production by reduced cellular accumulation and alteration in expression pattern of key genes using multi-walled carbon nanotube in Taxus baccata L. cell suspension culture
Biocatalysis and Agricultural Biotechnology,
2023
DOI:10.1016/j.bcab.2022.102550
|
|
|
[12]
|
Agricultural Nanobiotechnology
2022
DOI:10.1016/B978-0-323-91908-1.00002-X
|
|
|
[13]
|
Establishment of an efficient regeneration and Agrobacterium transformation system in mature embryos of calla lily (Zantedeschia spp.)
Frontiers in Genetics,
2022
DOI:10.3389/fgene.2022.1085694
|
|
|
[14]
|
Effect of Functionalized-Carbon Nanotube on Growth Indices in Ocimum basilicum L. Grown in vitro
Russian Journal of Plant Physiology,
2021
DOI:10.1134/S1021443721050058
|
|
|
[15]
|
Environmental Applications of Carbon Nanomaterials‐Based Devices
2021
DOI:10.1002/9783527830978.ch7
|
|
|
[16]
|
Interaction of carbon nanotubes with plant system: a review
Carbon Letters,
2021
DOI:10.1007/s42823-020-00195-1
|
|
|
[17]
|
Effect of carbon nanomaterials on cell toxicity, biomass production, nutritional and active compound accumulation in plants
Environmental Technology & Innovation,
2021
DOI:10.1016/j.eti.2020.101323
|
|
|
[18]
|
Advances in Agronomy,
2020
DOI:10.1016/bs.agron.2019.12.001
|
|
|
[19]
|
Handbook of Functionalized Nanomaterials for Industrial Applications
2020
DOI:10.1016/B978-0-12-816787-8.00010-7
|
|
|
[20]
|
Green Nanoparticles
Nanotechnology in the Life Sciences,
2020
DOI:10.1007/978-3-030-39246-8_4
|
|
|
[21]
|
Nanocarbon and its Composites
2019
DOI:10.1016/B978-0-08-102509-3.00008-0
|
|
|
[22]
|
Genome Data Analysis
Learning Materials in Biosciences,
2019
DOI:10.1007/978-3-030-12496-0_13
|
|
|
[23]
|
Carbon-Based Nanomaterials Elicit Changes in Physiology, Gene Expression, and Epigenetics in Exposed Plants: A Review
Current Opinion in Environmental Science & Health,
2018
DOI:10.1016/j.coesh.2018.07.007
|
|
|
[24]
|
Nanobiotechnology Applications in Plant Protection
Nanotechnology in the Life Sciences,
2018
DOI:10.1007/978-3-319-91161-8_7
|
|
|
[25]
|
Exploration of nano carbons in relevance to plant systems
New Journal of Chemistry,
2018
DOI:10.1039/C8NJ03642J
|
|
|
[26]
|
Unconventional and Sustainable Nanovectors for Phytohormone Delivery: Insights on Olea europaea
ACS Sustainable Chemistry & Engineering,
2018
DOI:10.1021/acssuschemeng.8b03489
|
|
|
[27]
|
Unconventional and Sustainable Nanovectors for Phytohormone Delivery: Insights on Olea europaea
ACS Sustainable Chemistry & Engineering,
2018
DOI:10.1021/acssuschemeng.8b03489
|
|
|
[28]
|
Nanotechnology
2017
DOI:10.1007/978-981-10-4678-0_16
|
|
|
[29]
|
Antibiotics and Antibiotics Resistance Genes in Soils
Soil Biology,
2017
DOI:10.1007/978-3-319-66260-2_14
|
|
|
[30]
|
Carbon nanotubes impact on date palm in vitro cultures
Plant Cell, Tissue and Organ Culture (PCTOC),
2016
DOI:10.1007/s11240-016-1058-6
|
|
|
[31]
|
Penetration and Toxicity of Nanomaterials in Higher Plants
Nanomaterials,
2015
DOI:10.3390/nano5020851
|
|
|
[32]
|
Penetration and Toxicity of Nanomaterials in Higher Plants
Nanomaterials,
2015
DOI:10.3390/nano5020851
|
|
|