[1]
|
Determination of the optimal parameters for the separation of neodymium from cesium in U3Si2/Al fuel plate solution using precipitation method with HClO4
INTERNATIONAL CONFERENCE ON NUCLEAR SCIENCE, TECHNOLOGY, AND APPLICATIONS – ICONSTA 2022,
2024
DOI:10.1063/5.0194304
|
|
|
[2]
|
Radiochemical and chemical characterization of fuel, salt, and deposit from the electrorefining of irradiated U-6 wt% Zr in hot cells
Radiochimica Acta,
2024
DOI:10.1515/ract-2023-0203
|
|
|
[3]
|
Radiochemical and chemical characterization of fuel, salt, and deposit from the electrorefining of irradiated U-6 wt% Zr in hot cells
Radiochimica Acta,
2024
DOI:10.1515/ract-2023-0203
|
|
|
[4]
|
Optimization of Neodymium Separation from Cerium and Samarium for Nuclear Fuel Burn-Up Determination
Materials Science Forum,
2023
DOI:10.4028/p-hWQ49K
|
|
|
[5]
|
Fast and selective reversed-phase high performance liquid chromatographic separation of UO22+ and Th4+ ions using surface modified C18 silica monolithic supports with target specific ionophoric ligands
RSC Advances,
2023
DOI:10.1039/D2RA07495H
|
|
|
[6]
|
Optimization of Neodymium Separation from Cerium and Samarium for Nuclear Fuel Burn-Up Determination
Materials Science Forum,
2023
DOI:10.4028/p-hWQ49K
|
|
|
[7]
|
The need for speed – Burnup determination of spent nuclear fuel
Talanta Open,
2022
DOI:10.1016/j.talo.2022.100152
|
|
|
[8]
|
Quantitative determination of 137Cs and 90Sr in dissolver solutions without pre-separation by isotope dilution thermal ionization mass spectrometry
Journal of Analytical Atomic Spectrometry,
2022
DOI:10.1039/D1JA00426C
|
|
|
[9]
|
The need for speed – Burnup determination of spent nuclear fuel
Talanta Open,
2022
DOI:10.1016/j.talo.2022.100152
|
|
|
[10]
|
The need for speed – Burnup determination of spent nuclear fuel
Talanta Open,
2022
DOI:10.1016/j.talo.2022.100152
|
|
|
[11]
|
A non-destructive assay of plutonium based nuclear fuels by in-house developed small volume calorimeter
Thermochimica Acta,
2022
DOI:10.1016/j.tca.2022.179355
|
|
|
[12]
|
A non-destructive assay of plutonium based nuclear fuels by in-house developed small volume calorimeter
Thermochimica Acta,
2022
DOI:10.1016/j.tca.2022.179355
|
|
|
[13]
|
The need for speed – Burnup determination of spent nuclear fuel
Talanta Open,
2022
DOI:10.1016/j.talo.2022.100152
|
|
|
[14]
|
The Need for Speed - Burnup Determination of Spent Nuclear Fuel
SSRN Electronic Journal ,
2022
DOI:10.2139/ssrn.4162362
|
|
|
[15]
|
Precise determination of plutonium in nuclear fuel process samples
Analytical Sciences,
2022
DOI:10.2116/analsci.21P281
|
|
|
[16]
|
The need for speed – Burnup determination of spent nuclear fuel
Talanta Open,
2022
DOI:10.1016/j.talo.2022.100152
|
|
|
[17]
|
A non-destructive assay of plutonium based nuclear fuels by in-house developed small volume calorimeter
Thermochimica Acta,
2022
DOI:10.1016/j.tca.2022.179355
|
|
|
[18]
|
Quantification of uranium, plutonium, neodymium and gadolinium for the characterization of spent nuclear fuel using isotope dilution HPIC-SF-ICP-MS
Talanta,
2021
DOI:10.1016/j.talanta.2020.121592
|
|
|
[19]
|
Quantification of uranium, plutonium, neodymium and gadolinium for the characterization of spent nuclear fuel using isotope dilution HPIC-SF-ICP-MS
Talanta,
2021
DOI:10.1016/j.talanta.2020.121592
|
|
|
[20]
|
Effect of mass distribution and collection angle in pulsed laser deposited films – a sampling method for chemical characterization of spent nuclear fuel
Journal of Analytical Atomic Spectrometry,
2020
DOI:10.1039/D0JA00316F
|
|
|
[21]
|
Thermophysical and thermochemical properties of U-23wt.%Pu-6wt.%Zr alloy fuel: Computational and high temperature mass spectrometric studies
Journal of Nuclear Materials,
2020
DOI:10.1016/j.jnucmat.2020.152251
|
|
|
[22]
|
Determination of the lanthanides, uranium and plutonium by means of on-line high-pressure ion chromatography coupled with sector field inductively coupled plasma-mass spectrometry to characterize nuclear samples
Journal of Chromatography A,
2019
DOI:10.1016/j.chroma.2019.460839
|
|
|
[23]
|
Molybdenum and lanthanum as alternate burn-up monitors – development of chromatographic and mass spectrometric methods for determination of atom percent fission
Radiochimica Acta,
2019
DOI:10.1515/ract-2018-3017
|
|
|
[24]
|
Molybdenum and lanthanum as alternate burn-up monitors – development of chromatographic and mass spectrometric methods for determination of atom percent fission
Radiochimica Acta,
2019
DOI:10.1515/ract-2018-3017
|
|
|
[25]
|
Mass spectrometric studies on U-Pu-Zr alloy
Journal of Nuclear Materials,
2018
DOI:10.1016/j.jnucmat.2018.05.020
|
|
|
[26]
|
Fast burn-up measurement in simulated nuclear fuel using ICP-MS
Radiochimica Acta,
2018
DOI:10.1515/ract-2018-2961
|
|
|
[27]
|
On the discrepancies between FIMA and specific burnup
Progress in Nuclear Energy,
2017
DOI:10.1016/j.pnucene.2017.03.016
|
|
|
[28]
|
High performance liquid chromatographic separation of 228,229Th and 232,233U and their estimation by α- and γ-ray spectrometry
Journal of Radioanalytical and Nuclear Chemistry,
2017
DOI:10.1007/s10967-017-5332-9
|
|
|
[29]
|
Alternative method for determination of specific activity of plutonium present in the irradiated fuel solution
Annals of Nuclear Energy,
2017
DOI:10.1016/j.anucene.2017.08.012
|
|
|
[30]
|
Isolation of lanthanides from spent nuclear fuel by means of high performance ion chromatography (HPIC) prior to mass spectrometric analysis
Journal of Radioanalytical and Nuclear Chemistry,
2017
DOI:10.1007/s10967-017-5538-x
|
|
|
[31]
|
Thermal ionisation mass spectrometry (TIMS) in nuclear science and technology – a review
Anal. Methods,
2016
DOI:10.1039/C5AY02816G
|
|
|
[32]
|
Determination of Plutonium Present in Highly Radioactive Irradiated Fuel Solution by Spectrophotometric Method
Nuclear Engineering and Technology,
2016
DOI:10.1016/j.net.2016.01.022
|
|
|
[33]
|
Sequential Determination of Free Acidity and Plutonium Concentration in the Dissolver Solution of Fast-Breeder Reactor Spent Fuels in a Single Aliquot
Analytical Sciences,
2016
DOI:10.2116/analsci.32.401
|
|
|